1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
#pragma once
#include <cassert>
#include <algorithm>
#include <array>
#include <memory>
#include <type_traits>
#include <vector>
#include "Box.h"
namespace quadtree
{
template<typename T, typename GetBox, typename Equal = std::equal_to<T>, typename Float = float>
class Quadtree
{
static_assert(std::is_convertible_v<std::invoke_result_t<GetBox, const T&>, Box<Float>>,
"GetBox must be a callable of signature Box<Float>(const T&)");
static_assert(std::is_convertible_v<std::invoke_result_t<Equal, const T&, const T&>, bool>,
"Equal must be a callable of signature bool(const T&, const T&)");
static_assert(std::is_arithmetic_v<Float>);
public:
Quadtree(const Box<Float>& box, const GetBox& getBox = GetBox(),
const Equal& equal = Equal()) :
mBox(box), mRoot(std::make_unique<Node>()), mGetBox(getBox), mEqual(equal)
{
}
void add(const T& value)
{
add(mRoot.get(), 0, mBox, value);
}
void remove(const T& value)
{
remove(mRoot.get(), mBox, value);
}
std::vector<T> query(const Box<Float>& box) const
{
auto values = std::vector<T>();
query(mRoot.get(), mBox, box, values);
return values;
}
std::vector<std::pair<T, T>> findAllIntersections() const
{
auto intersections = std::vector<std::pair<T, T>>();
findAllIntersections(mRoot.get(), intersections);
return intersections;
}
Box<Float> getBox() const
{
return mBox;
}
private:
static constexpr auto Threshold = std::size_t(16);
static constexpr auto MaxDepth = std::size_t(8);
struct Node
{
std::array<std::unique_ptr<Node>, 4> children;
std::vector<T> values;
};
Box<Float> mBox;
std::unique_ptr<Node> mRoot;
GetBox mGetBox;
Equal mEqual;
bool isLeaf(const Node* node) const
{
return !static_cast<bool>(node->children[0]);
}
Box<Float> computeBox(const Box<Float>& box, int i) const
{
auto origin = box.getTopLeft();
auto childSize = box.getSize() / static_cast<Float>(2);
switch (i)
{
// North West
case 0:
return Box<Float>(origin, childSize);
// Norst East
case 1:
return Box<Float>(Vector2<Float>(origin.x + childSize.x, origin.y), childSize);
// South West
case 2:
return Box<Float>(Vector2<Float>(origin.x, origin.y + childSize.y), childSize);
// South East
case 3:
return Box<Float>(origin + childSize, childSize);
default:
assert(false && "Invalid child index");
return Box<Float>();
}
}
int getQuadrant(const Box<Float>& nodeBox, const Box<Float>& valueBox) const
{
auto center = nodeBox.getCenter();
// West
if (valueBox.getRight() < center.x)
{
// North West
if (valueBox.getBottom() < center.y)
return 0;
// South West
else if (valueBox.top >= center.y)
return 2;
// Not contained in any quadrant
else
return -1;
}
// East
else if (valueBox.left >= center.x)
{
// North East
if (valueBox.getBottom() < center.y)
return 1;
// South East
else if (valueBox.top >= center.y)
return 3;
// Not contained in any quadrant
else
return -1;
}
// Not contained in any quadrant
else
return -1;
}
void add(Node* node, std::size_t depth, const Box<Float>& box, const T& value)
{
assert(node != nullptr);
assert(box.contains(mGetBox(value)));
if (isLeaf(node))
{
// Insert the value in this node if possible
if (depth >= MaxDepth || node->values.size() < Threshold)
node->values.push_back(value);
// Otherwise, we split and we try again
else
{
split(node, box);
add(node, depth, box, value);
}
}
else
{
auto i = getQuadrant(box, mGetBox(value));
// Add the value in a child if the value is entirely contained in it
if (i != -1)
add(node->children[static_cast<std::size_t>(i)].get(), depth + 1, computeBox(box, i), value);
// Otherwise, we add the value in the current node
else
node->values.push_back(value);
}
}
void split(Node* node, const Box<Float>& box)
{
assert(node != nullptr);
assert(isLeaf(node) && "Only leaves can be split");
// Create children
for (auto& child : node->children)
child = std::make_unique<Node>();
// Assign values to children
auto newValues = std::vector<T>(); // New values for this node
for (const auto& value : node->values)
{
auto i = getQuadrant(box, mGetBox(value));
if (i != -1)
node->children[static_cast<std::size_t>(i)]->values.push_back(value);
else
newValues.push_back(value);
}
node->values = std::move(newValues);
}
bool remove(Node* node, const Box<Float>& box, const T& value)
{
assert(node != nullptr);
assert(box.contains(mGetBox(value)));
if (isLeaf(node))
{
// Remove the value from node
removeValue(node, value);
return true;
}
else
{
// Remove the value in a child if the value is entirely contained in it
auto i = getQuadrant(box, mGetBox(value));
if (i != -1)
{
if (remove(node->children[static_cast<std::size_t>(i)].get(), computeBox(box, i), value))
return tryMerge(node);
}
// Otherwise, we remove the value from the current node
else
removeValue(node, value);
return false;
}
}
void removeValue(Node* node, const T& value)
{
// Find the value in node->values
auto it = std::find_if(std::begin(node->values), std::end(node->values),
[this, &value](const auto& rhs){ return mEqual(value, rhs); });
assert(it != std::end(node->values) && "Trying to remove a value that is not present in the node");
// Swap with the last element and pop back
*it = std::move(node->values.back());
node->values.pop_back();
}
bool tryMerge(Node* node)
{
assert(node != nullptr);
assert(!isLeaf(node) && "Only interior nodes can be merged");
auto nbValues = node->values.size();
for (const auto& child : node->children)
{
if (!isLeaf(child.get()))
return false;
nbValues += child->values.size();
}
if (nbValues <= Threshold)
{
node->values.reserve(nbValues);
// Merge the values of all the children
for (const auto& child : node->children)
{
for (const auto& value : child->values)
node->values.push_back(value);
}
// Remove the children
for (auto& child : node->children)
child.reset();
return true;
}
else
return false;
}
void query(Node* node, const Box<Float>& box, const Box<Float>& queryBox, std::vector<T>& values) const
{
assert(node != nullptr);
assert(queryBox.intersects(box));
for (const auto& value : node->values)
{
if (queryBox.intersects(mGetBox(value)))
values.push_back(value);
}
if (!isLeaf(node))
{
for (auto i = std::size_t(0); i < node->children.size(); ++i)
{
auto childBox = computeBox(box, static_cast<int>(i));
if (queryBox.intersects(childBox))
query(node->children[i].get(), childBox, queryBox, values);
}
}
}
void findAllIntersections(Node* node, std::vector<std::pair<T, T>>& intersections) const
{
// Find intersections between values stored in this node
// Make sure to not report the same intersection twice
for (auto i = std::size_t(0); i < node->values.size(); ++i)
{
for (auto j = std::size_t(0); j < i; ++j)
{
if (mGetBox(node->values[i]).intersects(mGetBox(node->values[j])))
intersections.emplace_back(node->values[i], node->values[j]);
}
}
if (!isLeaf(node))
{
// Values in this node can intersect values in descendants
for (const auto& child : node->children)
{
for (const auto& value : node->values)
findIntersectionsInDescendants(child.get(), value, intersections);
}
// Find intersections in children
for (const auto& child : node->children)
findAllIntersections(child.get(), intersections);
}
}
void findIntersectionsInDescendants(Node* node, const T& value, std::vector<std::pair<T, T>>& intersections) const
{
// Test against the values stored in this node
for (const auto& other : node->values)
{
if (mGetBox(value).intersects(mGetBox(other)))
intersections.emplace_back(value, other);
}
// Test against values stored into descendants of this node
if (!isLeaf(node))
{
for (const auto& child : node->children)
findIntersectionsInDescendants(child.get(), value, intersections);
}
}
};
}
|