1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
#include "Randomizer2Core.h"
#include "Puzzle.h"
#include "Random.h"
#include <string>
#include <iostream>
#include <cassert>
std::vector<Pos> Randomizer2Core::CutEdges(const Puzzle& p, size_t numEdges) {
return CutEdgesInternal(p, 0, p.width, 0, p.height, numEdges);
}
std::vector<Pos> Randomizer2Core::CutInsideEdges(const Puzzle& p, size_t numEdges) {
return CutEdgesInternal(p, 1, p.width-1, 1, p.height-1, numEdges);
}
std::vector<Pos> Randomizer2Core::CutSymmetricalEdgePairs(const Puzzle& p, size_t numEdges) {
Puzzle copy = p;
assert(p.symmetry != Puzzle::Symmetry::NONE);
if (p.symmetry == Puzzle::Symmetry::X) {
// Prevent cuts from landing on the midline
for (int y=0; y<p.height; y++) {
copy.grid[p.width/2][y].gap = Cell::Gap::FULL;
}
return CutEdgesInternal(copy, 0, (p.width-1)/2, 0, p.height, numEdges);
}
assert(false);
return {};
}
std::vector<Pos> Randomizer2Core::CutEdgesInternal(const Puzzle& p, int xMin, int xMax, int yMin, int yMax, size_t numEdges) {
std::vector<Pos> edges;
for (int x=xMin; x<xMax; x++) {
for (int y=yMin; y<yMax; y++) {
if (x%2 == y%2) continue;
if (p.grid[x][y].gap != Cell::Gap::NONE) continue;
if (p.grid[x][y].start) continue;
if (p.grid[x][y].end != Cell::Dir::NONE) continue;
// If the puzzle already has a sequence, don't cut along it.
bool inSequence = false;
for (Pos pos : p.sequence) inSequence |= (pos.x == x && pos.y == y);
if (inSequence) continue;
edges.emplace_back(x, y);
}
}
assert(numEdges <= edges.size());
auto [colorGrid, numColors] = CreateColorGrid(p);
assert(numEdges <= numColors);
std::vector<Pos> cutEdges;
for (int i=0; i<numEdges; i++) {
for (int j=0; j<edges.size(); j++) {
int edge = Random::RandInt(0, static_cast<int>(edges.size() - 1));
Pos pos = edges[edge];
edges.erase(edges.begin() + edge);
int color1 = 0;
int color2 = 0;
if (pos.x%2 == 0 && pos.y%2 == 1) { // Vertical
if (pos.x > 0) color1 = colorGrid[pos.x-1][pos.y];
else color1 = 1;
if (pos.x < p.width - 1) color2 = colorGrid[pos.x+1][pos.y];
else color2 = 1;
} else { // Horizontal
assert(pos.x%2 == 1 && pos.y%2 == 0);
if (pos.y > 0) color1 = colorGrid[pos.x][pos.y-1];
else color1 = 1;
if (pos.y < p.height - 1) color2 = colorGrid[pos.x][pos.y+1];
else color2 = 1;
}
// Enforce color1 < color2
if (color1 > color2) std::swap(color1, color2);
// Colors mismatch, valid cut
if (color1 != color2) {
// @Performance... have a lookup table instead?
for (int x=0; x<p.width; x++) {
for (int y=0; y<p.height; y++) {
if (colorGrid[x][y] == color2) colorGrid[x][y] = color1;
}
}
cutEdges.emplace_back(pos);
break;
}
}
}
assert(cutEdges.size() == numEdges);
return cutEdges;
}
#ifndef NDEBUG
#include <Windows.h>
#endif
void Randomizer2Core::DebugColorGrid(const std::vector<std::vector<int>>& colorGrid) {
#ifndef NDEBUG
static std::string colors = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
for (int y=0; y<colorGrid[0].size(); y++) {
std::string row;
for (int x=0; x<colorGrid.size(); x++) {
row += colors[colorGrid[x][y]];
}
row += "\n";
OutputDebugStringA(row.c_str());
}
OutputDebugStringA("\n");
#endif
}
void Randomizer2Core::FloodFill(const Puzzle& p, std::vector<std::vector<int>>& colorGrid, int color, int x, int y) {
if (!p.SafeCell(x, y)) return;
if (colorGrid[x][y] != 0) return; // Already processed.
colorGrid[x][y] = color;
FloodFill(p, colorGrid, color, x, y+1);
FloodFill(p, colorGrid, color, x, y-1);
FloodFill(p, colorGrid, color, x+1, y);
FloodFill(p, colorGrid, color, x-1, y);
}
void Randomizer2Core::FloodFillOutside(const Puzzle& p, std::vector<std::vector<int>>& colorGrid, int x, int y) {
if (!p.SafeCell(x, y)) return;
if (colorGrid[x][y] != 0) return; // Already processed.
if (x%2 != y%2 && p.grid[x][y].gap == Cell::Gap::NONE) return; // Only flood-fill through gaps
colorGrid[x][y] = 1; // Outside color
FloodFillOutside(p, colorGrid, x, y+1);
FloodFillOutside(p, colorGrid, x, y-1);
FloodFillOutside(p, colorGrid, x+1, y);
FloodFillOutside(p, colorGrid, x-1, y);
}
// Color key:
// 0 (default): Uncolored
// 1: Outside color and separator color
// 2+: Flood-filled region color
std::tuple<std::vector<std::vector<int>>, int> Randomizer2Core::CreateColorGrid(const Puzzle& p) {
std::vector<std::vector<int>> colorGrid;
colorGrid.resize(p.width);
for (int x=0; x<p.width; x++) {
colorGrid[x].resize(p.height);
for (int y=0; y<p.height; y++) {
if (x%2 == 1 && y%2 == 1) continue;
// Mark all unbroken edges and intersections as 'do not color'
if (p.grid[x][y].gap == Cell::Gap::NONE) colorGrid[x][y] = 1;
}
}
// @Future: Skip this loop if pillar = true;
for (int y=0; y<p.height; y++) {
FloodFillOutside(p, colorGrid, 0, y);
FloodFillOutside(p, colorGrid, p.width - 1, y);
}
for (int x=0; x<p.width; x++) {
FloodFillOutside(p, colorGrid, x, 0);
FloodFillOutside(p, colorGrid, x, p.height - 1);
}
int color = 1;
for (int x=0; x<p.width; x++) {
for (int y=0; y<p.height; y++) {
if (colorGrid[x][y] != 0) continue; // No dead colors
color++;
FloodFill(p, colorGrid, color, x, y);
}
}
return {colorGrid, color};
}
|