1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
/*
* TODO: Split out main() logic into another file, and move into separate functions for easier testing. Then write tests.
* BUGS:
* Shipwreck vault fails, possibly because of dot_reflection? Sometimes?
* Treehouse pivots *should* work, but I need to not copy style_flags.
This seems to cause crashes when pivots appear elsewhere in the world.
* Some panels are impossible casually: (idc, I think)
** Town Stars, Invisible dots
* Something is wrong with jungle re: softlocks
* FEATURES:
* SWAP_TARGETS should still require the full panel sequence (and have ways to prevent softlocks?)
** Think about: Jungle
** Hard: Monastery
** Do: Challenge
* Randomize audio logs
* Swap sounds in jungle (along with panels) -- maybe impossible
* Make orange 7 (all of oranges?) hard. Like big = hard.
* Start the game if it isn't running?
* UI for the randomizer :(
* Increase odds of mountain oranges garbage on other panels?
*/
#include "Memory.h"
#include "Randomizer.h"
#include "Panels.h"
#include <string>
#include <iostream>
#include <numeric>
#include <chrono>
template <class T>
size_t find(const std::vector<T> &data, T search, size_t startIndex = 0) {
for (size_t i=startIndex ; i<data.size(); i++) {
if (data[i] == search) return i;
}
std::cout << "Couldn't find " << search << " in data!" << std::endl;
exit(-1);
}
void Randomizer::Randomize(int seed)
{
// Content swaps -- must happen before squarePanels
Randomize(tallUpDownPanels, SWAP_LINES | SWAP_STYLE);
Randomize(upDownPanels, SWAP_LINES | SWAP_STYLE);
Randomize(leftForwardRightPanels, SWAP_LINES);
Randomize(squarePanels, SWAP_LINES | SWAP_STYLE);
// Frame swaps -- must happen after squarePanels
Randomize(burnablePanels, SWAP_LINES | SWAP_STYLE);
// Target swaps, can happen whenever
Randomize(lasers, SWAP_TARGETS);
// Read the target of keep front laser, and write it to keep back laser.
std::vector<int> keepFrontLaserTarget = ReadPanelData<int>(0x0360E, TARGET, 1);
WritePanelData<int>(0x03317, TARGET, keepFrontLaserTarget);
std::vector<int> randomOrder;
/* Jungle
randomOrder = std::vector(junglePanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
// Randomize Waves 2-7
// Waves 1 cannot be randomized, since no other panel can start on
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 1, 7);
// Randomize Pitches 1-6 onto themselves
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 7, 13);
randomizer.ReassignTargets(junglePanels, randomOrder);
*/
/* Bunker */
randomOrder = std::vector(bunkerPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
// Randomize Tutorial 2-Advanced Tutorial 4 + Glass 1
// Tutorial 1 cannot be randomized, since no other panel can start on
// Glass 1 will become door + glass 1, due to the targetting system
RandomizeRange(randomOrder, SWAP_NONE, 1, 10);
// Randomize Glass 1-3 into everything after the door
const size_t glassDoorIndex = find(randomOrder, 9) + 1;
RandomizeRange(randomOrder, SWAP_NONE, glassDoorIndex, 12);
ReassignTargets(bunkerPanels, randomOrder);
/* Shadows */
randomOrder = std::vector(shadowsPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
RandomizeRange(randomOrder, SWAP_NONE, 0, 8); // Tutorial
RandomizeRange(randomOrder, SWAP_NONE, 8, 16); // Avoid
RandomizeRange(randomOrder, SWAP_NONE, 16, 21); // Follow
ReassignTargets(shadowsPanels, randomOrder);
// Turn off original starting panel
WritePanelData<float>(shadowsPanels[0], POWER, {0.0f, 0.0f});
// Turn on new starting panel
WritePanelData<float>(shadowsPanels[randomOrder[0]], POWER, {1.0f, 1.0f});
/* Monastery
randomOrder = std::vector(monasteryPanels.size(), 0);
std::iota(randomOrder.begin(), randomOrder.end(), 0);
randomizer.RandomizeRange(randomOrder, SWAP_NONE, 2, 6); // outer 2 & 3, inner 1
// Once outer 3 and right door are solved, inner 2-4 are accessible
int innerPanelsIndex = max(find(randomOrder, 2), find(randomOrder, 4));
randomizer.RandomizeRange(randomOrder, SWAP_NONE, innerPanelsIndex, 9); // Inner 2-4
randomizer.ReassignTargets(monasteryPanels, randomOrder);
*/
}
Randomizer::Randomizer()
{
// Turn off desert surface 8
WritePanelData<float>(0x09F94, POWER, {0.0, 0.0});
// Turn off desert flood final
WritePanelData<float>(0x18076, POWER, {0.0, 0.0});
// Change desert floating target to desert flood final
WritePanelData<int>(0x17ECA, TARGET, {0x18077});
// Distance-gate shadows laser to prevent sniping through the bars
WritePanelData<float>(0x19650, MAX_BROADCAST_DISTANCE, {2.5});
// Change the shadows tutorial cable to only activate avoid
WritePanelData<int>(0x319A8, CABLE_TARGET_2, {0});
// Change shadows avoid 8 to power shadows follow
WritePanelData<int>(0x1972F, TARGET, {0x1C34C});
// Distance-gate swamp snipe 1 to prevent RNG swamp snipe
WritePanelData<float>(0x17C05, MAX_BROADCAST_DISTANCE, {5.0});
// Disable tutorial cursor speed modifications (not working?)
WritePanelData<float>(0x00295, CURSOR_SPEED_SCALE, {1.0});
WritePanelData<float>(0x0C373, CURSOR_SPEED_SCALE, {1.0});
WritePanelData<float>(0x00293, CURSOR_SPEED_SCALE, {1.0});
WritePanelData<float>(0x002C2, CURSOR_SPEED_SCALE, {1.0});
}
void Randomizer::Randomize(std::vector<int>& panels, int flags) {
return RandomizeRange(panels, flags, 0, panels.size());
}
// Range is [start, end)
void Randomizer::RandomizeRange(std::vector<int> &panels, int flags, size_t startIndex, size_t endIndex) {
if (panels.size() == 0) return;
if (startIndex >= endIndex) return;
if (endIndex >= panels.size()) endIndex = panels.size();
for (size_t i = endIndex-1; i > startIndex+1; i--) {
const size_t target = rand() % (i - startIndex) + startIndex;
if (i != target) {
// std::cout << "Swapping panels " << std::hex << panels[i] << " and " << std::hex << panels[target] << std::endl;
SwapPanels(panels[i], panels[target], flags);
std::swap(panels[i], panels[target]); // Panel indices in the array
}
}
}
void Randomizer::SwapPanels(int panel1, int panel2, int flags) {
std::map<int, int> offsets;
if (flags & SWAP_TARGETS) {
offsets[TARGET] = sizeof(int);
}
if (flags & SWAP_STYLE) {
offsets[STYLE_FLAGS] = sizeof(int);
}
if (flags & SWAP_LINES) {
offsets[PATH_COLOR] = 16;
offsets[REFLECTION_PATH_COLOR] = 16;
offsets[DOT_COLOR] = 16;
offsets[ACTIVE_COLOR] = 16;
offsets[BACKGROUND_REGION_COLOR] = 16;
offsets[SUCCESS_COLOR_A] = 16;
offsets[SUCCESS_COLOR_B] = 16;
offsets[STROBE_COLOR_A] = 16;
offsets[STROBE_COLOR_B] = 16;
offsets[ERROR_COLOR] = 16;
offsets[PATTERN_POINT_COLOR] = 16;
offsets[PATTERN_POINT_COLOR_A] = 16;
offsets[PATTERN_POINT_COLOR_B] = 16;
offsets[SYMBOL_A] = 16;
offsets[SYMBOL_B] = 16;
offsets[SYMBOL_C] = 16;
offsets[SYMBOL_D] = 16;
offsets[SYMBOL_E] = 16;
offsets[PUSH_SYMBOL_COLORS] = sizeof(int);
offsets[OUTER_BACKGROUND] = 16;
offsets[OUTER_BACKGROUND_MODE] = sizeof(int);
offsets[TRACED_EDGES] = 16;
offsets[AUDIO_PREFIX] = sizeof(void*);
// offsets[IS_CYLINDER] = sizeof(int);
// offsets[CYLINDER_Z0] = sizeof(float);
// offsets[CYLINDER_Z1] = sizeof(float);
// offsets[CYLINDER_RADIUS] = sizeof(float);
offsets[SPECULAR_ADD] = sizeof(float);
offsets[SPECULAR_POWER] = sizeof(int);
offsets[PATH_WIDTH_SCALE] = sizeof(float);
offsets[STARTPOINT_SCALE] = sizeof(float);
offsets[NUM_DOTS] = sizeof(int);
offsets[NUM_CONNECTIONS] = sizeof(int);
offsets[DOT_POSITIONS] = sizeof(void*);
offsets[DOT_FLAGS] = sizeof(void*);
offsets[DOT_CONNECTION_A] = sizeof(void*);
offsets[DOT_CONNECTION_B] = sizeof(void*);
offsets[DECORATIONS] = sizeof(void*);
offsets[DECORATION_FLAGS] = sizeof(void*);
offsets[DECORATION_COLORS] = sizeof(void*);
offsets[NUM_DECORATIONS] = sizeof(int);
offsets[REFLECTION_DATA] = sizeof(void*);
offsets[GRID_SIZE_X] = sizeof(int);
offsets[GRID_SIZE_Y] = sizeof(int);
offsets[SEQUENCE_LEN] = sizeof(int);
offsets[SEQUENCE] = sizeof(void*);
offsets[DOT_SEQUENCE_LEN] = sizeof(int);
offsets[DOT_SEQUENCE] = sizeof(void*);
offsets[DOT_SEQUENCE_LEN_REFLECTION] = sizeof(int);
offsets[DOT_SEQUENCE_REFLECTION] = sizeof(void*);
offsets[NUM_COLORED_REGIONS] = sizeof(int);
offsets[COLORED_REGIONS] = sizeof(void*);
offsets[PANEL_TARGET] = sizeof(void*);
offsets[SPECULAR_TEXTURE] = sizeof(void*);
}
for (auto const& [offset, size] : offsets) {
std::vector<byte> panel1data = ReadPanelData<byte>(panel1, offset, size);
std::vector<byte> panel2data = ReadPanelData<byte>(panel2, offset, size);
WritePanelData<byte>(panel2, offset, panel1data);
WritePanelData<byte>(panel1, offset, panel2data);
}
}
void Randomizer::ReassignTargets(const std::vector<int>& panels, const std::vector<int>& order) {
// This list is offset by 1, so the target of the Nth panel is in position N (aka the N+1th element)
// The first panel may not have a wire to power it, so we use the panel ID itself.
std::vector<int> targetToActivatePanel = {panels[0] + 1};
for (const int panel : panels) {
int target = ReadPanelData<int>(panel, TARGET, 1)[0];
targetToActivatePanel.push_back(target);
}
for (size_t i=0; i<order.size() - 1; i++) {
// Set the target of order[i] to order[i+1], using the "real" target as determined above.
const int panelTarget = targetToActivatePanel[order[i+1]];
WritePanelData<int>(panels[order[i]], TARGET, {panelTarget});
}
}
|