1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
#include "behaviour_system.h"
#include <queue>
#include <vector>
#include <utility>
#include <random>
#include "game.h"
#include "character_system.h"
#include "direction.h"
#include "transform_system.h"
#include "animation_system.h"
bool pathfindingOptionsContains(PathfindingOptions options, PathfindingOptions value) {
return (static_cast<int>(options) & static_cast<int>(value)) != 0;
}
void BehaviourSystem::tick(double dt) {
if (game_.isGameplayPaused()) return;
timer_.accumulate(dt);
while (timer_.step()) {
for (int spriteId : game_.getSprites()) {
Sprite& sprite = game_.getSprite(spriteId);
if (!sprite.paused) {
if (sprite.behaviourType == BehaviourType::Wander) {
// 75% chance of changing what's happening
if (std::bernoulli_distribution(0.75)(game_.getRng())) {
// 50% chance of choosing a direction or stopping
if (std::bernoulli_distribution(0.5)(game_.getRng())) {
Direction dir;
switch (std::uniform_int_distribution(0,3)(game_.getRng())) {
case 0: dir = Direction::left; break;
case 1: dir = Direction::up; break;
case 2: dir = Direction::right; break;
default: dir = Direction::down; break;
}
game_.getSystem<CharacterSystem>().moveInDirection(spriteId, dir);
} else {
game_.getSystem<CharacterSystem>().stopDirecting(spriteId);
}
}
} else if (sprite.behaviourType == BehaviourType::Follow) {
Sprite& target = game_.getSprite(sprite.followSpriteId);
game_.getSystem<CharacterSystem>().moveInDirection(spriteId, directionFacingPoint(target.loc - sprite.loc));
}
}
}
}
overcorrectionTimer_.accumulate(dt);
while (overcorrectionTimer_.step()) {
for (int spriteId : game_.getSprites()) {
Sprite& sprite = game_.getSprite(spriteId);
if (!sprite.paused &&
sprite.behaviourType == BehaviourType::Path &&
!sprite.path.empty() &&
sprite.loc != sprite.path.front().endpoint) {
if (directionFacingPoint(sprite.path.front().endpoint - sprite.loc) != sprite.path.front().dir) {
game_.getSystem<TransformSystem>().moveSprite(spriteId, sprite.path.front().endpoint);
}
}
}
}
for (int spriteId : game_.getSprites()) {
Sprite& sprite = game_.getSprite(spriteId);
if (!sprite.paused && sprite.behaviourType == BehaviourType::Path) {
while (!sprite.path.empty() && sprite.path.front().endpoint == sprite.loc) {
sprite.path.pop_front();
}
if (sprite.path.empty()) {
game_.getSystem<CharacterSystem>().stopDirecting(spriteId);
} else {
if (sprite.characterState == CharacterState::Still || sprite.movementDir != sprite.path.front().dir) {
game_.getSystem<CharacterSystem>().moveInDirection(spriteId, sprite.path.front().dir);
if (sprite.moonwalking) {
game_.getSystem<AnimationSystem>().setSpriteDirection(spriteId, oppositeDirection(sprite.path.front().dir));
}
}
}
}
}
}
void BehaviourSystem::directSpriteToLocation(int spriteId, vec2i pos, PathfindingOptions options) {
Sprite& sprite = game_.getSprite(spriteId);
sprite.orientable = true;
sprite.behaviourType = BehaviourType::Path;
sprite.pathfindingDestination = pos;
sprite.cardinalDirectionsOnly = pathfindingOptionsContains(options, PathfindingOptions::CardinalDirectionsOnly);
sprite.moonwalking = pathfindingOptionsContains(options, PathfindingOptions::Moonwalking);
createPath(spriteId);
}
bool BehaviourSystem::isFollowingPath(int spriteId) {
Sprite& sprite = game_.getSprite(spriteId);
return sprite.behaviourType == BehaviourType::Path && !sprite.path.empty();
}
struct PathNodeInfo {
double cheapestPathCost = DBL_MAX;
double estimatedRemainingCost = DBL_MAX;
vec2i previousPoint;
Direction dirFromPreviousPoint;
};
struct SearchNode {
vec2i point;
Direction dirFromPreviousPoint;
double estimatedCost = DBL_MAX;
int tiebreaker; // this actually counts downward. wow
SearchNode(vec2i point, Direction dirFromPreviousPoint, double estimatedCost) : point(point), dirFromPreviousPoint(dirFromPreviousPoint), estimatedCost(estimatedCost) {
static int tiebreakerCounter = 0;
tiebreaker = tiebreakerCounter--;
}
bool operator>(const SearchNode& rhs) const {
return std::tie(estimatedCost, tiebreaker) > std::tie(rhs.estimatedCost, rhs.tiebreaker);
}
};
double estimateRemainingCost(vec2i current, vec2i dest, int movementSpeed, bool cardinalDirectionsOnly) {
vec2i difference = dest - current;
if (cardinalDirectionsOnly) {
return (std::abs(difference.x()) + std::abs(difference.y())) / movementSpeed;
} else {
int dx = std::abs(difference.x()) / movementSpeed;
int dy = std::abs(difference.y()) / movementSpeed;
return (dx + dy) + (1.4 - 2) * std::min(dx, dy);
}
}
void BehaviourSystem::createPath(int spriteId) {
Sprite& sprite = game_.getSprite(spriteId);
sprite.path.clear();
const Map& map = game_.getMap();
vec2i mapBounds = map.getMapSize() * map.getTileSize();
// If it is not possible to reach the destination because of the parity (if
// the movement speed is above 1), then adjust the destination.
if (sprite.movementSpeed > 1) {
if ((sprite.loc.x() % sprite.movementSpeed) != (sprite.pathfindingDestination.x() % sprite.movementSpeed)) {
sprite.loc.x() = (sprite.loc.x() / sprite.movementSpeed) * sprite.movementSpeed + (sprite.pathfindingDestination.x() % sprite.movementSpeed);
}
if ((sprite.loc.y() % sprite.movementSpeed) != (sprite.pathfindingDestination.y() % sprite.movementSpeed)) {
sprite.loc.y() = (sprite.loc.y() / sprite.movementSpeed) * sprite.movementSpeed + (sprite.pathfindingDestination.y() % sprite.movementSpeed);
}
}
double initialCostGuess = estimateRemainingCost(sprite.loc, sprite.pathfindingDestination, sprite.movementSpeed, sprite.cardinalDirectionsOnly);
std::map<vec2i, std::map<Direction, PathNodeInfo>> pathNodes;
pathNodes[sprite.loc][sprite.dir] = PathNodeInfo{.cheapestPathCost = 0, .estimatedRemainingCost = initialCostGuess};
std::priority_queue<SearchNode, std::vector<SearchNode>, std::greater<SearchNode>> openSet;
openSet.emplace(sprite.loc, sprite.dir, initialCostGuess);
while (!openSet.empty()) {
SearchNode searchNode = openSet.top();
openSet.pop();
if (searchNode.point == sprite.pathfindingDestination) {
// We're there!
break;
}
PathNodeInfo& nodeInfo = pathNodes[searchNode.point][searchNode.dirFromPreviousPoint];
static const std::vector<Direction> allDirections = {
Direction::down,
Direction::down_left,
Direction::left,
Direction::up_left,
Direction::up,
Direction::up_right,
Direction::right,
Direction::down_right };
static const std::vector<Direction> cardinalDirections = {
Direction::down,
Direction::left,
Direction::up,
Direction::right };
std::vector<Direction> directionList = sprite.cardinalDirectionsOnly ? cardinalDirections : allDirections;
for (Direction dir : directionList) {
double newCost = nodeInfo.cheapestPathCost;
if (dir != searchNode.dirFromPreviousPoint) {
newCost += 0.1;
}
if (isCardinalDirection(dir)) {
newCost += 1;
} else {
newCost += 1.4;
}
vec2i newPos = searchNode.point + unitVecInDirection(dir) * sprite.movementSpeed;
if (newPos.x() < 0 || newPos.y() < 0 || newPos.x() >= mapBounds.w() || newPos.y() >= mapBounds.h()) {
// The path can't go outside the map.
continue;
}
PathNodeInfo& neighborInfo = pathNodes[newPos][dir];
if (neighborInfo.cheapestPathCost <= newCost) {
// There is already a faster path through this neighbor.
continue;
}
CollisionResult collision = game_.getSystem<TransformSystem>().checkCollision(spriteId, searchNode.point, newPos, dir);
if (collision.blocked) {
// There isn't actually an edge to this neighbor.
continue;
}
neighborInfo.cheapestPathCost = newCost;
neighborInfo.estimatedRemainingCost = estimateRemainingCost(newPos, sprite.pathfindingDestination, sprite.movementSpeed, sprite.cardinalDirectionsOnly);
neighborInfo.previousPoint = searchNode.point;
neighborInfo.dirFromPreviousPoint = dir;
openSet.emplace(newPos, dir, neighborInfo.cheapestPathCost + neighborInfo.estimatedRemainingCost);
}
}
if (!pathNodes.count(sprite.pathfindingDestination)) {
// There was no path to the destination.
return;
}
vec2i curPos = sprite.pathfindingDestination;
while (curPos != sprite.loc) {
const PathNodeInfo* nodeInfo = nullptr;
for (const auto& pni : pathNodes[curPos]) {
if (nodeInfo == nullptr || pni.second.cheapestPathCost < nodeInfo->cheapestPathCost) {
nodeInfo = &pni.second;
}
}
if (sprite.path.empty() || sprite.path.front().dir != nodeInfo->dirFromPreviousPoint) {
sprite.path.push_front(PathfindingInstruction{.dir = nodeInfo->dirFromPreviousPoint, .endpoint = curPos});
}
curPos = nodeInfo->previousPoint;
}
}
|