1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
* FEATURES:
* SWAP_TARGETS should still require the full panel sequence (and have ways to prevent softlocks?)
** Think about: Jungle
** Hard: Monastery
** Do: Challenge
* Randomize audio logs
* Swap sounds in jungle (along with panels) -- maybe impossible
* Make orange 7 (all of oranges?) hard. Like big = hard.
*/
#include "Memory.h"
#include "WitnessRandomizer.h"
#include "Panels.h"
#include <string>
#include <iostream>
#include <numeric>
template <class T>
int find(const std::vector<T> &data, T search, int startIndex = 0) {
for (int i=startIndex ; i<data.size(); i++) {
if (data[i] == search) return i;
}
return -1;
}
int main(int argc, char** argv)
{
WitnessRandomizer randomizer = WitnessRandomizer();
if (argc == 2) {
srand(atoi(argv[1])); // Seed with RNG from command line
} else {
int seed = rand() % 1 << 16;
std::cout << "Selected seed:" << seed << std::endl;
srand(seed);
}
// Content swaps -- must happen before squarePanels
randomizer.Randomize(upDownPanels, SWAP_LINES | SWAP_STYLE);
randomizer.Randomize(leftForwardRightPanels, SWAP_LINES);
randomizer.Randomize(squarePanels, SWAP_LINES | SWAP_STYLE);
// Frame swaps -- must happen after squarePanels
randomizer.Randomize(burnablePanels, SWAP_LINES | SWAP_STYLE);
// Target swaps, can happen whenever
randomizer.Randomize(lasers, SWAP_TARGETS);
// Read the target of keep front laser, and write it to keep back laser.
randomizer.Overwrite(0x0360E, 0x03317, 0x2BC, sizeof(int));
std::vector<int> randomOrder = std::vector(junglePanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
// Randomize Waves 2-7
// Waves 1 cannot be randomized, since no other panel can start on
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 1, 7);
// Randomize Pitches 1-6 onto themselves
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 7, 13);
randomizer.ReassignTargets(junglePanels, randomOrder);
randomOrder = std::vector(bunkerPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
// Randomize Tutorial 2-Advanced Tutorial 4 + Glass 1
// Tutorial 1 cannot be randomized, since no other panel can start on
// Glass 1 will become door + glass 1, due to the targetting system
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 1, 10);
// Randomize Glass 1-3 into everything after the door
int glassDoorIndex = find(randomOrder, 9) + 1;
randomizer.RandomizeRange(randomOrder, SWAP_NONE, glassDoorIndex, 12);
randomizer.ReassignTargets(bunkerPanels, randomOrder);
randomOrder = std::vector(shadowsPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 0, 8); // Tutorial
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 8, 16); // Avoid
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 16, 21); // Follow
randomizer.ReassignTargets(shadowsPanels, randomOrder);
randomizer.TurnOff(shadowsPanels[0]);
randomizer.TurnOn(shadowsPanels[randomOrder[0]]);
}
WitnessRandomizer::WitnessRandomizer() : _memory("witness64_d3d11.exe")
{
// Turn off desert flood final
TurnOff(0x18076);
// Change desert floating target to desert flood final
_memory.WriteData<int>({0x5B28C0, 0x18, 0x17ECA*8, 0x2BC}, {0x18077});
// Distance-gate shadows laser to prevent sniping through the bars
_memory.WriteData<float>({0x5B28C0, 0x18, 0x19650*8, 0x3C0}, {2.5f});
// Change the shadows tutorial cable to only activate avoid
_memory.WriteData<int>({0x5B28C0, 0x18, 0x319A8*8, 0xD8}, {0});
// Change shadows avoid 8 to power shadows follow
_memory.WriteData<int>({0x5B28C0, 0x18, 0x1972F*8, 0x2BC}, {0x1C34C});
// Disable tutorial cursor speed modifications
_memory.WriteData<float>({0x5B28C0, 0x18, 0x00295*8, 0x358}, {1.0});
_memory.WriteData<float>({0x5B28C0, 0x18, 0x0C373*8, 0x358}, {1.0});
_memory.WriteData<float>({0x5B28C0, 0x18, 0x00293*8, 0x358}, {1.0});
_memory.WriteData<float>({0x5B28C0, 0x18, 0x002C2*8, 0x358}, {1.0});
// Explicitly set back-off distance for the challenge entry & final 2 pillars
// _memory.WriteData<float>({0x5B28C0, 0x18, 0x9DD5*8, 0x22C}, {2.5f});
// _memory.WriteData<float>({0x5B28C0, 0x18, 0x1C31A*8, 0x22C}, {3.0f});
// _memory.WriteData<float>({0x5B28C0, 0x18, 0x1C319*8, 0x22C}, {3.0f});
}
void WitnessRandomizer::Randomize(std::vector<int> &panels, int flags) {
return RandomizeRange(panels, flags, 0, panels.size());
}
// Range is [start, end)
void WitnessRandomizer::RandomizeRange(std::vector<int> &panels, int flags, size_t startIndex, size_t endIndex) {
if (panels.size() == 0) return;
if (startIndex >= endIndex) return;
if (endIndex >= panels.size()) endIndex = panels.size();
for (size_t i = endIndex-1; i > startIndex+1; i--) {
size_t target = rand() % (i - startIndex) + startIndex;
if (i != target) {
// std::cout << "Swapping panels " << std::hex << panels[i] << " and " << std::hex << panels[target] << std::endl;
SwapPanels(panels[i], panels[target], flags);
std::swap(panels[i], panels[target]); // Panel indices in the array
}
}
}
void WitnessRandomizer::SwapPanels(int panel1, int panel2, int flags) {
std::map<int, int> offsets;
if (flags & SWAP_TARGETS) {
offsets[0x2BC] = sizeof(int);
}
if (flags & SWAP_LINES) {
offsets[0x230] = 16; // traced_edges
// offsets[0x220] = sizeof(void*); // *pattern_name
// offsets[0x240] = sizeof(void*); // *mesh_name
offsets[0x2FC] = sizeof(int); // is_cylinder
offsets[0x300] = sizeof(float); // cylinder_z0
offsets[0x304] = sizeof(float); // cylinder_z1
offsets[0x308] = sizeof(float); // cylinder_radius
// offsets[0x35C] = sizeof(int); // solvable_from_behind
// offsets[0x30C] = sizeof(float); // uv_to_world_scale
offsets[0x398] = sizeof(float); // specular_add
offsets[0x39C] = sizeof(int); // specular_power
offsets[0x3A4] = sizeof(float); // path_width_scale
offsets[0x3A8] = sizeof(float); // startpoint_scale
offsets[0x3B8] = sizeof(int); // num_dots
offsets[0x3BC] = sizeof(int); // num_connections
offsets[0x3C8] = sizeof(void*); // *dot_positions
offsets[0x3D0] = sizeof(void*); // *dot_flags
offsets[0x3D8] = sizeof(void*); // *dot_connection_a
offsets[0x3E0] = sizeof(void*); // *dot_connection_b
// offsets[0x3E8] = sizeof(int); // randomize_on_power_on
offsets[0x420] = sizeof(void*); // *decorations
offsets[0x428] = sizeof(void*); // *decoration_flags
offsets[0x438] = sizeof(int); // num_decorations
offsets[0x440] = sizeof(void*); // *reflection_data
offsets[0x448] = sizeof(int); // grid_size_x
offsets[0x44C] = sizeof(int); // grid_size_y
offsets[0x45C] = sizeof(int); // sequence_len
offsets[0x460] = sizeof(void*); // *sequence
offsets[0x468] = sizeof(int); // dot_sequence_len
offsets[0x470] = sizeof(void*); // *dot_sequence
offsets[0x478] = sizeof(int); // dot_sequence_len_reflection
offsets[0x480] = sizeof(void*); // *dot_sequence_reflection
offsets[0x4B0] = sizeof(void*); // *panel_target
offsets[0x4D8] = sizeof(void*); // *specular_texture
offsets[0xC8] = 16; // path_color
offsets[0xD8] = 16; // reflection_path_color
// offsets[0xE8] = 16; // deprecated_finished_path_color
offsets[0xF8] = 16; // dot_color
offsets[0x108] = 16; // active_color
offsets[0x118] = 16; // background_region_color
offsets[0x128] = 16; // success_color_a
offsets[0x138] = 16; // success_color_b
offsets[0x148] = 16; // strobe_color_a
offsets[0x158] = 16; // strobe_color_b
offsets[0x168] = 16; // error_color
// offsets[0x178] = 16; // video_status_color
offsets[0x188] = 16; // pattern_point_color
offsets[0x198] = 16; // pattern_point_color_a
offsets[0x1A8] = 16; // pattern_point_color_b
offsets[0x1B8] = 16; // symbol_a
offsets[0x1C8] = 16; // symbol_b
offsets[0x1D8] = 16; // symbol_c
offsets[0x1E8] = 16; // symbol_d
offsets[0x1F8] = 16; // symbol_e
offsets[0x208] = sizeof(int); // push_symbol_colors
offsets[0x20C] = 16; // outer_background
offsets[0x21C] = sizeof(int); // outer_background_mode
offsets[0x278] = sizeof(void*); // *audio_prefix
offsets[0x430] = sizeof(void*); // *decoration_colors
offsets[0x4A0] = sizeof(int); // num_colored_regions
offsets[0x4A8] = sizeof(void*); // *colored_regions
// offsets[0x4B8] = sizeof(void*); // *backing_texture
}
if (flags & SWAP_STYLE) {
offsets[0x450] = sizeof(int); // style_flags
}
/*
if (flags & SWAP_BACK_DISTANCE) {
offsets[0x22C] = sizeof(float); // extra_back_distance
}
*/
for (auto const& [offset, size] : offsets) {
SwapPanelData(panel1, panel2, offset, size);
}
}
/*
void WitnessRandomizer::SwapTargetList(const std::vector<int>& initialOrder, const std::vector<int>& randomizedOrder) {
std::vector<std::vector<int>> randomizedTargets;
for (int panel : randomizedOrder) {
randomizedTargets.push_back(_memory.ReadData<int>({0x5B28C0, 0x18, panel*8, 0x2BC}, 1));
}
for (int i=0; i<initialOrder.size(); i++) {
int panel = initialOrder[i];
std::vector<int> target = randomizedTargets[i];
_memory.WriteData<int>({0x5B28C0, 0x18, panel*8, 0x2BC}, target);
}
}
*/
void WitnessRandomizer::ReassignTargets(const std::vector<int>& panels, const std::vector<int>& order) {
std::vector<int> targetToActivatePanel = {panels[0] + 1};
for (int panel : panels) {
int target = _memory.ReadData<int>({0x5B28C0, 0x18, panel*8, 0x2BC}, 1)[0];
targetToActivatePanel.push_back(target);
}
for (int i=0; i<order.size() - 1; i++) {
// order[i+1] is the target panel
// order[i+1] - 1 is the (real) panel before the target panel
// targets[order[i+1] - 1] is the (real) target which will activate the target panel
int panelTarget = targetToActivatePanel[order[i+1]];
_memory.WriteData<int>({0x5B28C0, 0x18, panels[order[i]]*8, 0x2BC}, {panelTarget});
}
}
void WitnessRandomizer::SwapPanelData(int panel1, int panel2, int finalOffset, int dataSize) {
// Currently wired for old version
std::vector<int> panel1Offset = {0x5B28C0, 0x18, panel1*8, finalOffset};
std::vector<int> panel2Offset = {0x5B28C0, 0x18, panel2*8, finalOffset};
std::vector<byte> panel1Data = _memory.ReadData<byte>(panel1Offset, dataSize);
std::vector<byte> panel2Data = _memory.ReadData<byte>(panel2Offset, dataSize);
_memory.WriteData<byte>(panel2Offset, panel1Data);
_memory.WriteData<byte>(panel1Offset, panel2Data);
}
void WitnessRandomizer::TurnOn(int panel) {
_memory.WriteData<float>({0x5B28C0, 0x18, panel*8, 0x2A8}, {1.0f, 1.0f});
}
void WitnessRandomizer::TurnOff(int panel) {
_memory.WriteData<float>({0x5B28C0, 0x18, panel*8, 0x2A8}, {0.0f, 0.0f});
}
void WitnessRandomizer::Overwrite(int panel1, int panel2, int offset, int size) {
std::vector<byte> data = _memory.ReadData<int>({0x5B28C0, 0x18, panel1*8, offset}, size);
_memory.WriteData<byte>({0x5B28C0, 0x18, panel2*8, offset}, data);
}
|