summary refs log tree commit diff stats
path: root/WitnessRandomizer/WitnessRandomizer.cpp
blob: dacb8feaa1473b664718b230b1e29c51ea699863 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
 * FEATURES:
 * SWAP_TARGETS should still require the full panel sequence (and have ways to prevent softlocks?)
 ** Think about: Jungle
 ** Hard: Monastery
 ** Do: Challenge
 * Randomize audio logs
 * Swap sounds in jungle (along with panels) -- maybe impossible
 * Make orange 7 (all of oranges?) hard. Like big = hard.
*/
#include "Memory.h"
#include "WitnessRandomizer.h"
#include "Panels.h"
#include <string>
#include <iostream>
#include <numeric>

template <class T>
int find(const std::vector<T> &data, T search, int startIndex = 0) {
	for (int i=startIndex ; i<data.size(); i++) {
		if (data[i] == search) return i;
	}
	return -1;
}

int main(int argc, char** argv)
{
	WitnessRandomizer randomizer = WitnessRandomizer();

	if (argc == 2) {
		srand(atoi(argv[1])); // Seed with RNG from command line
	} else {
		int seed = rand() % (1 << 16);
		std::cout << "Selected seed: " << seed << std::endl;
		srand(seed);
	}

	// Content swaps -- must happen before squarePanels
	randomizer.Randomize(upDownPanels, SWAP_LINES | SWAP_STYLE);
	randomizer.Randomize(leftForwardRightPanels, SWAP_LINES);

	randomizer.Randomize(squarePanels, SWAP_LINES | SWAP_STYLE);

	// Frame swaps -- must happen after squarePanels
	randomizer.Randomize(burnablePanels, SWAP_LINES | SWAP_STYLE);

	// Target swaps, can happen whenever
	randomizer.Randomize(lasers, SWAP_TARGETS);
	// Read the target of keep front laser, and write it to keep back laser.
	std::vector<int> keepFrontLaserTarget = randomizer.ReadPanelData<int>(0x0360E, TARGET, 1);
	randomizer.WritePanelData<int>(0x03317, TARGET, keepFrontLaserTarget);

	std::vector<int> randomOrder = std::vector(junglePanels.size(), 0);
	std::iota(randomOrder.begin(), randomOrder.end(), 0);
	// Randomize Waves 2-7
	// Waves 1 cannot be randomized, since no other panel can start on
	randomizer.RandomizeRange(randomOrder, SWAP_NONE, 1, 7);
	// Randomize Pitches 1-6 onto themselves
	randomizer.RandomizeRange(randomOrder, SWAP_NONE, 7, 13);
	randomizer.ReassignTargets(junglePanels, randomOrder);

	randomOrder = std::vector(bunkerPanels.size(), 0);
	std::iota(randomOrder.begin(), randomOrder.end(), 0);
	// Randomize Tutorial 2-Advanced Tutorial 4 + Glass 1
	// Tutorial 1 cannot be randomized, since no other panel can start on
	// Glass 1 will become door + glass 1, due to the targetting system
	randomizer.RandomizeRange(randomOrder, SWAP_NONE, 1, 10);
	// Randomize Glass 1-3 into everything after the door
	int glassDoorIndex = find(randomOrder, 9) + 1;
	randomizer.RandomizeRange(randomOrder, SWAP_NONE, glassDoorIndex, 12);
	randomizer.ReassignTargets(bunkerPanels, randomOrder);

	randomOrder = std::vector(shadowsPanels.size(), 0);
	std::iota(randomOrder.begin(), randomOrder.end(), 0);
	randomizer.RandomizeRange(randomOrder, SWAP_NONE, 0, 8); // Tutorial
	randomizer.RandomizeRange(randomOrder, SWAP_NONE, 8, 16); // Avoid
	randomizer.RandomizeRange(randomOrder, SWAP_NONE, 16, 21); // Follow
	randomizer.ReassignTargets(shadowsPanels, randomOrder);

	// Turn off original starting panel
	randomizer.WritePanelData<float>(shadowsPanels[0], POWER, {0.0f, 0.0f});
	// Turn on new starting panel
	randomizer.WritePanelData<float>(shadowsPanels[randomOrder[0]], POWER, {1.0f, 1.0f});
}

WitnessRandomizer::WitnessRandomizer()
{
	// Turn off desert flood final
	WritePanelData<float>(0x18076, POWER, {0.0f, 0.0f});
	// Change desert floating target to desert flood final
	WritePanelData<int>(0x17ECA, TARGET, {0x18077});

	// Distance-gate shadows laser to prevent sniping through the bars
	WritePanelData<float>(0x19650, MAX_BROADCAST_DISTANCE, {2.5f});
	// Change the shadows tutorial cable to only activate avoid
	WritePanelData<int>(0x319A8, 0xD8, {0});
	// Change shadows avoid 8 to power shadows follow
	WritePanelData<int>(0x1972F, TARGET, {0x1C34C});

	// Disable tutorial cursor speed modifications
	WritePanelData<float>(0x00295, CURSOR_SPEED_SCALE, {1.0});
	WritePanelData<float>(0x0C373, CURSOR_SPEED_SCALE, {1.0});
	WritePanelData<float>(0x00293, CURSOR_SPEED_SCALE, {1.0});
	WritePanelData<float>(0x002C2, CURSOR_SPEED_SCALE, {1.0});
}

void WitnessRandomizer::Randomize(std::vector<int> &panels, int flags) {
	return RandomizeRange(panels, flags, 0, panels.size());
}

// Range is [start, end)
void WitnessRandomizer::RandomizeRange(std::vector<int> &panels, int flags, size_t startIndex, size_t endIndex) {
	if (panels.size() == 0) return;
	if (startIndex >= endIndex) return;
	if (endIndex >= panels.size()) endIndex = panels.size();
	for (size_t i = endIndex-1; i > startIndex+1; i--) {
		size_t target = rand() % (i - startIndex) + startIndex;
		if (i != target) {
			// std::cout << "Swapping panels " << std::hex << panels[i] << " and " << std::hex << panels[target] << std::endl;
			SwapPanels(panels[i], panels[target], flags);
			std::swap(panels[i], panels[target]); // Panel indices in the array
		}
	}
}

void WitnessRandomizer::SwapPanels(int panel1, int panel2, int flags) {
	std::map<int, int> offsets;

	if (flags & SWAP_TARGETS) {
		offsets[TARGET] = sizeof(int);
	}
	if (flags & SWAP_STYLE) {
		offsets[STYLE_FLAGS] = sizeof(int);
	}
	if (flags & SWAP_LINES) {
		offsets[PATH_COLOR] = 16;
		offsets[REFLECTION_PATH_COLOR] = 16;
		offsets[DOT_COLOR] = 16;
		offsets[ACTIVE_COLOR] = 16;
		offsets[BACKGROUND_REGION_COLOR] = 16;
		offsets[SUCCESS_COLOR_A] = 16;
		offsets[SUCCESS_COLOR_B] = 16;
		offsets[STROBE_COLOR_A] = 16;
		offsets[STROBE_COLOR_B] = 16;
		offsets[ERROR_COLOR] = 16;
		offsets[PATTERN_POINT_COLOR] = 16;
		offsets[PATTERN_POINT_COLOR_A] = 16;
		offsets[PATTERN_POINT_COLOR_B] = 16;
		offsets[SYMBOL_A] = 16;
		offsets[SYMBOL_B] = 16;
		offsets[SYMBOL_C] = 16;
		offsets[SYMBOL_D] = 16;
		offsets[SYMBOL_E] = 16;
		offsets[PUSH_SYMBOL_COLORS] = sizeof(int);
		offsets[OUTER_BACKGROUND] = 16;
		offsets[OUTER_BACKGROUND_MODE] = sizeof(int);
		offsets[TRACED_EDGES] = 16;
		offsets[AUDIO_PREFIX] = sizeof(void*);
//		offsets[IS_CYLINDER] = sizeof(int);
//		offsets[CYLINDER_Z0] = sizeof(float);
//		offsets[CYLINDER_Z1] = sizeof(float);
//		offsets[CYLINDER_RADIUS] = sizeof(float);
		offsets[SPECULAR_ADD] = sizeof(float);
		offsets[SPECULAR_POWER] = sizeof(int);
		offsets[PATH_WIDTH_SCALE] = sizeof(float);
		offsets[STARTPOINT_SCALE] = sizeof(float);
		offsets[NUM_DOTS] = sizeof(int);
		offsets[NUM_CONNECTIONS] = sizeof(int);
		offsets[DOT_POSITIONS] = sizeof(void*);
		offsets[DOT_FLAGS] = sizeof(void*);
		offsets[DOT_CONNECTION_A] = sizeof(void*);
		offsets[DOT_CONNECTION_B] = sizeof(void*);
		offsets[DECORATIONS] = sizeof(void*);
		offsets[DECORATION_FLAGS] = sizeof(void*);
		offsets[DECORATION_COLORS] = sizeof(void*);
		offsets[NUM_DECORATIONS] = sizeof(int);
		offsets[REFLECTION_DATA] = sizeof(void*);
		offsets[GRID_SIZE_X] = sizeof(int);
		offsets[GRID_SIZE_Y] = sizeof(int);
		offsets[SEQUENCE_LEN] = sizeof(int);
		offsets[SEQUENCE] = sizeof(void*);
		offsets[DOT_SEQUENCE_LEN] = sizeof(int);
		offsets[DOT_SEQUENCE] = sizeof(void*);
		offsets[DOT_SEQUENCE_LEN_REFLECTION] = sizeof(int);
		offsets[DOT_SEQUENCE_REFLECTION] = sizeof(void*);
		offsets[NUM_COLORED_REGIONS] = sizeof(int);
		offsets[COLORED_REGIONS] = sizeof(void*);
		offsets[PANEL_TARGET] = sizeof(void*);
		offsets[SPECULAR_TEXTURE] = sizeof(void*);
	}

	for (auto const& [offset, size] : offsets) {
		std::vector<byte> panel1data = ReadPanelData<byte>(panel1, offset, size);
		std::vector<byte> panel2data = ReadPanelData<byte>(panel2, offset, size);
		WritePanelData<byte>(panel2, offset, panel1data);
		WritePanelData<byte>(panel1, offset, panel2data);
	}
}

void WitnessRandomizer::ReassignTargets(const std::vector<int>& panels, const std::vector<int>& order) {
	std::vector<int> targetToActivatePanel = {panels[0] + 1};
	for (int panel : panels) {
		int target = ReadPanelData<int>(panel, TARGET, 1)[0];
		targetToActivatePanel.push_back(target);
	}

	for (int i=0; i<order.size() - 1; i++) {
		// order[i+1] is the target panel
		// order[i+1] - 1 is the (real) panel before the target panel
		// targets[order[i+1] - 1] is the (real) target which will activate the target panel
		int panelTarget = targetToActivatePanel[order[i+1]];
		WritePanelData<int>(panels[order[i]], TARGET, {panelTarget});
	}
}