summary refs log tree commit diff stats
path: root/tools/sprite_dumper/tileset_dumper.cpp
blob: f09fbd9b878639bc2c1e6d03de7d39925fe883ed (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#include <iostream>
#include <Magick++.h>
#include <vector>
#include <string>
#include <map>
#include <fstream>
#include "common.h"
#include "identifier.h"

constexpr int NUM_ROOMS = 1000;
constexpr int NUM_TILESETS = 12;

struct RoomInfo {
  int width;
  int height;

  static std::map<int, RoomInfo> ReadFromRom(BufferView m3) {
    const int BASE_ADDR = 0xD2E1D8 + 12;
    const int ENTRY_LEN = 28;

    std::map<int, RoomInfo> output;

    for (int i=0; i<NUM_ROOMS; i++) {
      RoomInfo& ri = output[i];

      ri.width = ((m3.ReadByte(BASE_ADDR + i*ENTRY_LEN + 20) & 7) + 1) << 4;
      ri.height = (((m3.ReadByte(BASE_ADDR + i*ENTRY_LEN + 24) & 0x3F) >> 3) + 1) << 4;
    }

    return output;
  }
};

struct RoomGfxPal {
  int paletteId;
  int tilesetId[NUM_TILESETS];

  static std::map<int, RoomGfxPal> ReadFromRom(BufferView m3) {
    const int BASE_ADDR = 0xD34F44 + 12;
    const int ENTRY_LEN = 26;

    std::map<int, RoomGfxPal> output;

    for (int i=0; i<NUM_ROOMS; i++) {
      RoomGfxPal& rgp = output[i];

      rgp.paletteId = static_cast<short>(m3.ReadTwoBytes(BASE_ADDR + i*ENTRY_LEN + 24));
      for (int tid=0; tid<NUM_TILESETS; tid++) {
        rgp.tilesetId[tid] = m3.ReadTwoBytes(BASE_ADDR + i*ENTRY_LEN + tid*2);
      }
    }

    return output;
  }

  std::vector<std::vector<char>> GetTilesets(BufferView m3) const {
    const int BASE_ADDR = 0xD3B4E0;

    std::vector<std::vector<char>> output(NUM_TILESETS);

    for (int i=0; i<NUM_TILESETS; i++) {
      if (tilesetId[i] < (NUM_ROOMS * 3)) {
        unsigned long gfxAddr = m3.ReadFourBytes(BASE_ADDR + 4 + (tilesetId[i] << 2)) + BASE_ADDR;
        output[i] = m3.Decompress(gfxAddr);
      }
    }

    return output;
  }

  std::vector<Palette> GetPalettes(BufferView m3) const {
    const int BASE_ADDR = 0xF3C344;

    std::vector<Palette> output;
    int offset = m3.ReadFourBytes(BASE_ADDR + 4 + (paletteId << 2));

    for (int i=0; i<16; i++) {
      unsigned long palAddr = BASE_ADDR + offset + (i << 5);
      output.emplace_back(m3, palAddr);
    }

    return output;
  }
};

std::vector<char> GetMapTiles(BufferView m3, int roomId) {
  const int BASE_ADDR = 0x104D9CC;
  int tilesAddr = m3.ReadFourBytes(BASE_ADDR + 4 + (roomId << 2)) + BASE_ADDR;
  return m3.Decompress(tilesAddr);
}

std::vector<std::vector<char>> GetMapLayers(BufferView m3, int roomId) {
  const int BASE_ADDR = 0xF9003C;
  std::vector<std::vector<char>> layers;
  for (int i=0; i<3; i++) {
    try {
      int lookAddr = BASE_ADDR + 4 + (((roomId * 3) + i) << 2);
      int layerAddr = m3.ReadFourBytes(lookAddr) + BASE_ADDR;
      layers.push_back(m3.Decompress(layerAddr));
    } catch (const std::domain_error&) {
      // ignore
    }
  }
  return layers;
}

using metatile_id = identifier<unsigned short>::key_type;

struct TileUse {
  metatile_id id;
  bool tflipx = false;
  bool tflipy = false;
};

Magick::Image renderTile(unsigned short ch, bool tflipx, bool tflipy, const std::vector<Palette>& palettes, const std::vector<char>& mapTiles, const std::vector<std::vector<char>>& tilesets) {
  Magick::Image result("16x16", "transparent");

  unsigned short tile16 = ch & 0x3FF;
  if ((tile16 >> 6) >= 12) return result;

  result.modifyImage();
  Magick::Pixels view(result);

  int tpal = (ch >> 10) & 0xF;
  const Palette& palette = palettes[tpal];

//  bool tflipx = tu.tflipx;//(ch & 0x4000) != 0;
//  bool tflipy = tu.tflipy;//(ch & 0x8000) != 0;

  int tile8[2][2];
  bool sflipx[2][2];
  bool sflipy[2][2];

  unsigned int magic = BufferView(mapTiles).ReadFourBytes(tile16 * 8);

  tile8[0][0] = mapTiles[(tile16 * 8) + 4];
  tile8[0][1] = mapTiles[(tile16 * 8) + 5];
  tile8[1][0] = mapTiles[(tile16 * 8) + 6];
  tile8[1][1] = mapTiles[(tile16 * 8) + 7];

  for (int i=0; i<2; i++) {
    for (int j=0; j<2; j++) {
      sflipx[i][j] = (tile8[i][j] & 0x40) != 0;
      sflipy[i][j] = (tile8[i][j] & 0x80) != 0;

      tile8[i][j] &= 0x3f;
      tile8[i][j] |= (ch & 0x3c0);
    }
  }

  unsigned int mask = (magic >> 16) & 0xf;
  if ((mask & 0x1) == 0) tile8[0][0] = -1;
  if ((mask & 0x2) == 0) tile8[0][1] = -1;
  if ((mask & 0x4) == 0) tile8[1][0] = -1;
  if ((mask & 0x8) == 0) tile8[1][1] = -1;

  for (int tiley=0; tiley<2; tiley++) {
    for (int tilex=0; tilex<2; tilex++) {
      if (tile8[tiley][tilex] < 0) continue;

      int tileset = tile8[tiley][tilex] >> 6;
      int subtile = tile8[tiley][tilex] & 0x3f;

      int tileData[8][8];
      BufferView tilesetData(tilesets[tileset]);
      tilesetData.Seek(subtile << 5);
      for (int ty=0; ty<8; ty++) {
        for (int tx=0; tx<4; tx++) {
          unsigned char vvvv = tilesetData.ReadNextByte();
          tileData[tx*2][ty] = static_cast<unsigned char>(vvvv & 0xF);
          tileData[tx*2+1][ty] = static_cast<unsigned char>((vvvv >> 4) & 0xF);
        }
      }

      int stx = tflipx ? 1 - tilex : tilex;
      int sty = tflipy ? 1 - tiley : tiley;

      int destX = /*(mapx << 4) +*/ (stx << 3);
      int destY = /*(mapy << 4) +*/ (sty << 3);

      bool reallyFlipX = (sflipx[tiley][tilex] ^ tflipx);
      bool reallyFlipY = (sflipy[tiley][tilex] ^ tflipy);

      Magick::PixelPacket* pixels = view.get(destX,destY,8,8);

      for (int ty=0; ty<8; ty++) {
        int actualTy = reallyFlipY ? (7-ty) : ty;

        for (int tx=0; tx<8; tx++) {
          int actualTx = reallyFlipX ? (7-tx) : tx;

          if (tileData[actualTx][actualTy] != 0) {
            //auto& c = palette.Colors().at(tileData[actualTx][actualTy]);
            //std::cout << c.redQuantum() << "," << c.greenQuantum() << "," << c.blueQuantum() << std::endl;
            *pixels = palette.Colors().at(tileData[actualTx][actualTy]);
            //std::cout << tileData[actualTx][actualTy] << std::endl;
          }
          pixels++;
        }
      }

      view.sync();
    }
  }

  return result;
}

unsigned short stripFlipInfo(unsigned short ch) {
  return ch & ~(0x4000 | 0x8000);
}

int main(int argc, char** argv) {
  if (argc < 3) {
    std::cout << "Usage: ./tileset_dumper [path to rom] {map ID}" << std::endl;
    return -1;
  }

  Magick::InitializeMagick(nullptr);

  Rom m3(argv[1]);
  auto roomInfos = RoomInfo::ReadFromRom(m3.buffer());
  auto roomGfxPals = RoomGfxPal::ReadFromRom(m3.buffer());

  int roomNum = std::stoi(argv[2]);

  std::cout << roomInfos[roomNum].width << "," << roomInfos[roomNum].height << std::endl;
  std::cout << roomGfxPals[roomNum].paletteId;
  for (int i=0;i<12;i++) std::cout << "," << roomGfxPals[roomNum].tilesetId[i];
  std::cout << std::endl;

  int width = roomInfos[roomNum].width;
  int height = roomInfos[roomNum].height;

  Magick::Image image(Magick::Geometry(width*16, height*16), "transparent");

  auto mapTiles = GetMapTiles(m3.buffer(), roomNum);
  auto mapLayers = GetMapLayers(m3.buffer(), roomNum);

  const auto& gfxPal = roomGfxPals[roomNum];
  auto palettes = gfxPal.GetPalettes(m3.buffer());
  auto tilesets = gfxPal.GetTilesets(m3.buffer());

  identifier<unsigned short> metatiles;
  std::vector<std::vector<TileUse>> itemised;

  for (int layer=0; layer<mapLayers.size(); layer++) {
    const std::vector<char>& ml = mapLayers[layer];
    if (ml.empty()) continue;

    std::vector<TileUse> newLayer;

    for (int mapy = 0; mapy < height; mapy++) {
      for (int mapx = 0; mapx < width; mapx++) {
        unsigned short ch = BufferView(ml).ReadTwoBytes((mapx + (mapy * width)) * 2);
        TileUse tu;
        tu.id = metatiles.add(stripFlipInfo(ch));
        tu.tflipx = (ch & 0x4000) != 0;
        tu.tflipy = (ch & 0x8000) != 0;
        newLayer.push_back(std::move(tu));
      }
    }

    itemised.push_back(std::move(newLayer));
  }

  constexpr int TILES_PER_ROW = 10;
  int sheetWidth;
  int sheetHeight;

  if (metatiles.size() < TILES_PER_ROW) {
    sheetWidth = metatiles.size() * 16;
    sheetHeight = 16;
  } else {
    sheetWidth = TILES_PER_ROW * 16;
    sheetHeight = (metatiles.size() / TILES_PER_ROW + 1) * 16;
  }

  // Generate map datafile.
  std::ofstream mapfile("out.tmx");
  mapfile << R"(<map version="1.0" orientation="orthogonal" renderorder="right-down" width=")";
  mapfile << width;
  mapfile << R"(" height=")";
  mapfile << height;
  mapfile << R"(" tilewidth="16" tileheight="16">)" << std::endl;
  mapfile << R"(  <tileset firstgid="1" name="fromRom" tilewidth="16" tileheight="16" tilecount=")";
  mapfile << metatiles.size();
  mapfile << R"(" columns=")";
  mapfile << TILES_PER_ROW;
  mapfile << R"(">)" << std::endl;
  mapfile << R"(    <image source="tiles.png" />)" << std::endl;
  mapfile << R"(  </tileset>)" << std::endl;

  for (int layer=itemised.size()-1; layer>=0; layer--) {
    mapfile << R"(  <layer id=")";
    mapfile << layer;
    mapfile << R"(" name="Layer )";
    mapfile << layer;
    mapfile << R"(" width=")";
    mapfile << width;
    mapfile << R"(" height=")";
    mapfile << height;
    mapfile << R"(">)" << std::endl;
    mapfile << R"(    <data encoding="csv">)";

    bool first = true;
    for (const TileUse& tu : itemised[layer]) {
      if (first) {
        first = false;
      } else {
        mapfile << ",";
      }

      unsigned int outChar = tu.id + 1;
      if (tu.tflipx) outChar |= 0x80000000;
      if (tu.tflipy) outChar |= 0x40000000;
      mapfile << outChar;
    }

    mapfile << R"(</data>)" << std::endl;
    mapfile << R"(  </layer>)" << std::endl;
  }

  mapfile << R"(</map>)" << std::endl;

  // Render map to image.
  for (int layer=itemised.size()-1; layer>=0; layer--) {
    for (int mapy = 0; mapy < height; mapy++) {
      for (int mapx = 0; mapx < width; mapx++) {
        const TileUse& tu = itemised[layer][mapx+mapy*width];
        Magick::Image tileRender = renderTile(metatiles.get(tu.id), tu.tflipx, tu.tflipy, palettes, mapTiles, tilesets);
        image.composite(tileRender, mapx << 4, mapy << 4, Magick::OverCompositeOp);
      }
    }
  }

  image.magick("png");
  image.write("out.png");

  // Render tileset image.
  Magick::Image tilesetImage(Magick::Geometry(sheetWidth, sheetHeight), "transparent");
  for (int i=0; i<metatiles.size(); i++) {
    Magick::Image tileRender = renderTile(metatiles.get(i), false, false, palettes, mapTiles, tilesets);
    tilesetImage.composite(tileRender, (i % TILES_PER_ROW) << 4, (i / TILES_PER_ROW) << 4, Magick::OverCompositeOp);
  }

  tilesetImage.magick("png");
  tilesetImage.write("tiles.png");
}