1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
-- Alternate implementation of Map with functions
module Fallen.FunMap
( Map,
emptyMap,
dimension,
inBounds,
getTileAtPos,
findTileInMap,
updateMap,
legalMoves,
fillMapRect
) where
import Fallen.Tiles
import Fallen.Point
import Data.List
import Fallen.Util
import Data.Maybe
data Map = Map {
dimension :: (Int, Int),
mapdata :: Point -> Tile,
background :: Tile
}
-- emptyMap :: Int -> Int -> Tile -> Map
emptyMap w h t = Map { dimension=(w,h), mapdata=(\p -> t), background=t }
-- inBounds :: Map -> Point -> Bool
inBounds m (x,y) = let (w,h) = dimension m in (x >= 0) && (x < w) && (y >= 0) && (y < h)
-- getTileAtPos :: Map -> Point -> Tile
getTileAtPos m p = if (inBounds m p)
then mapdata m p
else background m
-- findTileInMap :: Map -> Tile -> [Point]
-- REALLY inefficient
findTileInMap m t = filter (\p -> t == mapdata m p) rawPoints where
(w,h) = dimension m
rawPoints = [(x,y) | x <- [0..w-1], y <- [0..h-1]]
-- updateMap :: Point -> Tile -> Map -> Map
updateMap p t (Map d xs bg) = Map d (redirect p t xs) bg where
redirect p t xs = (\p2 -> if p == p2 then t else xs p2)
-- legalMoves :: Map -> Point -> [Tile] -> [Direction]
legalMoves m p ts = map fst $ filter legal $ map tileDir directions where
tileDir d = (d, getTileAtPos m $ stepInDirection p d)
legal (_,t) = t `elem` ts
-- fillMapRect :: Int -> Int -> Int -> Int -> Tile -> Map -> Map
fillMapRect x y w h t (Map d xs bg) = Map d redirectInBounds bg where
redirectInBounds = (\p -> if (inBounds p) then t else xs p)
inBounds (px,py) = (px >= x) && (px < (x+w)) && (py >= y) && (py < (y+h))
|