diff options
author | jbzdarkid <jbzdarkid@gmail.com> | 2019-11-16 10:27:06 -0800 |
---|---|---|
committer | jbzdarkid <jbzdarkid@gmail.com> | 2019-11-16 10:27:06 -0800 |
commit | 0baa521ba34d2cd4e0f732f83d23b807605786a2 (patch) | |
tree | dfb01163d291ee846c7a5840ffc08e089a7fb8e6 | |
parent | 0d0abe2ee56382c5751dd12fbca75af87773879f (diff) | |
download | witness-tutorializer-0baa521ba34d2cd4e0f732f83d23b807605786a2.tar.gz witness-tutorializer-0baa521ba34d2cd4e0f732f83d23b807605786a2.tar.bz2 witness-tutorializer-0baa521ba34d2cd4e0f732f83d23b807605786a2.zip |
More and more progress.
Split out functions in serializer Figured out how to allocate memory (for sequences)
-rw-r--r-- | App/Main.cpp | 1 | ||||
-rw-r--r-- | Source/Memory.cpp | 25 | ||||
-rw-r--r-- | Source/Memory.h | 27 | ||||
-rw-r--r-- | Source/Puzzle.cpp | 11 | ||||
-rw-r--r-- | Source/Puzzle.h | 20 | ||||
-rw-r--r-- | Source/PuzzlerSerializer.cpp | 285 | ||||
-rw-r--r-- | Source/PuzzlerSerializer.h | 24 | ||||
-rw-r--r-- | Source/Randomizer2.cpp | 207 | ||||
-rw-r--r-- | Source/Randomizer2.h | 1 | ||||
-rw-r--r-- | Source/Solver.cpp | 2 |
10 files changed, 413 insertions, 190 deletions
diff --git a/App/Main.cpp b/App/Main.cpp index a96c34d..a815746 100644 --- a/App/Main.cpp +++ b/App/Main.cpp | |||
@@ -24,6 +24,7 @@ | |||
24 | #include "Puzzle.h" | 24 | #include "Puzzle.h" |
25 | #include "Solver.h" | 25 | #include "Solver.h" |
26 | #include "Randomizer2.h" | 26 | #include "Randomizer2.h" |
27 | #include "PuzzlerSerializer.h" | ||
27 | #include <sstream> | 28 | #include <sstream> |
28 | 29 | ||
29 | #define TMP1 0x501 | 30 | #define TMP1 0x501 |
diff --git a/Source/Memory.cpp b/Source/Memory.cpp index 98b06f9..bc0725b 100644 --- a/Source/Memory.cpp +++ b/Source/Memory.cpp | |||
@@ -70,7 +70,6 @@ void Memory::Heartbeat(HWND window) { | |||
70 | PostMessage(window, WM_COMMAND, HEARTBEAT, (LPARAM)ProcStatus::Running); | 70 | PostMessage(window, WM_COMMAND, HEARTBEAT, (LPARAM)ProcStatus::Running); |
71 | } | 71 | } |
72 | 72 | ||
73 | |||
74 | [[nodiscard]] | 73 | [[nodiscard]] |
75 | bool Memory::Initialize() { | 74 | bool Memory::Initialize() { |
76 | // First, get the handle of the process | 75 | // First, get the handle of the process |
@@ -106,6 +105,7 @@ bool Memory::Initialize() { | |||
106 | std::cerr << "Couldn't locate base address" << std::endl; | 105 | std::cerr << "Couldn't locate base address" << std::endl; |
107 | return false; | 106 | return false; |
108 | } | 107 | } |
108 | |||
109 | return true; | 109 | return true; |
110 | } | 110 | } |
111 | 111 | ||
@@ -161,7 +161,7 @@ void Memory::ThrowError() { | |||
161 | } | 161 | } |
162 | 162 | ||
163 | void* Memory::ComputeOffset(std::vector<int> offsets) { | 163 | void* Memory::ComputeOffset(std::vector<int> offsets) { |
164 | // Leave off the last offset, since it will be either read/write, and may not be of type unitptr_t. | 164 | // Leave off the last offset, since it will be either read/write, and may not be of type uintptr_t. |
165 | int final_offset = offsets.back(); | 165 | int final_offset = offsets.back(); |
166 | offsets.pop_back(); | 166 | offsets.pop_back(); |
167 | 167 | ||
@@ -176,6 +176,9 @@ void* Memory::ComputeOffset(std::vector<int> offsets) { | |||
176 | if (bool result = !ReadProcessMemory(_handle, reinterpret_cast<LPVOID>(cumulativeAddress), &computedAddress, sizeof(uintptr_t), NULL)) { | 176 | if (bool result = !ReadProcessMemory(_handle, reinterpret_cast<LPVOID>(cumulativeAddress), &computedAddress, sizeof(uintptr_t), NULL)) { |
177 | ThrowError(); | 177 | ThrowError(); |
178 | } | 178 | } |
179 | if (computedAddress == 0) { // Attempting to dereference a nullptr | ||
180 | ThrowError(); | ||
181 | } | ||
179 | _computedAddresses[cumulativeAddress] = computedAddress; | 182 | _computedAddresses[cumulativeAddress] = computedAddress; |
180 | } | 183 | } |
181 | 184 | ||
@@ -183,3 +186,21 @@ void* Memory::ComputeOffset(std::vector<int> offsets) { | |||
183 | } | 186 | } |
184 | return reinterpret_cast<void*>(cumulativeAddress + final_offset); | 187 | return reinterpret_cast<void*>(cumulativeAddress + final_offset); |
185 | } | 188 | } |
189 | |||
190 | uintptr_t Memory::Allocate(size_t bytes) { | ||
191 | uintptr_t current = _freeMem; | ||
192 | _freeMem += bytes; | ||
193 | |||
194 | if (_freeMem > _freeMemEnd) { | ||
195 | // If we don't have enough space at our current location, go allocate some more space. | ||
196 | // Note that the remaining space in our current page is unused. Oh well. | ||
197 | _freeMem = reinterpret_cast<uintptr_t>(::VirtualAllocEx(_handle, NULL, 0x1000, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE)); | ||
198 | _freeMemEnd = _freeMem + 0x1000; | ||
199 | |||
200 | current = _freeMem; | ||
201 | _freeMem += bytes; | ||
202 | assert(_freeMem <= _freeMemEnd); // Don't allocate data > 0x1000 at a time. Duh. | ||
203 | } | ||
204 | |||
205 | return current; | ||
206 | } | ||
diff --git a/Source/Memory.h b/Source/Memory.h index 6b8403f..af4f0ae 100644 --- a/Source/Memory.h +++ b/Source/Memory.h | |||
@@ -35,7 +35,14 @@ public: | |||
35 | 35 | ||
36 | template <class T> | 36 | template <class T> |
37 | void WriteArray(int panel, int offset, const std::vector<T>& data) { | 37 | void WriteArray(int panel, int offset, const std::vector<T>& data) { |
38 | WriteData<T>({GLOBALS, 0x18, panel*8, offset, 0}, data); | 38 | WriteData({GLOBALS, 0x18, panel*8, offset, 0}, data); |
39 | } | ||
40 | |||
41 | template <class T> | ||
42 | void WriteNewArray(int panel, int offset, const std::vector<T>& data) { | ||
43 | std::vector<uintptr_t> newAddr = {Allocate(data.size() * sizeof(T))}; | ||
44 | WritePanelData(panel, offset, newAddr); | ||
45 | WriteArray(panel, offset, data); | ||
39 | } | 46 | } |
40 | 47 | ||
41 | template <class T> | 48 | template <class T> |
@@ -45,7 +52,7 @@ public: | |||
45 | 52 | ||
46 | template <class T> | 53 | template <class T> |
47 | void WritePanelData(int panel, int offset, const std::vector<T>& data) { | 54 | void WritePanelData(int panel, int offset, const std::vector<T>& data) { |
48 | WriteData<T>({GLOBALS, 0x18, panel*8, offset}, data); | 55 | WriteData({GLOBALS, 0x18, panel*8, offset}, data); |
49 | } | 56 | } |
50 | 57 | ||
51 | void AddSigScan(const std::vector<byte>& scanBytes, const std::function<void(int index)>& scanFunc); | 58 | void AddSigScan(const std::vector<byte>& scanBytes, const std::function<void(int index)>& scanFunc); |
@@ -57,9 +64,12 @@ private: | |||
57 | if (numItems == 0) return {}; | 64 | if (numItems == 0) return {}; |
58 | std::vector<T> data; | 65 | std::vector<T> data; |
59 | data.resize(numItems); | 66 | data.resize(numItems); |
67 | void* computedOffset = ComputeOffset(offsets); | ||
60 | for (int i=0; i<5; i++) { | 68 | for (int i=0; i<5; i++) { |
61 | if (ReadProcessMemory(_handle, ComputeOffset(offsets), &data[0], sizeof(T) * numItems, nullptr)) | 69 | if (ReadProcessMemory(_handle, computedOffset, &data[0], sizeof(T) * numItems, nullptr)) { |
62 | { | 70 | if (i != 0) { |
71 | int k = 0; | ||
72 | } | ||
63 | return data; | 73 | return data; |
64 | } | 74 | } |
65 | } | 75 | } |
@@ -70,8 +80,12 @@ private: | |||
70 | template <class T> | 80 | template <class T> |
71 | void WriteData(const std::vector<int>& offsets, const std::vector<T>& data) { | 81 | void WriteData(const std::vector<int>& offsets, const std::vector<T>& data) { |
72 | if (data.empty()) return; | 82 | if (data.empty()) return; |
83 | void* computedOffset = ComputeOffset(offsets); | ||
73 | for (int i=0; i<5; i++) { | 84 | for (int i=0; i<5; i++) { |
74 | if (WriteProcessMemory(_handle, ComputeOffset(offsets), &data[0], sizeof(T) * data.size(), nullptr)) { | 85 | if (WriteProcessMemory(_handle, computedOffset, &data[0], sizeof(T) * data.size(), nullptr)) { |
86 | if (i != 0) { | ||
87 | int k = 0; | ||
88 | } | ||
75 | return; | 89 | return; |
76 | } | 90 | } |
77 | } | 91 | } |
@@ -82,6 +96,7 @@ private: | |||
82 | bool Initialize(); | 96 | bool Initialize(); |
83 | void ThrowError(); | 97 | void ThrowError(); |
84 | void* ComputeOffset(std::vector<int> offsets); | 98 | void* ComputeOffset(std::vector<int> offsets); |
99 | uintptr_t Allocate(size_t bytes); | ||
85 | 100 | ||
86 | int _previousFrame = 0; | 101 | int _previousFrame = 0; |
87 | bool _threadActive = false; | 102 | bool _threadActive = false; |
@@ -90,6 +105,8 @@ private: | |||
90 | std::map<uintptr_t, uintptr_t> _computedAddresses; | 105 | std::map<uintptr_t, uintptr_t> _computedAddresses; |
91 | uintptr_t _baseAddress = 0; | 106 | uintptr_t _baseAddress = 0; |
92 | HANDLE _handle = nullptr; | 107 | HANDLE _handle = nullptr; |
108 | uintptr_t _freeMem = 0; | ||
109 | uintptr_t _freeMemEnd = 0; | ||
93 | struct SigScan { | 110 | struct SigScan { |
94 | std::function<void(int)> scanFunc; | 111 | std::function<void(int)> scanFunc; |
95 | bool found; | 112 | bool found; |
diff --git a/Source/Puzzle.cpp b/Source/Puzzle.cpp index 72af129..d0ede27 100644 --- a/Source/Puzzle.cpp +++ b/Source/Puzzle.cpp | |||
@@ -2,18 +2,17 @@ | |||
2 | #include "Memory.h" | 2 | #include "Memory.h" |
3 | #include <cassert> | 3 | #include <cassert> |
4 | 4 | ||
5 | 5 | Cell Puzzle::GetCell(int x, int y) const { | |
6 | inline Cell Puzzle::GetCell(int x, int y) const { | ||
7 | x = Mod(x); | 6 | x = Mod(x); |
8 | if (!SafeCell(x, y)) return Cell::Undefined(); | 7 | if (!SafeCell(x, y)) return Cell::Undefined(); |
9 | return grid[x][y]; | 8 | return grid[x][y]; |
10 | } | 9 | } |
11 | 10 | ||
12 | inline Cell::Color Puzzle::GetLine(int x, int y) const { | 11 | Cell::Color Puzzle::GetLine(int x, int y) const { |
13 | return grid[x][y].color; | 12 | return grid[x][y].color; |
14 | } | 13 | } |
15 | 14 | ||
16 | inline void Puzzle::NewGrid(int newWidth, int newHeight) { | 15 | void Puzzle::NewGrid(int newWidth, int newHeight) { |
17 | if (newWidth == 0) { | 16 | if (newWidth == 0) { |
18 | assert(false); | 17 | assert(false); |
19 | newWidth = width; | 18 | newWidth = width; |
@@ -28,12 +27,12 @@ inline void Puzzle::NewGrid(int newWidth, int newHeight) { | |||
28 | for (int x=0; x<width; x++) grid[x].resize(height); | 27 | for (int x=0; x<width; x++) grid[x].resize(height); |
29 | } | 28 | } |
30 | 29 | ||
31 | inline int Puzzle::Mod(int x) const { | 30 | int Puzzle::Mod(int x) const { |
32 | if (!pillar) return x; | 31 | if (!pillar) return x; |
33 | return (x + width * height * 2) % width; | 32 | return (x + width * height * 2) % width; |
34 | } | 33 | } |
35 | 34 | ||
36 | inline bool Puzzle::SafeCell(int x, int y) const { | 35 | bool Puzzle::SafeCell(int x, int y) const { |
37 | if (x < 0 || x >= width) return false; | 36 | if (x < 0 || x >= width) return false; |
38 | if (y < 0 || y >= height) return false; | 37 | if (y < 0 || y >= height) return false; |
39 | return true; | 38 | return true; |
diff --git a/Source/Puzzle.h b/Source/Puzzle.h index 3a8e73b..fdf51be 100644 --- a/Source/Puzzle.h +++ b/Source/Puzzle.h | |||
@@ -64,21 +64,23 @@ struct Pos {int x; int y;}; | |||
64 | 64 | ||
65 | class Puzzle { | 65 | class Puzzle { |
66 | public: | 66 | public: |
67 | int16_t height; | 67 | int16_t height = 0; |
68 | int16_t width; | 68 | int16_t width = 0; |
69 | bool hasDecorations = false; | 69 | bool hasDecorations = false; |
70 | 70 | ||
71 | enum class Symmetry {NONE, X, Y, XY}; | 71 | enum class Symmetry {NONE, X, Y, XY}; |
72 | Symmetry sym = Symmetry::NONE; | 72 | Symmetry sym = Symmetry::NONE; |
73 | bool pillar = false; | 73 | bool pillar = false; |
74 | 74 | ||
75 | bool valid; | 75 | bool valid = false; |
76 | std::vector<Negation> negations; | 76 | std::vector<Negation> negations; |
77 | std::vector<Pos> invalidElements; | 77 | std::vector<Pos> invalidElements; |
78 | 78 | ||
79 | inline Cell GetCell(int x, int y) const; | 79 | std::vector<Pos> sequence; |
80 | inline Cell::Color GetLine(int x, int y) const; | 80 | |
81 | inline void NewGrid(int newWidth, int newHeight); | 81 | Cell GetCell(int x, int y) const; |
82 | Cell::Color GetLine(int x, int y) const; | ||
83 | void NewGrid(int newWidth, int newHeight); | ||
82 | 84 | ||
83 | // @TODO: | 85 | // @TODO: |
84 | Pos GetSymmetricalPos(int x, int y); | 86 | Pos GetSymmetricalPos(int x, int y); |
@@ -86,7 +88,7 @@ public: | |||
86 | // private: | 88 | // private: |
87 | std::vector<std::vector<Cell>> grid; | 89 | std::vector<std::vector<Cell>> grid; |
88 | 90 | ||
89 | private: | 91 | // private: |
90 | inline int Mod(int x) const; | 92 | int Mod(int x) const; |
91 | inline bool SafeCell(int x, int y) const; | 93 | bool SafeCell(int x, int y) const; |
92 | }; | 94 | }; |
diff --git a/Source/PuzzlerSerializer.cpp b/Source/PuzzlerSerializer.cpp index 779336d..86f59e7 100644 --- a/Source/PuzzlerSerializer.cpp +++ b/Source/PuzzlerSerializer.cpp | |||
@@ -11,21 +11,52 @@ Puzzle PuzzleSerializer::ReadPuzzle(int id) { | |||
11 | int height = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_Y, 1)[0] - 1; | 11 | int height = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_Y, 1)[0] - 1; |
12 | if (width < 0 || height < 0) return Puzzle(); // @Error: Grid size should be always positive? Looks like the starting panels break this rule, though. | 12 | if (width < 0 || height < 0) return Puzzle(); // @Error: Grid size should be always positive? Looks like the starting panels break this rule, though. |
13 | 13 | ||
14 | int numIntersections = _memory->ReadPanelData<int>(id, NUM_DOTS, 1)[0]; | ||
15 | _intersectionFlags = _memory->ReadArray<int>(id, DOT_FLAGS, numIntersections); | ||
16 | int numConnections = _memory->ReadPanelData<int>(id, NUM_CONNECTIONS, 1)[0]; | ||
17 | _connectionsA = _memory->ReadArray<int>(id, DOT_CONNECTION_A, numConnections); | ||
18 | _connectionsB = _memory->ReadArray<int>(id, DOT_CONNECTION_B, numConnections); | ||
19 | _intersectionLocations = _memory->ReadArray<float>(id, DOT_POSITIONS, numIntersections*2); | ||
20 | |||
14 | Puzzle p; | 21 | Puzzle p; |
15 | p.NewGrid(width, height); | 22 | p.NewGrid(width, height); |
16 | ReadIntersections(p, id); | 23 | ReadIntersections(p); |
24 | ReadExtras(p); | ||
17 | ReadDecorations(p, id); | 25 | ReadDecorations(p, id); |
26 | ReadSequence(p, id); | ||
18 | return p; | 27 | return p; |
19 | } | 28 | } |
20 | 29 | ||
21 | void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) { | 30 | void PuzzleSerializer::WritePuzzle(const Puzzle& p, int id) { |
22 | int numIntersections = _memory->ReadPanelData<int>(id, NUM_DOTS, 1)[0]; | 31 | _intersectionFlags.clear(); |
23 | std::vector<int> intersectionFlags = _memory->ReadArray<int>(id, DOT_FLAGS, numIntersections); | 32 | _connectionsA.clear(); |
24 | int numConnections = _memory->ReadPanelData<int>(id, NUM_CONNECTIONS, 1)[0]; | 33 | _connectionsB.clear(); |
25 | std::vector<int> connections_a = _memory->ReadArray<int>(id, DOT_CONNECTION_A, numConnections); | 34 | _intersectionLocations.clear(); |
26 | std::vector<int> connections_b = _memory->ReadArray<int>(id, DOT_CONNECTION_B, numConnections); | 35 | |
27 | std::vector<float> intersectionLocations = _memory->ReadArray<float>(id, DOT_POSITIONS, numIntersections*2); | 36 | MIN = 0.1f; |
37 | MAX = 0.9f; | ||
38 | WIDTH_INTERVAL = (MAX - MIN) / (p.width/2); | ||
39 | HEIGHT_INTERVAL = (MAX - MIN) / (p.height/2); | ||
40 | HORIZ_GAP_SIZE = WIDTH_INTERVAL / 2; | ||
41 | VERTI_GAP_SIZE = HEIGHT_INTERVAL / 2; | ||
42 | |||
43 | WriteIntersections(p); | ||
44 | WriteEndpoints(p); | ||
45 | WriteDecorations(p, id); | ||
46 | WriteSequence(p, id); | ||
47 | |||
48 | _memory->WritePanelData<int>(id, GRID_SIZE_X, {(p.width + 1)/2}); | ||
49 | _memory->WritePanelData<int>(id, GRID_SIZE_Y, {(p.height + 1)/2}); | ||
50 | _memory->WritePanelData<int>(id, NUM_DOTS, {static_cast<int>(_intersectionFlags.size())}); | ||
51 | _memory->WriteArray<float>(id, DOT_POSITIONS, _intersectionLocations); | ||
52 | _memory->WriteArray<int>(id, DOT_FLAGS, _intersectionFlags); | ||
53 | _memory->WritePanelData<int>(id, NUM_CONNECTIONS, {static_cast<int>(_connectionsA.size())}); | ||
54 | _memory->WriteArray<int>(id, DOT_CONNECTION_A, _connectionsA); | ||
55 | _memory->WriteArray<int>(id, DOT_CONNECTION_B, _connectionsB); | ||
56 | _memory->WritePanelData<int>(id, NEEDS_REDRAW, {1}); | ||
57 | } | ||
28 | 58 | ||
59 | void PuzzleSerializer::ReadIntersections(Puzzle& p) { | ||
29 | // @Cleanup: Change defaults? | 60 | // @Cleanup: Change defaults? |
30 | for (int x=0; x<p.width; x++) { | 61 | for (int x=0; x<p.width; x++) { |
31 | for (int y=0; y<p.height; y++) { | 62 | for (int y=0; y<p.height; y++) { |
@@ -34,14 +65,14 @@ void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) { | |||
34 | } | 65 | } |
35 | } | 66 | } |
36 | 67 | ||
37 | for (int j=0; j<numIntersections; j++) { | 68 | for (int j=0; j<_intersectionFlags.size(); j++) { |
38 | if (intersectionFlags[connections_a[j]] & Flags::IS_ENDPOINT) break; | 69 | if (_intersectionFlags[_connectionsA[j]] & Flags::IS_ENDPOINT) break; |
39 | if (intersectionFlags[connections_b[j]] & Flags::IS_ENDPOINT) break; | 70 | if (_intersectionFlags[_connectionsB[j]] & Flags::IS_ENDPOINT) break; |
40 | float x1 = intersectionLocations[2*connections_a[j]]; | 71 | float x1 = _intersectionLocations[2*_connectionsA[j]]; |
41 | float y1 = intersectionLocations[2*connections_a[j]+1]; | 72 | float y1 = _intersectionLocations[2*_connectionsA[j]+1]; |
42 | float x2 = intersectionLocations[2*connections_b[j]]; | 73 | float x2 = _intersectionLocations[2*_connectionsB[j]]; |
43 | float y2 = intersectionLocations[2*connections_b[j]+1]; | 74 | float y2 = _intersectionLocations[2*_connectionsB[j]+1]; |
44 | auto [x, y] = loc_to_xy(p, connections_a[j]); | 75 | auto [x, y] = loc_to_xy(p, _connectionsA[j]); |
45 | 76 | ||
46 | if (x1 < x2) x++; | 77 | if (x1 < x2) x++; |
47 | else if (x1 > x2) x--; | 78 | else if (x1 > x2) x--; |
@@ -49,13 +80,15 @@ void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) { | |||
49 | else if (y1 > y2) y++; | 80 | else if (y1 > y2) y++; |
50 | p.grid[x][y].gap = Cell::Gap::NONE; | 81 | p.grid[x][y].gap = Cell::Gap::NONE; |
51 | } | 82 | } |
83 | } | ||
52 | 84 | ||
85 | void PuzzleSerializer::ReadExtras(Puzzle& p) { | ||
53 | // This iterates bottom-top, left-right | 86 | // This iterates bottom-top, left-right |
54 | int i = 0; | 87 | int i = 0; |
55 | for (;; i++) { | 88 | for (; i < _intersectionFlags.size(); i++) { |
56 | int flags = intersectionFlags[i]; | 89 | int flags = _intersectionFlags[i]; |
57 | auto [x, y] = loc_to_xy(p, i); | 90 | auto [x, y] = loc_to_xy(p, i); |
58 | if (y < 0) break; | 91 | if (y < 0) break; // This is the expected exit point |
59 | if (flags & Flags::IS_STARTPOINT) { | 92 | if (flags & Flags::IS_STARTPOINT) { |
60 | p.grid[x][y].start = true; | 93 | p.grid[x][y].start = true; |
61 | } | 94 | } |
@@ -66,31 +99,31 @@ void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) { | |||
66 | } | 99 | } |
67 | 100 | ||
68 | // Iterate the remaining intersections (endpoints, dots, gaps) | 101 | // Iterate the remaining intersections (endpoints, dots, gaps) |
69 | for (; i < numIntersections; i++) { | 102 | for (; i < _intersectionFlags.size(); i++) { |
70 | int location = FindConnection(i, connections_a, connections_b); | 103 | int location = FindConnection(i); |
71 | if (location == -1) continue; // @Error: Unable to find connection point | 104 | if (location == -1) continue; // @Error: Unable to find connection point |
72 | // (x1, y1) location of this intersection | 105 | // (x1, y1) location of this intersection |
73 | // (x2, y2) location of the connected intersection | 106 | // (x2, y2) location of the connected intersection |
74 | float x1 = intersectionLocations[2*i]; | 107 | float x1 = _intersectionLocations[2*i]; |
75 | float y1 = intersectionLocations[2*i+1]; | 108 | float y1 = _intersectionLocations[2*i+1]; |
76 | float x2 = intersectionLocations[2*location]; | 109 | float x2 = _intersectionLocations[2*location]; |
77 | float y2 = intersectionLocations[2*location+1]; | 110 | float y2 = _intersectionLocations[2*location+1]; |
78 | auto [x, y] = loc_to_xy(p, location); | 111 | auto [x, y] = loc_to_xy(p, location); |
79 | 112 | ||
80 | if (intersectionFlags[i] & Flags::IS_ENDPOINT) { | 113 | if (_intersectionFlags[i] & Flags::IS_ENDPOINT) { |
81 | // Our x coordinate is less than the target's | 114 | // Our x coordinate is less than the target's |
82 | if (x1 < x2) p.grid[x][y].end = Cell::Dir::LEFT; | 115 | if (x1 < x2) p.grid[x][y].end = Cell::Dir::LEFT; |
83 | else if (x1 > x2) p.grid[x][y].end = Cell::Dir::RIGHT; | 116 | else if (x1 > x2) p.grid[x][y].end = Cell::Dir::RIGHT; |
84 | // Note that Y coordinates are reversed: 0.0 (bottom) 1.0 (top) | 117 | // Note that Y coordinates are reversed: 0.0 (bottom) 1.0 (top) |
85 | else if (y1 < y2) p.grid[x][y].end = Cell::Dir::DOWN; | 118 | else if (y1 < y2) p.grid[x][y].end = Cell::Dir::DOWN; |
86 | else if (y1 > y2) p.grid[x][y].end = Cell::Dir::UP; | 119 | else if (y1 > y2) p.grid[x][y].end = Cell::Dir::UP; |
87 | } else if (intersectionFlags[i] & Flags::HAS_DOT) { | 120 | } else if (_intersectionFlags[i] & Flags::HAS_DOT) { |
88 | if (x1 < x2) x--; | 121 | if (x1 < x2) x--; |
89 | else if (x1 > x2) x++; | 122 | else if (x1 > x2) x++; |
90 | else if (y1 < y2) y++; | 123 | else if (y1 < y2) y++; |
91 | else if (y1 > y2) y--; | 124 | else if (y1 > y2) y--; |
92 | p.grid[x][y].dot = FlagsToDot(intersectionFlags[i]); | 125 | p.grid[x][y].dot = FlagsToDot(_intersectionFlags[i]); |
93 | } else if (intersectionFlags[i] & Flags::HAS_ONE_CONN) { | 126 | } else if (_intersectionFlags[i] & Flags::HAS_ONE_CONN) { |
94 | if (x1 < x2) x--; | 127 | if (x1 < x2) x--; |
95 | else if (x1 > x2) x++; | 128 | else if (x1 > x2) x++; |
96 | else if (y1 < y2) y++; | 129 | else if (y1 < y2) y++; |
@@ -124,36 +157,24 @@ void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) { | |||
124 | } | 157 | } |
125 | } | 158 | } |
126 | 159 | ||
127 | void PuzzleSerializer::WritePuzzle(const Puzzle& p, int id) { | 160 | void PuzzleSerializer::ReadSequence(Puzzle& p, int id) { |
128 | _memory->WritePanelData<int>(id, GRID_SIZE_X, {(p.width + 1)/2}); | 161 | int sequenceLength = _memory->ReadPanelData<int>(id, SEQUENCE_LEN, 1)[0]; |
129 | _memory->WritePanelData<int>(id, GRID_SIZE_Y, {(p.height + 1)/2}); | 162 | std::vector<int> sequence = _memory->ReadArray<int>(id, SEQUENCE, sequenceLength); |
130 | |||
131 | WriteIntersections(p, id); | ||
132 | if (p.hasDecorations) WriteDecorations(p, id); | ||
133 | 163 | ||
134 | _memory->WritePanelData<int>(id, NEEDS_REDRAW, {1}); | 164 | for (int location : sequence) { |
165 | auto [x, y] = loc_to_xy(p, location); | ||
166 | p.sequence.emplace_back(Pos{x, y}); | ||
167 | } | ||
135 | } | 168 | } |
136 | 169 | ||
137 | void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | 170 | void PuzzleSerializer::WriteIntersections(const Puzzle& p) { |
138 | std::vector<float> intersectionLocations; | ||
139 | std::vector<int> intersectionFlags; | ||
140 | std::vector<int> connections_a; | ||
141 | std::vector<int> connections_b; | ||
142 | |||
143 | float min = 0.1f; | ||
144 | float max = 0.9f; | ||
145 | float width_interval = (max - min) / (p.width/2); | ||
146 | float height_interval = (max - min) / (p.height/2); | ||
147 | float horiz_gap_size = width_interval / 2; | ||
148 | float verti_gap_size = height_interval / 2; | ||
149 | |||
150 | // @Cleanup: If I write directly to locations, then I can simplify this gross loop iterator. | 171 | // @Cleanup: If I write directly to locations, then I can simplify this gross loop iterator. |
151 | // int numIntersections = (p.width / 2 + 1) * (p.height / 2 + 1); | 172 | // int numIntersections = (p.width / 2 + 1) * (p.height / 2 + 1); |
152 | // Grided intersections | 173 | // Grided intersections |
153 | for (int y=p.height-1; y>=0; y-=2) { | 174 | for (int y=p.height-1; y>=0; y-=2) { |
154 | for (int x=0; x<p.width; x+=2) { | 175 | for (int x=0; x<p.width; x+=2) { |
155 | intersectionLocations.push_back(min + (x/2) * width_interval); | 176 | _intersectionLocations.push_back(MIN + (x/2) * WIDTH_INTERVAL); |
156 | intersectionLocations.push_back(max - (y/2) * height_interval); | 177 | _intersectionLocations.push_back(MAX - (y/2) * HEIGHT_INTERVAL); |
157 | int flags = 0; | 178 | int flags = 0; |
158 | if (p.grid[x][y].start) { | 179 | if (p.grid[x][y].start) { |
159 | flags |= Flags::IS_STARTPOINT; | 180 | flags |= Flags::IS_STARTPOINT; |
@@ -180,43 +201,43 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
180 | if (p.grid[x][y].end != Cell::Dir::NONE) numConnections++; | 201 | if (p.grid[x][y].end != Cell::Dir::NONE) numConnections++; |
181 | // Create connections for this intersection for bottom/left only. | 202 | // Create connections for this intersection for bottom/left only. |
182 | // Bottom connection | 203 | // Bottom connection |
183 | if (y > 0 && p.grid[x][y-1].gap == Cell::Gap::NONE) { | 204 | if (y > 0 && p.grid[x][y-1].gap != Cell::Gap::FULL) { |
184 | connections_a.push_back(xy_to_loc(p, x, y-2)); | 205 | _connectionsA.push_back(xy_to_loc(p, x, y-2)); |
185 | connections_b.push_back(xy_to_loc(p, x, y)); | 206 | _connectionsB.push_back(xy_to_loc(p, x, y)); |
186 | flags |= Flags::HAS_VERTI_CONN; | 207 | flags |= Flags::HAS_VERTI_CONN; |
187 | numConnections++; | 208 | numConnections++; |
188 | } | 209 | } |
189 | // Top connection | 210 | // Top connection |
190 | if (y < p.height - 1 && p.grid[x][y+1].gap == Cell::Gap::NONE) { | 211 | if (y < p.height - 1 && p.grid[x][y+1].gap != Cell::Gap::FULL) { |
191 | flags |= Flags::HAS_VERTI_CONN; | 212 | flags |= Flags::HAS_VERTI_CONN; |
192 | numConnections++; | 213 | numConnections++; |
193 | } | 214 | } |
194 | // Left connection | 215 | // Left connection |
195 | if (x > 0 && p.grid[x-1][y].gap == Cell::Gap::NONE) { | 216 | if (x > 0 && p.grid[x-1][y].gap != Cell::Gap::FULL) { |
196 | connections_a.push_back(xy_to_loc(p, x-2, y)); | 217 | _connectionsA.push_back(xy_to_loc(p, x-2, y)); |
197 | connections_b.push_back(xy_to_loc(p, x, y)); | 218 | _connectionsB.push_back(xy_to_loc(p, x, y)); |
198 | flags |= Flags::HAS_HORIZ_CONN; | 219 | flags |= Flags::HAS_HORIZ_CONN; |
199 | numConnections++; | 220 | numConnections++; |
200 | } | 221 | } |
201 | // Right connection | 222 | // Right connection |
202 | if (x < p.width - 1 && p.grid[x+1][y].gap == Cell::Gap::NONE) { | 223 | if (x < p.width - 1 && p.grid[x+1][y].gap != Cell::Gap::FULL) { |
203 | flags |= Flags::HAS_HORIZ_CONN; | 224 | flags |= Flags::HAS_HORIZ_CONN; |
204 | numConnections++; | 225 | numConnections++; |
205 | } | 226 | } |
206 | if (numConnections == 1) flags |= HAS_ONE_CONN; | 227 | if (numConnections == 1) flags |= HAS_ONE_CONN; |
207 | intersectionFlags.push_back(flags); | 228 | _intersectionFlags.push_back(flags); |
208 | } | 229 | } |
209 | } | 230 | } |
231 | } | ||
210 | 232 | ||
211 | // Endpoints | 233 | void PuzzleSerializer::WriteEndpoints(const Puzzle& p) { |
212 | for (int x=0; x<p.width; x++) { | 234 | for (int x=0; x<p.width; x++) { |
213 | for (int y=0; y<p.height; y++) { | 235 | for (int y=0; y<p.height; y++) { |
214 | if (p.grid[x][y].end == Cell::Dir::NONE) continue; | 236 | if (p.grid[x][y].end == Cell::Dir::NONE) continue; |
215 | connections_a.push_back(xy_to_loc(p, x, y)); // Target to connect to | 237 | _connectionsA.push_back(xy_to_loc(p, x, y)); // Target to connect to |
216 | connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | 238 | _connectionsB.push_back(static_cast<int>(_intersectionFlags.size())); // This endpoint |
217 | 239 | ||
218 | float xPos = min + (x/2) * width_interval; | 240 | auto [xPos, yPos] = xy_to_pos(p, x, y); |
219 | float yPos = max - (y/2) * height_interval; | ||
220 | switch (p.grid[x][y].end) { | 241 | switch (p.grid[x][y].end) { |
221 | case Cell::Dir::LEFT: | 242 | case Cell::Dir::LEFT: |
222 | xPos -= .05f; | 243 | xPos -= .05f; |
@@ -231,13 +252,14 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
231 | yPos -= .05f; | 252 | yPos -= .05f; |
232 | break; | 253 | break; |
233 | } | 254 | } |
234 | intersectionLocations.push_back(xPos); | 255 | _intersectionLocations.push_back(xPos); |
235 | intersectionLocations.push_back(yPos); | 256 | _intersectionLocations.push_back(yPos); |
236 | intersectionFlags.push_back(Flags::IS_ENDPOINT); | 257 | _intersectionFlags.push_back(Flags::IS_ENDPOINT); |
237 | } | 258 | } |
238 | } | 259 | } |
260 | } | ||
239 | 261 | ||
240 | // Dots | 262 | void PuzzleSerializer::WriteDots(const Puzzle& p) { |
241 | for (int x=0; x<p.width; x++) { | 263 | for (int x=0; x<p.width; x++) { |
242 | for (int y=0; y<p.height; y++) { | 264 | for (int y=0; y<p.height; y++) { |
243 | if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled. | 265 | if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled. |
@@ -245,24 +267,23 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
245 | 267 | ||
246 | // We need to introduce a new segment -- | 268 | // We need to introduce a new segment -- |
247 | // Locate the segment we're breaking | 269 | // Locate the segment we're breaking |
248 | for (int i=0; i<connections_a.size(); i++) { | 270 | for (int i=0; i<_connectionsA.size(); i++) { |
249 | auto [x1, y1] = loc_to_xy(p, connections_a[i]); | 271 | auto [x1, y1] = loc_to_xy(p, _connectionsA[i]); |
250 | auto [x2, y2] = loc_to_xy(p, connections_b[i]); | 272 | auto [x2, y2] = loc_to_xy(p, _connectionsB[i]); |
251 | if ((x1+1 == x && x2-1 == x && y1 == y && y2 == y) || | 273 | if ((x1+1 == x && x2-1 == x && y1 == y && y2 == y) || |
252 | (y1+1 == y && y2-1 == y && x1 == x && x2 == x)) { | 274 | (y1+1 == y && y2-1 == y && x1 == x && x2 == x)) { |
253 | int other_connection = connections_b[i]; | 275 | int other_connection = _connectionsB[i]; |
254 | connections_b[i] = static_cast<int>(intersectionFlags.size()); // This endpoint | 276 | _connectionsB[i] = static_cast<int>(_intersectionFlags.size()); // This endpoint |
255 | 277 | ||
256 | connections_a.push_back(other_connection); | 278 | _connectionsA.push_back(other_connection); |
257 | connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | 279 | _connectionsB.push_back(static_cast<int>(_intersectionFlags.size())); // This endpoint |
258 | break; | 280 | break; |
259 | } | 281 | } |
260 | } | 282 | } |
261 | // Add this dot to the end | 283 | // Add this dot to the end |
262 | float xPos = min + (x/2.0f) * width_interval; | 284 | auto [xPos, yPos] = xy_to_pos(p, x, y); |
263 | float yPos = max - (y/2.0f) * height_interval; | 285 | _intersectionLocations.push_back(xPos); |
264 | intersectionLocations.push_back(xPos); | 286 | _intersectionLocations.push_back(yPos); |
265 | intersectionLocations.push_back(yPos); | ||
266 | 287 | ||
267 | int flags = Flags::HAS_DOT; | 288 | int flags = Flags::HAS_DOT; |
268 | switch (p.grid[x][y].dot) { | 289 | switch (p.grid[x][y].dot) { |
@@ -278,56 +299,51 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
278 | flags |= DOT_IS_INVISIBLE; | 299 | flags |= DOT_IS_INVISIBLE; |
279 | break; | 300 | break; |
280 | } | 301 | } |
281 | intersectionFlags.push_back(flags); | 302 | _intersectionFlags.push_back(flags); |
282 | } | 303 | } |
283 | } | 304 | } |
305 | } | ||
284 | 306 | ||
285 | // Gaps | 307 | void PuzzleSerializer::WriteGaps(const Puzzle& p) { |
286 | for (int x=0; x<p.width; x++) { | 308 | for (int x=0; x<p.width; x++) { |
287 | for (int y=0; y<p.height; y++) { | 309 | for (int y=0; y<p.height; y++) { |
288 | if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled. | 310 | if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled. |
289 | if (p.grid[x][y].gap != Cell::Gap::BREAK) continue; | 311 | if (p.grid[x][y].gap != Cell::Gap::BREAK) continue; |
290 | 312 | ||
291 | float xPos = min + (x/2.0f) * width_interval; | 313 | auto [xPos, yPos] = xy_to_pos(p, x, y); |
292 | float yPos = max - (y/2.0f) * height_interval; | ||
293 | // Reminder: Y goes from 0.0 (bottom) to 1.0 (top) | 314 | // Reminder: Y goes from 0.0 (bottom) to 1.0 (top) |
294 | if (x%2 == 0) { // Vertical gap | 315 | if (x%2 == 0) { // Vertical gap |
295 | connections_a.push_back(xy_to_loc(p, x, y-1)); | 316 | _connectionsA.push_back(xy_to_loc(p, x, y-1)); |
296 | connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | 317 | _connectionsB.push_back(static_cast<int>(_intersectionFlags.size())); // This endpoint |
297 | intersectionLocations.push_back(xPos); | 318 | _intersectionLocations.push_back(xPos); |
298 | intersectionLocations.push_back(yPos + verti_gap_size / 2); | 319 | _intersectionLocations.push_back(yPos + VERTI_GAP_SIZE / 2); |
299 | intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN); | 320 | _intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN); |
300 | 321 | ||
301 | connections_a.push_back(xy_to_loc(p, x, y+1)); | 322 | _connectionsA.push_back(xy_to_loc(p, x, y+1)); |
302 | connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | 323 | _connectionsB.push_back(static_cast<int>(_intersectionFlags.size())); // This endpoint |
303 | intersectionLocations.push_back(xPos); | 324 | _intersectionLocations.push_back(xPos); |
304 | intersectionLocations.push_back(yPos - verti_gap_size / 2); | 325 | _intersectionLocations.push_back(yPos - VERTI_GAP_SIZE / 2); |
305 | intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN); | 326 | _intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN); |
306 | } else if (y%2 == 0) { // Horizontal gap | 327 | } else if (y%2 == 0) { // Horizontal gap |
307 | connections_a.push_back(xy_to_loc(p, x-1, y)); | 328 | _connectionsA.push_back(xy_to_loc(p, x-1, y)); |
308 | connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | 329 | _connectionsB.push_back(static_cast<int>(_intersectionFlags.size())); // This endpoint |
309 | intersectionLocations.push_back(xPos - horiz_gap_size / 2); | 330 | _intersectionLocations.push_back(xPos - HORIZ_GAP_SIZE / 2); |
310 | intersectionLocations.push_back(yPos); | 331 | _intersectionLocations.push_back(yPos); |
311 | intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN); | 332 | _intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN); |
312 | 333 | ||
313 | connections_a.push_back(xy_to_loc(p, x+1, y)); | 334 | _connectionsA.push_back(xy_to_loc(p, x+1, y)); |
314 | connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | 335 | _connectionsB.push_back(static_cast<int>(_intersectionFlags.size())); // This endpoint |
315 | intersectionLocations.push_back(xPos + horiz_gap_size / 2); | 336 | _intersectionLocations.push_back(xPos + HORIZ_GAP_SIZE / 2); |
316 | intersectionLocations.push_back(yPos); | 337 | _intersectionLocations.push_back(yPos); |
317 | intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN); | 338 | _intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN); |
318 | } | 339 | } |
319 | } | 340 | } |
320 | } | 341 | } |
321 | |||
322 | _memory->WritePanelData<int>(id, NUM_DOTS, {static_cast<int>(intersectionFlags.size())}); | ||
323 | _memory->WriteArray<float>(id, DOT_POSITIONS, intersectionLocations); | ||
324 | _memory->WriteArray<int>(id, DOT_FLAGS, intersectionFlags); | ||
325 | _memory->WritePanelData<int>(id, NUM_CONNECTIONS, {static_cast<int>(connections_a.size())}); | ||
326 | _memory->WriteArray<int>(id, DOT_CONNECTION_A, connections_a); | ||
327 | _memory->WriteArray<int>(id, DOT_CONNECTION_B, connections_b); | ||
328 | } | 342 | } |
329 | 343 | ||
330 | void PuzzleSerializer::WriteDecorations(const Puzzle& p, int id) { | 344 | void PuzzleSerializer::WriteDecorations(const Puzzle& p, int id) { |
345 | if (!p.hasDecorations) return; | ||
346 | |||
331 | std::vector<int> decorations; | 347 | std::vector<int> decorations; |
332 | for (int y=p.height-2; y>0; y-=2) { | 348 | for (int y=p.height-2; y>0; y-=2) { |
333 | for (int x=1; x<p.width-1; x+=2) { | 349 | for (int x=1; x<p.width-1; x+=2) { |
@@ -344,6 +360,21 @@ void PuzzleSerializer::WriteDecorations(const Puzzle& p, int id) { | |||
344 | _memory->WriteArray<int>(id, DECORATIONS, decorations); | 360 | _memory->WriteArray<int>(id, DECORATIONS, decorations); |
345 | } | 361 | } |
346 | 362 | ||
363 | void PuzzleSerializer::WriteSequence(const Puzzle& p, int id) { | ||
364 | if (p.sequence.size() == 0) return; | ||
365 | |||
366 | std::vector<int> sequence; | ||
367 | for (Pos pos : p.sequence) { | ||
368 | // Only include intersections, the game does not treat segments as real objects | ||
369 | if (pos.x%2 == 0 && pos.y%2 == 0) { | ||
370 | sequence.emplace_back(xy_to_loc(p, pos.x, pos.y)); | ||
371 | } | ||
372 | } | ||
373 | |||
374 | _memory->WritePanelData<int>(id, SEQUENCE_LEN, {static_cast<int>(sequence.size())}); | ||
375 | _memory->WriteNewArray<int>(id, SEQUENCE, sequence); | ||
376 | } | ||
377 | |||
347 | std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) const { | 378 | std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) const { |
348 | int height2 = (p.height - 1) / 2; | 379 | int height2 = (p.height - 1) / 2; |
349 | int width2 = (p.width + 1) / 2; | 380 | int width2 = (p.width + 1) / 2; |
@@ -378,23 +409,25 @@ int PuzzleSerializer::xy_to_dloc(const Puzzle& p, int x, int y) const { | |||
378 | return rowsFromBottom * width2 + (x - 1)/2; | 409 | return rowsFromBottom * width2 + (x - 1)/2; |
379 | } | 410 | } |
380 | 411 | ||
412 | std::tuple<float, float> PuzzleSerializer::xy_to_pos(const Puzzle& p, int x, int y) const { | ||
413 | return { | ||
414 | MIN + (x/2) * WIDTH_INTERVAL, | ||
415 | MAX - (y/2) * HEIGHT_INTERVAL | ||
416 | }; | ||
417 | } | ||
418 | |||
381 | Cell::Dot PuzzleSerializer::FlagsToDot(int flags) const { | 419 | Cell::Dot PuzzleSerializer::FlagsToDot(int flags) const { |
382 | if (!(flags & Flags::HAS_DOT)) return Cell::Dot::NONE; | 420 | if (!(flags & Flags::HAS_DOT)) return Cell::Dot::NONE; |
383 | if (flags & Flags::DOT_IS_BLUE) { | 421 | if (flags & Flags::DOT_IS_BLUE) return Cell::Dot::BLUE; |
384 | return Cell::Dot::BLUE; | 422 | else if (flags & Flags::DOT_IS_ORANGE) return Cell::Dot::YELLOW; |
385 | } else if (flags & Flags::DOT_IS_ORANGE) { | 423 | else if (flags & Flags::DOT_IS_INVISIBLE) return Cell::Dot::INVISIBLE; |
386 | return Cell::Dot::YELLOW; | 424 | else return Cell::Dot::BLACK; |
387 | } else if (flags & Flags::DOT_IS_INVISIBLE) { | ||
388 | return Cell::Dot::INVISIBLE; | ||
389 | } else { | ||
390 | return Cell::Dot::BLACK; | ||
391 | } | ||
392 | } | 425 | } |
393 | 426 | ||
394 | int PuzzleSerializer::FindConnection(int i, const std::vector<int>& connections_a, const std::vector<int>& connections_b) const { | 427 | int PuzzleSerializer::FindConnection(int location) const { |
395 | for (int j=0; j<connections_a.size(); j++) { | 428 | for (int j=0; j<_connectionsA.size(); j++) { |
396 | if (connections_a[j] == i) return connections_b[j]; | 429 | if (_connectionsA[j] == location) return _connectionsB[j]; |
397 | if (connections_b[j] == i) return connections_a[j]; | 430 | if (_connectionsB[j] == location) return _connectionsA[j]; |
398 | } | 431 | } |
399 | return -1; | 432 | return -1; |
400 | } | 433 | } |
diff --git a/Source/PuzzlerSerializer.h b/Source/PuzzlerSerializer.h index 00c89f5..535d82f 100644 --- a/Source/PuzzlerSerializer.h +++ b/Source/PuzzlerSerializer.h | |||
@@ -22,24 +22,40 @@ private: | |||
22 | DOT_IS_BLUE = 0x100, | 22 | DOT_IS_BLUE = 0x100, |
23 | DOT_IS_ORANGE = 0x200, | 23 | DOT_IS_ORANGE = 0x200, |
24 | DOT_IS_INVISIBLE = 0x1000, | 24 | DOT_IS_INVISIBLE = 0x1000, |
25 | HAS_ONE_CONN = 0x100000, | 25 | HAS_ONE_CONN = 0x100000, |
26 | HAS_VERTI_CONN = 0x200000, | 26 | HAS_VERTI_CONN = 0x200000, |
27 | HAS_HORIZ_CONN = 0x400000, | 27 | HAS_HORIZ_CONN = 0x400000, |
28 | }; | 28 | }; |
29 | 29 | ||
30 | void ReadIntersections(Puzzle& p, int id); | 30 | void ReadIntersections(Puzzle& p); |
31 | void ReadExtras(Puzzle& p); | ||
31 | void ReadDecorations(Puzzle& p, int id); | 32 | void ReadDecorations(Puzzle& p, int id); |
32 | void WriteIntersections(const Puzzle& p, int id); | 33 | void ReadSequence(Puzzle& p, int id); |
34 | |||
35 | void WriteIntersections(const Puzzle& p); | ||
36 | void WriteDots(const Puzzle& p); | ||
37 | void WriteGaps(const Puzzle& p); | ||
38 | void WriteEndpoints(const Puzzle& p); | ||
33 | void WriteDecorations(const Puzzle& p, int id); | 39 | void WriteDecorations(const Puzzle& p, int id); |
40 | void WriteSequence(const Puzzle& p, int id); | ||
34 | 41 | ||
35 | std::tuple<int, int> loc_to_xy(const Puzzle& p, int location) const; | 42 | std::tuple<int, int> loc_to_xy(const Puzzle& p, int location) const; |
36 | int xy_to_loc(const Puzzle& p, int x, int y) const; | 43 | int xy_to_loc(const Puzzle& p, int x, int y) const; |
37 | // Decoration location | 44 | // Decoration location |
38 | std::tuple<int, int> dloc_to_xy(const Puzzle& p, int location) const; | 45 | std::tuple<int, int> dloc_to_xy(const Puzzle& p, int location) const; |
39 | int xy_to_dloc(const Puzzle& p, int x, int y) const; | 46 | int xy_to_dloc(const Puzzle& p, int x, int y) const; |
47 | // Grid coordinates | ||
48 | std::tuple<float, float> xy_to_pos(const Puzzle& p, int x, int y) const; | ||
40 | Cell::Dot FlagsToDot(int flags) const; | 49 | Cell::Dot FlagsToDot(int flags) const; |
41 | // Iterate connection lists for another location which is connected to us; return that other location. | 50 | // Iterate connection lists for another location which is connected to us; return that other location. |
42 | int FindConnection(int i, const std::vector<int>& connections_a, const std::vector<int>& connections_b) const; | 51 | int FindConnection(int location) const; |
43 | 52 | ||
44 | std::shared_ptr<Memory> _memory; | 53 | std::shared_ptr<Memory> _memory; |
54 | |||
55 | std::vector<float> _intersectionLocations; | ||
56 | std::vector<int> _intersectionFlags; | ||
57 | std::vector<int> _connectionsA; | ||
58 | std::vector<int> _connectionsB; | ||
59 | |||
60 | float MIN, MAX, WIDTH_INTERVAL, HEIGHT_INTERVAL, HORIZ_GAP_SIZE, VERTI_GAP_SIZE; | ||
45 | }; | 61 | }; |
diff --git a/Source/Randomizer2.cpp b/Source/Randomizer2.cpp index 537c30b..b5218bf 100644 --- a/Source/Randomizer2.cpp +++ b/Source/Randomizer2.cpp | |||
@@ -3,6 +3,9 @@ | |||
3 | #include "Random.h" | 3 | #include "Random.h" |
4 | #include "Solver.h" | 4 | #include "Solver.h" |
5 | #include "Memory.h" | 5 | #include "Memory.h" |
6 | #include "PuzzlerSerializer.h" | ||
7 | #include <cassert> | ||
8 | #include <string> | ||
6 | 9 | ||
7 | void FloodFillInternal(const Puzzle& p, std::vector<std::vector<bool>>& reached, int x, int y) { | 10 | void FloodFillInternal(const Puzzle& p, std::vector<std::vector<bool>>& reached, int x, int y) { |
8 | if (x%2 == 1 && y%2 == 1) return; | 11 | if (x%2 == 1 && y%2 == 1) return; |
@@ -62,10 +65,10 @@ void Randomizer2::Randomize() { | |||
62 | for (int j=0; j<edges.size(); j++) { | 65 | for (int j=0; j<edges.size(); j++) { |
63 | int edge = Random::RandInt(0, static_cast<int>(edges.size() - 1)); | 66 | int edge = Random::RandInt(0, static_cast<int>(edges.size() - 1)); |
64 | Pos pos = edges[edge]; | 67 | Pos pos = edges[edge]; |
65 | p.grid[pos.x][pos.y].gap = Cell::Gap::FULL; | ||
66 | edges.erase(edges.begin() + edge); | 68 | edges.erase(edges.begin() + edge); |
67 | 69 | ||
68 | if (FloodFill(p)) { | 70 | if (FloodFill(p)) { |
71 | p.grid[pos.x][pos.y].gap = Cell::Gap::FULL; | ||
69 | break; | 72 | break; |
70 | } else { | 73 | } else { |
71 | p.grid[pos.x][pos.y].gap = Cell::Gap::NONE; | 74 | p.grid[pos.x][pos.y].gap = Cell::Gap::NONE; |
@@ -108,10 +111,10 @@ void Randomizer2::Randomize() { | |||
108 | 111 | ||
109 | int edge = Random::RandInt(0, static_cast<int>(edges.size() - 1)); | 112 | int edge = Random::RandInt(0, static_cast<int>(edges.size() - 1)); |
110 | Pos pos = edges[edge]; | 113 | Pos pos = edges[edge]; |
111 | p.grid[pos.x][pos.y].gap = Cell::Gap::FULL; | ||
112 | edges.erase(edges.begin() + edge); | 114 | edges.erase(edges.begin() + edge); |
113 | 115 | ||
114 | if (FloodFill(p)) { | 116 | if (FloodFill(p)) { |
117 | p.grid[pos.x][pos.y].gap = Cell::Gap::FULL; | ||
115 | break; | 118 | break; |
116 | } else { | 119 | } else { |
117 | p.grid[pos.x][pos.y].gap = Cell::Gap::NONE; | 120 | p.grid[pos.x][pos.y].gap = Cell::Gap::NONE; |
@@ -152,19 +155,100 @@ void Randomizer2::Randomize() { | |||
152 | 155 | ||
153 | } | 156 | } |
154 | 157 | ||
158 | void DebugColorGrid(const std::vector<std::vector<int>>& colorGrid) { | ||
159 | for (int y=0; y<colorGrid[0].size(); y++) { | ||
160 | std::wstring row; | ||
161 | for (int x=0; x<colorGrid.size(); x++) { | ||
162 | row += std::to_wstring(colorGrid[x][y]); | ||
163 | } | ||
164 | row += L'\n'; | ||
165 | OutputDebugString(row.c_str()); | ||
166 | } | ||
167 | OutputDebugString(L"\n"); | ||
168 | } | ||
169 | |||
170 | void FloodFill(const Puzzle& p, std::vector<std::vector<int>>& colorGrid, int color, int x, int y) { | ||
171 | if (!p.SafeCell(x, y)) return; | ||
172 | if (colorGrid[x][y] != 0) return; // Already processed. | ||
173 | colorGrid[x][y] = color; | ||
174 | |||
175 | FloodFill(p, colorGrid, color, x, y+1); | ||
176 | FloodFill(p, colorGrid, color, x, y-1); | ||
177 | FloodFill(p, colorGrid, color, x+1, y); | ||
178 | FloodFill(p, colorGrid, color, x-1, y); | ||
179 | } | ||
180 | |||
181 | void FloodFillOutside(const Puzzle&p, std::vector<std::vector<int>>& colorGrid, int x, int y) { | ||
182 | if (!p.SafeCell(x, y)) return; | ||
183 | if (colorGrid[x][y] != 0) return; // Already processed. | ||
184 | if (x%2 != y%2 && p.grid[x][y].gap != Cell::Gap::FULL) return; // Only flood-fill through full gaps | ||
185 | colorGrid[x][y] = 1; // Outside color | ||
186 | |||
187 | FloodFillOutside(p, colorGrid, x, y+1); | ||
188 | FloodFillOutside(p, colorGrid, x, y-1); | ||
189 | FloodFillOutside(p, colorGrid, x+1, y); | ||
190 | FloodFillOutside(p, colorGrid, x-1, y); | ||
191 | } | ||
192 | |||
193 | /* | ||
194 | undefined -> 1 (color of outside) or * (any colored cell) or -1 (edge/intersection not part of any region) | ||
195 | |||
196 | 0 -> {} (this is a special edge case, which I don't need right now) | ||
197 | 1 -> 0 (uncolored / ready to color) | ||
198 | 2 -> | ||
199 | */ | ||
200 | std::vector<std::vector<int>> CreateColorGrid(const Puzzle& p) { | ||
201 | std::vector<std::vector<int>> colorGrid; | ||
202 | colorGrid.resize(p.width); | ||
203 | |||
204 | for (int x=0; x<p.width; x++) { | ||
205 | colorGrid[x].resize(p.height); | ||
206 | for (int y=0; y<p.height; y++) { | ||
207 | // Mark all unbroken edges and intersections as 'do not color' | ||
208 | if (x%2 != y%2) { | ||
209 | if (p.grid[x][y].gap == Cell::Gap::NONE) colorGrid[x][y] = 1; | ||
210 | } else if (x%2 == 0 && y%2 == 0) { | ||
211 | // @Future: What about empty intersections? | ||
212 | colorGrid[x][y] = 1; // do not color intersections | ||
213 | } | ||
214 | } | ||
215 | } | ||
216 | |||
217 | // @Future: Skip this loop if pillar = true; | ||
218 | for (int y=1; y<p.height; y+=2) { | ||
219 | FloodFillOutside(p, colorGrid, 0, y); | ||
220 | FloodFillOutside(p, colorGrid, p.width - 1, y); | ||
221 | } | ||
222 | |||
223 | for (int x=1; x<p.width; x+=2) { | ||
224 | FloodFillOutside(p, colorGrid, x, 0); | ||
225 | FloodFillOutside(p, colorGrid, x, p.height - 1); | ||
226 | } | ||
227 | |||
228 | int color = 1; | ||
229 | for (int x=0; x<p.width; x++) { | ||
230 | for (int y=0; y<p.height; y++) { | ||
231 | if (colorGrid[x][y] != 0) continue; // No dead colors | ||
232 | color++; | ||
233 | FloodFill(p, colorGrid, color, x, y); | ||
234 | } | ||
235 | } | ||
236 | |||
237 | return colorGrid; | ||
238 | } | ||
239 | |||
155 | void Randomizer2::RandomizeKeep() { | 240 | void Randomizer2::RandomizeKeep() { |
156 | Puzzle p; | 241 | Puzzle p; |
157 | p.width = 9; | 242 | p.NewGrid(4, 4); |
158 | p.height = 10; | 243 | // p.width = 9; |
159 | p.grid.clear(); | 244 | // p.height = 10; |
160 | p.grid.resize(p.width); | 245 | // p.grid.clear(); |
161 | for (int x=0; x<p.width; x++) p.grid[x].resize(p.height); | 246 | // p.grid.resize(p.width); |
247 | // for (int x=0; x<p.width; x++) p.grid[x].resize(p.height); | ||
162 | 248 | ||
163 | p.NewGrid(5, 5); | ||
164 | p.grid[2][1].gap = Cell::Gap::FULL; | 249 | p.grid[2][1].gap = Cell::Gap::FULL; |
165 | p.grid[4][1].gap = Cell::Gap::FULL; | 250 | p.grid[4][1].gap = Cell::Gap::FULL; |
166 | p.grid[6][1].gap = Cell::Gap::FULL; | 251 | p.grid[6][1].gap = Cell::Gap::FULL; |
167 | p.grid[8][1].gap = Cell::Gap::FULL; | ||
168 | p.grid[3][2].gap = Cell::Gap::FULL; | 252 | p.grid[3][2].gap = Cell::Gap::FULL; |
169 | p.grid[5][2].gap = Cell::Gap::FULL; | 253 | p.grid[5][2].gap = Cell::Gap::FULL; |
170 | p.grid[8][3].gap = Cell::Gap::FULL; | 254 | p.grid[8][3].gap = Cell::Gap::FULL; |
@@ -173,45 +257,92 @@ void Randomizer2::RandomizeKeep() { | |||
173 | p.grid[7][6].gap = Cell::Gap::FULL; | 257 | p.grid[7][6].gap = Cell::Gap::FULL; |
174 | p.grid[2][7].gap = Cell::Gap::FULL; | 258 | p.grid[2][7].gap = Cell::Gap::FULL; |
175 | p.grid[4][7].gap = Cell::Gap::FULL; | 259 | p.grid[4][7].gap = Cell::Gap::FULL; |
176 | p.grid[0][9].gap = Cell::Gap::FULL; | 260 | // p.grid[0][9].gap = Cell::Gap::FULL; |
177 | p.grid[2][9].gap = Cell::Gap::FULL; | 261 | // p.grid[2][9].gap = Cell::Gap::FULL; |
178 | p.grid[6][9].gap = Cell::Gap::FULL; | 262 | // p.grid[6][9].gap = Cell::Gap::FULL; |
179 | p.grid[8][9].gap = Cell::Gap::FULL; | 263 | // p.grid[8][9].gap = Cell::Gap::FULL; |
180 | 264 | ||
181 | p.grid[8][0].end = Cell::Dir::UP; | 265 | p.grid[6][0].end = Cell::Dir::UP; |
182 | p.grid[4][9].start = true; | 266 | p.grid[4][8].start = true; |
183 | 267 | ||
184 | // 0x00496 | 268 | auto colorGrid = CreateColorGrid(p); |
185 | // 0x00344 | ||
186 | // 0x00495 | ||
187 | // 0x00488 | ||
188 | // 0x00489 | ||
189 | 269 | ||
190 | SetGate(0x00496, 2, 1); | 270 | std::vector<Pos> edges; |
191 | } | 271 | for (int x=0; x<p.width; x++) { |
272 | for (int y=0; y<p.height; y++) { | ||
273 | if (x%2 == y%2) continue; | ||
274 | if (p.grid[x][y].gap != Cell::Gap::NONE) continue; | ||
275 | edges.emplace_back(Pos{x, y}); | ||
276 | } | ||
277 | } | ||
192 | 278 | ||
193 | void Randomizer2::SetGate(int panel, int X, int Y) { | 279 | Puzzle copy = p; |
194 | // x: (-1.5)X + (0.7)Y + 67.1 | 280 | std::vector<int> gates = {0x00344, 0x00488, 0x00489, 0x00495, 0x00496}; |
195 | // y: (0.3)X + (1.5)Y + 106.9 | 281 | for (int i=0; i<5; i++) { |
196 | // z: -19.1 | 282 | for (int j=0; j<edges.size(); j++) { |
197 | // Horizontal: (0, 0, -.1, 1) | 283 | int edge = Random::RandInt(0, static_cast<int>(edges.size() - 1)); |
198 | // Vertical: (0, 0, -.77, .63) | 284 | Pos pos = edges[edge]; |
285 | edges.erase(edges.begin() + edge); | ||
286 | |||
287 | int color1 = 0; | ||
288 | int color2 = 0; | ||
289 | if (pos.x%2 == 0 && pos.y%2 == 1) { // Vertical | ||
290 | if (pos.x > 0) color1 = colorGrid[pos.x-1][pos.y]; | ||
291 | else color1 = 1; | ||
292 | |||
293 | if (pos.x < p.width - 1) color2 = colorGrid[pos.x+1][pos.y]; | ||
294 | else color2 = 1; | ||
295 | } else { // Horizontal | ||
296 | assert(pos.x%2 == 1 && pos.y%2 == 0); | ||
297 | if (pos.y > 0) color1 = colorGrid[pos.x][pos.y-1]; | ||
298 | else color1 = 1; | ||
299 | |||
300 | if (pos.y < p.height - 1) color2 = colorGrid[pos.x][pos.y+1]; | ||
301 | else color2 = 1; | ||
302 | } | ||
303 | // Enforce color1 < color2 | ||
304 | if (color1 > color2) std::swap(color1, color2); | ||
305 | |||
306 | // Colors mismatch, valid cut | ||
307 | if (color1 != color2) { | ||
308 | // @Performance... have a lookup table instead? | ||
309 | for (int x=0; x<p.width; x++) { | ||
310 | for (int y=0; y<p.height; y++) { | ||
311 | if (colorGrid[x][y] == color2) colorGrid[x][y] = color1; | ||
312 | } | ||
313 | } | ||
314 | copy.grid[pos.x][pos.y].gap = Cell::Gap::BREAK; | ||
315 | SetGate(gates[i], pos.x, pos.y); | ||
316 | break; | ||
317 | } | ||
318 | } | ||
319 | } | ||
199 | 320 | ||
200 | float x = -1.5f * X + 0.7f * Y + 67.1f; | 321 | auto solutions = Solver::Solve(copy); |
201 | float y = 0.3f * X + 1.5f * Y + 106.9f; | 322 | assert(solutions.size() == 1); |
202 | _memory->WritePanelData<float>(panel, POSITION, {x, y, 19.1f}); | 323 | p.sequence = solutions[0].sequence; |
324 | PuzzleSerializer(_memory).WritePuzzle(solutions[0], 0x139); | ||
325 | } | ||
203 | 326 | ||
204 | float z, w; | 327 | void Randomizer2::SetGate(int panel, int X, int Y) { |
328 | float x, y, z, w; | ||
205 | if (X%2 == 0 && Y%2 == 1) { // Horizontal | 329 | if (X%2 == 0 && Y%2 == 1) { // Horizontal |
206 | z = -0.1f; | 330 | x = -1.49f * X + 0.22f * Y + 66.58f; |
207 | w = 1.0f; | 331 | y = 0.275f * X + 1.6f * Y + 108.4f; |
208 | } else if (X%2 == 1 && Y%2 == 0) { // Vertical | ||
209 | z = -.77f; | 332 | z = -.77f; |
210 | w = .63f; | 333 | w = .63f; |
211 | } else { | 334 | } else { // Vertical |
212 | assert(false); | 335 | assert(X%2 == 1 && Y%2 == 0); |
213 | return; | 336 | x = -1.6f * X + 0.35f * Y + 66.5f; |
337 | y = 0.25f * X + 1.6f * Y + 108.55f; | ||
338 | z = -0.1f; | ||
339 | w = 1.0f; | ||
214 | } | 340 | } |
215 | 341 | ||
342 | SetPos(panel, x, y, 19.2f); | ||
216 | _memory->WritePanelData<float>(panel, ORIENTATION, {0.0f, 0.0f, z, w}); | 343 | _memory->WritePanelData<float>(panel, ORIENTATION, {0.0f, 0.0f, z, w}); |
344 | } | ||
345 | |||
346 | void Randomizer2::SetPos(int panel, float x, float y, float z) { | ||
347 | _memory->WritePanelData<float>(panel, POSITION, {x, y, z}); | ||
217 | } \ No newline at end of file | 348 | } \ No newline at end of file |
diff --git a/Source/Randomizer2.h b/Source/Randomizer2.h index 848fd22..359e357 100644 --- a/Source/Randomizer2.h +++ b/Source/Randomizer2.h | |||
@@ -10,6 +10,7 @@ public: | |||
10 | 10 | ||
11 | private: | 11 | private: |
12 | void SetGate(int panel, int X, int Y); | 12 | void SetGate(int panel, int X, int Y); |
13 | void SetPos(int panel, float x, float y, float z); | ||
13 | 14 | ||
14 | std::shared_ptr<Memory> _memory; | 15 | std::shared_ptr<Memory> _memory; |
15 | }; | 16 | }; |
diff --git a/Source/Solver.cpp b/Source/Solver.cpp index bce1482..a8710a2 100644 --- a/Source/Solver.cpp +++ b/Source/Solver.cpp | |||
@@ -30,6 +30,7 @@ void Solver::SolveLoop(Puzzle& p, int x, int y, std::vector<Puzzle>& solutions) | |||
30 | if (p.sym == Puzzle::Symmetry::NONE) { | 30 | if (p.sym == Puzzle::Symmetry::NONE) { |
31 | if (cell.color != Cell::Color::NONE) return; // Collided with ourselves | 31 | if (cell.color != Cell::Color::NONE) return; // Collided with ourselves |
32 | p.grid[x][y].color = Cell::Color::BLACK; // Otherwise, mark this cell as visited | 32 | p.grid[x][y].color = Cell::Color::BLACK; // Otherwise, mark this cell as visited |
33 | p.sequence.emplace_back(Pos{x, y}); | ||
33 | } else { | 34 | } else { |
34 | /* | 35 | /* |
35 | // Get the symmetrical position, and try coloring it | 36 | // Get the symmetrical position, and try coloring it |
@@ -69,6 +70,7 @@ void Solver::SolveLoop(Puzzle& p, int x, int y, std::vector<Puzzle>& solutions) | |||
69 | 70 | ||
70 | // Tail recursion: Back out of this cell | 71 | // Tail recursion: Back out of this cell |
71 | p.grid[x][y].color = Cell::Color::NONE; | 72 | p.grid[x][y].color = Cell::Color::NONE; |
73 | p.sequence.pop_back(); | ||
72 | if (p.sym != Puzzle::Symmetry::NONE) { | 74 | if (p.sym != Puzzle::Symmetry::NONE) { |
73 | /* | 75 | /* |
74 | auto sym = p.GetSymmetricalPos(x, y); | 76 | auto sym = p.GetSymmetricalPos(x, y); |