1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/*
* BUGS:
* Shipwreck vault is solved reversed? -> Not reversed, just "half", you can normally solve orange. Seems to need pattern name.
* Tutorial sounds don't always play -> Unsure. Not controlled by pattern name.
* FEATURES:
* Start the game if it isn't running?
* Stop swapping colors in desert
* Look into valid panel swaps for keep walk-ons.
* Randomize audio logs -- Hard, seem to be unloaded some times?
* Swap sounds in jungle (along with panels) -- maybe impossible
* Make orange 7 (all of oranges?) hard. Like big = hard. (See: HARD_MODE)
*/
#include "Memory.h"
#include "Randomizer.h"
#include "Panels.h"
#include "Random.h"
#include <string>
#include <iostream>
#include <numeric>
template <class T>
int find(const std::vector<T> &data, T search, size_t startIndex = 0) {
for (size_t i=startIndex ; i<data.size(); i++) {
if (data[i] == search) return i;
}
std::cout << "Couldn't find " << search << " in data!" << std::endl;
exit(-1);
}
bool Randomizer::GameIsRandomized() {
int currentFrame = GetCurrentFrame();
if (currentFrame >= _lastRandomizedFrame) {
// Time went forwards, presumably we're still on the same save
_lastRandomizedFrame = currentFrame;
return true;
}
// Otherwise, time has gone backwards, so assume new game
return false;
}
void Randomizer::Randomize()
{
if (GameIsRandomized()) return; // Nice sanity check, but should be unnecessary (since Main checks anyways)
_lastRandomizedFrame = GetCurrentFrame();
// Content swaps -- must happen before squarePanels
Randomize(upDownPanels, SWAP_LINES);
Randomize(leftForwardRightPanels, SWAP_LINES);
Randomize(squarePanels, SWAP_LINES);
// Individual area modifications
RandomizeTutorial();
RandomizeSymmetry();
RandomizeDesert();
RandomizeQuarry();
RandomizeTreehouse();
RandomizeKeep();
RandomizeShadows();
RandomizeTown();
RandomizeMonastery();
RandomizeBunker();
RandomizeJungle();
RandomizeSwamp();
RandomizeMountain();
// RandomizeChallenge();
// RandomizeAudioLogs();
}
void Randomizer::AdjustSpeed() {
// Desert Surface Final Control
_memory->WritePanelData<float>(0x09F95, OPEN_RATE, {0.04f}); // 4x
// Swamp Sliding Bridge
_memory->WritePanelData<float>(0x0061A, OPEN_RATE, {0.1f}); // 4x
// Mountain 2 Elevator
_memory->WritePanelData<float>(0x09EEC, OPEN_RATE, {0.075f}); // 3x
}
void Randomizer::RandomizeTutorial() {
// Disable tutorial cursor speed modifications (not working?)
_memory->WritePanelData<float>(0x00295, CURSOR_SPEED_SCALE, {1.0});
_memory->WritePanelData<float>(0x0C373, CURSOR_SPEED_SCALE, {1.0});
_memory->WritePanelData<float>(0x00293, CURSOR_SPEED_SCALE, {1.0});
_memory->WritePanelData<float>(0x002C2, CURSOR_SPEED_SCALE, {1.0});
}
void Randomizer::RandomizeSymmetry() {
}
void Randomizer::RandomizeDesert() {
Randomize(desertPanels, SWAP_LINES);
// Turn off desert surface 8
_memory->WritePanelData<float>(0x09F94, POWER, {0.0, 0.0});
// Turn off desert flood final
_memory->WritePanelData<float>(0x18076, POWER, {0.0, 0.0});
// Change desert floating target to desert flood final
_memory->WritePanelData<int>(0x17ECA, TARGET, {0x18077});
}
void Randomizer::RandomizeQuarry() {
}
void Randomizer::RandomizeTreehouse() {
// Ensure that whatever pivot panels we have are flagged as "pivotable"
int panelFlags = _memory->ReadPanelData<int>(0x17DD1, STYLE_FLAGS, 1)[0];
_memory->WritePanelData<int>(0x17DD1, STYLE_FLAGS, {panelFlags | 0x8000});
panelFlags = _memory->ReadPanelData<int>(0x17CE3, STYLE_FLAGS, 1)[0];
_memory->WritePanelData<int>(0x17CE3, STYLE_FLAGS, {panelFlags | 0x8000});
panelFlags = _memory->ReadPanelData<int>(0x17DB7, STYLE_FLAGS, 1)[0];
_memory->WritePanelData<int>(0x17DB7, STYLE_FLAGS, {panelFlags | 0x8000});
panelFlags = _memory->ReadPanelData<int>(0x17E52, STYLE_FLAGS, 1)[0];
_memory->WritePanelData<int>(0x17E52, STYLE_FLAGS, {panelFlags | 0x8000});
}
void Randomizer::RandomizeKeep() {
}
void Randomizer::RandomizeShadows() {
// Distance-gate shadows laser to prevent sniping through the bars
_memory->WritePanelData<float>(0x19650, MAX_BROADCAST_DISTANCE, {2.5});
// Change the shadows tutorial cable to only activate avoid
_memory->WritePanelData<int>(0x319A8, CABLE_TARGET_2, {0});
// Change shadows avoid 8 to power shadows follow
_memory->WritePanelData<int>(0x1972F, TARGET, {0x1C34C});
std::vector<int> randomOrder(shadowsPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
RandomizeRange(randomOrder, SWAP_NONE, 0, 8); // Tutorial
RandomizeRange(randomOrder, SWAP_NONE, 8, 16); // Avoid
RandomizeRange(randomOrder, SWAP_NONE, 16, 21); // Follow
ReassignTargets(shadowsPanels, randomOrder);
// Turn off original starting panel
_memory->WritePanelData<float>(shadowsPanels[0], POWER, {0.0f, 0.0f});
// Turn on new starting panel
_memory->WritePanelData<float>(shadowsPanels[randomOrder[0]], POWER, {1.0f, 1.0f});
}
void Randomizer::RandomizeTown() {
}
void Randomizer::RandomizeMonastery() {
std::vector<int> randomOrder(monasteryPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
RandomizeRange(randomOrder, SWAP_NONE, 3, 9); // Outer 2 & 3, Inner 1-4
ReassignTargets(monasteryPanels, randomOrder);
}
void Randomizer::RandomizeBunker() {
std::vector<int> randomOrder(bunkerPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
// Randomize Tutorial 2-Advanced Tutorial 4 + Glass 1
// Tutorial 1 cannot be randomized, since no other panel can start on
// Glass 1 will become door + glass 1, due to the targetting system
RandomizeRange(randomOrder, SWAP_NONE, 1, 10);
// Randomize Glass 1-3 into everything after the door/glass 1
const size_t glass1Index = find(randomOrder, 9);
RandomizeRange(randomOrder, SWAP_NONE, glass1Index + 1, 12);
ReassignTargets(bunkerPanels, randomOrder);
}
void Randomizer::RandomizeJungle() {
std::vector<int> randomOrder(junglePanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
// Waves 1 cannot be randomized, since no other panel can start on
RandomizeRange(randomOrder, SWAP_NONE, 1, 7); // Waves 2-7
RandomizeRange(randomOrder, SWAP_NONE, 8, 13); // Pitches 1-6
ReassignTargets(junglePanels, randomOrder);
}
void Randomizer::RandomizeSwamp() {
// Distance-gate swamp snipe 1 to prevent RNG swamp snipe
_memory->WritePanelData<float>(0x17C05, MAX_BROADCAST_DISTANCE, {15.0});
}
void Randomizer::RandomizeMountain() {
// Randomize lasers & some of mountain
Randomize(lasers, SWAP_TARGETS);
Randomize(mountainMultipanel, SWAP_LINES);
// Randomize final pillars order
std::vector<int> targets = {pillars[0] + 1};
for (const int pillar : pillars) {
int target = _memory->ReadPanelData<int>(pillar, TARGET, 1)[0];
targets.push_back(target);
}
targets[5] = pillars[5] + 1;
std::vector<int> randomOrder(pillars.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
RandomizeRange(randomOrder, SWAP_NONE, 0, 4); // Left Pillars 1-4
RandomizeRange(randomOrder, SWAP_NONE, 5, 9); // Right Pillars 1-4
ReassignTargets(pillars, randomOrder, targets);
// Turn off original starting panels
_memory->WritePanelData<float>(pillars[0], POWER, {0.0f, 0.0f});
_memory->WritePanelData<float>(pillars[5], POWER, {0.0f, 0.0f});
// Turn on new starting panels
_memory->WritePanelData<float>(pillars[randomOrder[0]], POWER, {1.0f, 1.0f});
_memory->WritePanelData<float>(pillars[randomOrder[5]], POWER, {1.0f, 1.0f});
// Read the target of keep front laser, and write it to keep back laser.
std::vector<int> keepFrontLaserTarget = _memory->ReadPanelData<int>(0x0360E, TARGET, 1);
_memory->WritePanelData<int>(0x03317, TARGET, keepFrontLaserTarget);
}
void Randomizer::RandomizeChallenge() {
std::vector<int> randomOrder(challengePanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
RandomizeRange(randomOrder, SWAP_NONE, 1, 9); // Easy maze - Triple 2
std::vector<int> triple1Target = _memory->ReadPanelData<int>(0x00C80, TARGET, 1);
_memory->WritePanelData<int>(0x00CA1, TARGET, triple1Target);
_memory->WritePanelData<int>(0x00CB9, TARGET, triple1Target);
std::vector<int> triple2Target = _memory->ReadPanelData<int>(0x00C22, TARGET, 1);
_memory->WritePanelData<int>(0x00C59, TARGET, triple2Target);
_memory->WritePanelData<int>(0x00C68, TARGET, triple2Target);
ReassignTargets(challengePanels, randomOrder);
}
void Randomizer::RandomizeAudioLogs() {
std::vector<int> randomOrder(audiologs.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
Randomize(randomOrder, SWAP_NONE);
ReassignNames(audiologs, randomOrder);
}
void Randomizer::Randomize(std::vector<int>& panels, int flags) {
return RandomizeRange(panels, flags, 0, panels.size());
}
// Range is [start, end)
void Randomizer::RandomizeRange(std::vector<int> &panels, int flags, size_t startIndex, size_t endIndex) {
if (panels.size() == 0) return;
if (startIndex >= endIndex) return;
if (endIndex >= panels.size()) endIndex = panels.size();
for (size_t i = endIndex-1; i > startIndex; i--) {
const size_t target = Random::RandInt(startIndex, i);
if (i != target) {
// std::cout << "Swapping panels " << std::hex << panels[i] << " and " << std::hex << panels[target] << std::endl;
SwapPanels(panels[i], panels[target], flags);
std::swap(panels[i], panels[target]); // Panel indices in the array
}
}
}
void Randomizer::SwapPanels(int panel1, int panel2, int flags) {
std::map<int, int> offsets;
if (flags & SWAP_TARGETS) {
offsets[TARGET] = sizeof(int);
}
if (flags & SWAP_AUDIO_NAMES) {
offsets[AUDIO_LOG_NAME] = sizeof(void*);
}
if (flags & SWAP_LINES) {
offsets[PATH_COLOR] = 16;
offsets[REFLECTION_PATH_COLOR] = 16;
offsets[DOT_COLOR] = 16;
offsets[ACTIVE_COLOR] = 16;
offsets[BACKGROUND_REGION_COLOR] = 12; // Not copying alpha to preserve transparency.
offsets[SUCCESS_COLOR_A] = 16;
offsets[SUCCESS_COLOR_B] = 16;
offsets[STROBE_COLOR_A] = 16;
offsets[STROBE_COLOR_B] = 16;
offsets[ERROR_COLOR] = 16;
offsets[PATTERN_POINT_COLOR] = 16;
offsets[PATTERN_POINT_COLOR_A] = 16;
offsets[PATTERN_POINT_COLOR_B] = 16;
offsets[SYMBOL_A] = 16;
offsets[SYMBOL_B] = 16;
offsets[SYMBOL_C] = 16;
offsets[SYMBOL_D] = 16;
offsets[SYMBOL_E] = 16;
offsets[PUSH_SYMBOL_COLORS] = sizeof(int);
offsets[OUTER_BACKGROUND] = 16;
offsets[OUTER_BACKGROUND_MODE] = sizeof(int);
offsets[TRACED_EDGES] = 16;
offsets[AUDIO_PREFIX] = sizeof(void*);
// offsets[IS_CYLINDER] = sizeof(int);
// offsets[CYLINDER_Z0] = sizeof(float);
// offsets[CYLINDER_Z1] = sizeof(float);
// offsets[CYLINDER_RADIUS] = sizeof(float);
offsets[SPECULAR_ADD] = sizeof(float);
offsets[SPECULAR_POWER] = sizeof(int);
offsets[PATH_WIDTH_SCALE] = sizeof(float);
offsets[STARTPOINT_SCALE] = sizeof(float);
offsets[NUM_DOTS] = sizeof(int);
offsets[NUM_CONNECTIONS] = sizeof(int);
offsets[DOT_POSITIONS] = sizeof(void*);
offsets[DOT_FLAGS] = sizeof(void*);
offsets[DOT_CONNECTION_A] = sizeof(void*);
offsets[DOT_CONNECTION_B] = sizeof(void*);
offsets[DECORATIONS] = sizeof(void*);
offsets[DECORATION_FLAGS] = sizeof(void*);
offsets[DECORATION_COLORS] = sizeof(void*);
offsets[NUM_DECORATIONS] = sizeof(int);
offsets[REFLECTION_DATA] = sizeof(void*);
offsets[GRID_SIZE_X] = sizeof(int);
offsets[GRID_SIZE_Y] = sizeof(int);
offsets[STYLE_FLAGS] = sizeof(int);
offsets[SEQUENCE_LEN] = sizeof(int);
offsets[SEQUENCE] = sizeof(void*);
offsets[DOT_SEQUENCE_LEN] = sizeof(int);
offsets[DOT_SEQUENCE] = sizeof(void*);
offsets[DOT_SEQUENCE_LEN_REFLECTION] = sizeof(int);
offsets[DOT_SEQUENCE_REFLECTION] = sizeof(void*);
offsets[NUM_COLORED_REGIONS] = sizeof(int);
offsets[COLORED_REGIONS] = sizeof(void*);
offsets[PANEL_TARGET] = sizeof(void*);
offsets[SPECULAR_TEXTURE] = sizeof(void*);
}
for (auto const& [offset, size] : offsets) {
std::vector<byte> panel1data = _memory->ReadPanelData<byte>(panel1, offset, size);
std::vector<byte> panel2data = _memory->ReadPanelData<byte>(panel2, offset, size);
_memory->WritePanelData<byte>(panel2, offset, panel1data);
_memory->WritePanelData<byte>(panel1, offset, panel2data);
}
}
void Randomizer::ReassignTargets(const std::vector<int>& panels, const std::vector<int>& order, std::vector<int> targets) {
if (targets.empty()) {
// This list is offset by 1, so the target of the Nth panel is in position N (aka the N+1th element)
// The first panel may not have a wire to power it, so we use the panel ID itself.
targets = {panels[0] + 1};
for (const int panel : panels) {
int target = _memory->ReadPanelData<int>(panel, TARGET, 1)[0];
targets.push_back(target);
}
}
for (size_t i=0; i<order.size() - 1; i++) {
// Set the target of order[i] to order[i+1], using the "real" target as determined above.
const int panelTarget = targets[order[i+1]];
_memory->WritePanelData<int>(panels[order[i]], TARGET, {panelTarget});
}
}
void Randomizer::ReassignNames(const std::vector<int>& panels, const std::vector<int>& order) {
std::vector<int64_t> names;
for (const int panel : panels) {
names.push_back(_memory->ReadPanelData<int64_t>(panel, AUDIO_LOG_NAME, 1)[0]);
}
for (int i=0; i<panels.size(); i++) {
_memory->WritePanelData<int64_t>(panels[i], AUDIO_LOG_NAME, {names[order[i]]});
}
}
short Randomizer::ReadMetadata() {
return _memory->ReadData<short>({GLOBALS + METADATA}, 1)[0];
}
void Randomizer::WriteMetadata(short metadata) {
return _memory->WriteData<short>({GLOBALS + METADATA}, {metadata});
}
int Randomizer::GetCurrentFrame() {
return _memory->ReadData<int>({SCRIPT_FRAMES}, 1)[0];
}
|