about summary refs log tree commit diff stats
path: root/Source/PuzzleSerializer.cpp
blob: 3dffde172e79c72606664ce170fe0c16514bfbd7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
#include "PuzzleSerializer.h"
#include "Memory.h"
#include <cassert>

#pragma warning (disable:26451)
#pragma warning (disable:26812)

PuzzleSerializer::PuzzleSerializer(const std::shared_ptr<Memory>& memory) : _memory(memory) {}

Puzzle PuzzleSerializer::ReadPuzzle(int id) {
    Puzzle p;
    try {
        int width = _memory->ReadEntityData<int>(id, GRID_SIZE_X, 1)[0];
        int height = _memory->ReadEntityData<int>(id, GRID_SIZE_Y, 1)[0];
        if (width == 0) width = height;
        if (height == 0) height = width;
        if (width < 0 || height < 0) return Puzzle(); // @Error: Grid size should be always positive? Looks like the starting panels break this rule, though.

        _numGridLocations = width * height; // Highest location which represents a gridded intersection
        _numIntersections = _memory->ReadEntityData<int>(id, NUM_DOTS, 1)[0];
        _intersectionFlags = _memory->ReadArray<int>(id, DOT_FLAGS, _numIntersections);
        int numConnections = _memory->ReadEntityData<int>(id, NUM_CONNECTIONS, 1)[0];
        _connectionsA = _memory->ReadArray<int>(id, DOT_CONNECTION_A, numConnections);
        _connectionsB = _memory->ReadArray<int>(id, DOT_CONNECTION_B, numConnections);
        _intersectionLocations = _memory->ReadArray<float>(id, DOT_POSITIONS, _numIntersections*2);

        p.NewGrid(width - 1, height - 1);
        ReadIntersections(p);
        ReadExtras(p);
        ReadDecorations(p, id);
        ReadSequence(p, id);
        ReadSymmetry(p, id);
    } catch (MemoryException exc) {
        MemoryException::HandleException(exc);
    }
    return p;
}

void PuzzleSerializer::WritePuzzle(const Puzzle& p, int id) {
    try {
        _intersectionFlags.clear();
        _connectionsA.clear();
        _connectionsB.clear();
        _intersectionLocations.clear();
        _extraLocations.clear();

        MIN = 0.1f;
        MAX = 0.9f;
        WIDTH_INTERVAL = (MAX - MIN) / (p.width/2);
        HEIGHT_INTERVAL = (MAX - MIN) / (p.height/2);
        GAP_SIZE = min(WIDTH_INTERVAL, HEIGHT_INTERVAL) / 2;
        // @Improvement: This will make grid cells square... but how do I keep the puzzle centered? Maybe save extra metadata?
        // INTERVAL = (MAX - MIN) / (max(p.width, p.height) / 2);
        // GAP_SIZE = INTERVAL / 2;
    
        WriteIntersections(p);
        WriteEndpoints(p);
        WriteDots(p);
        WriteGaps(p);
        WriteDecorations(p, id);
        WriteSequence(p, id);
        WriteSymmetry(p, id);

#ifndef NDEBUG
        int maxDots = _memory->ReadEntityData<int>(id, NUM_DOTS, 1)[0];
        assert(_intersectionFlags.size() <= maxDots);
        assert(_intersectionLocations.size() <= maxDots*2);

        int maxConnections = _memory->ReadEntityData<int>(id, NUM_CONNECTIONS, 1)[0];
        assert(_connectionsA.size() <= maxConnections);
        assert(_connectionsB.size() <= maxConnections);
#endif

        _memory->WriteEntityData<int>(id, GRID_SIZE_X, {(p.width + 1)/2});
        _memory->WriteEntityData<int>(id, GRID_SIZE_Y, {(p.height + 1)/2});
        _memory->WriteEntityData<int>(id, NUM_DOTS, {static_cast<int>(_intersectionFlags.size())});
        _memory->WriteArray<float>(id, DOT_POSITIONS, _intersectionLocations);
        _memory->WriteArray<int>(id, DOT_FLAGS, _intersectionFlags);
        _memory->WriteEntityData<int>(id, NUM_CONNECTIONS, {static_cast<int>(_connectionsA.size())});
        _memory->WriteArray<int>(id, DOT_CONNECTION_A, _connectionsA);
        _memory->WriteArray<int>(id, DOT_CONNECTION_B, _connectionsB);
        _memory->WriteEntityData<int>(id, NEEDS_REDRAW, {1});
    } catch (MemoryException exc) {
        MemoryException::HandleException(exc);
    }
}

void PuzzleSerializer::ReadIntersections(Puzzle& p) {
    // @Cleanup: Just change the defaults, instead of this?
    // Mark every edge as a full gap
    for (int x=0; x<p.width; x++) {
        for (int y=0; y<p.height; y++) {
            if (x%2 == y%2) continue;
            p.grid[x][y].gap = Cell::Gap::FULL;
        }
    }

    // Iterate all connections (that are in the grid) to see which edges are connected.
    for (int i=0; i<_connectionsA.size(); i++) {
        int locationA = _connectionsA[i];
        int locationB = _connectionsB[i];
        if (locationA > locationB) std::swap(locationA, locationB); // A < B
        if (locationB >= _numGridLocations) continue; // Connection goes to a non-grid location

        float x1 = _intersectionLocations[2*locationA];
        float y1 = _intersectionLocations[2*locationA+1];
        float x2 = _intersectionLocations[2*locationB];
        float y2 = _intersectionLocations[2*locationB+1];
        auto [x, y] = loc_to_xy(p, locationA);

             if (x1 < x2) x++;
        else if (x1 > x2) x--;
        else if (y1 < y2) y--;
        else if (y1 > y2) y++;
        p.grid[x][y].gap = Cell::Gap::NONE;
    }
}

void PuzzleSerializer::ReadExtras(Puzzle& p) {
    // This iterates left-right, bottom-top
    int i = 0;
    for (; i < _numGridLocations; i++) {
        int flags = _intersectionFlags[i];
        auto [x, y] = loc_to_xy(p, i);
        if (flags & Flags::IS_STARTPOINT) {
            p.grid[x][y].start = true;
        }
        p.grid[x][y].dot = FlagsToDot(flags);
        if (flags & Flags::HAS_NO_CONN) {
            p.grid[x][y].gap = Cell::Gap::FULL;
        }
    }

    // Maps "extra gap intersection location" -> grid location. Note that there should be two locations for each position.
    std::unordered_map<int, Pos> gapLocations;

    // Iterate the remaining intersections (endpoints, dots, gaps)
    for (; i < _numIntersections; i++) {
        int location = FindConnection(i);
        if (location == -1) continue; // @Error: Unable to find connection point
        // (x1, y1) location of this intersection
        // (x2, y2) location of the connected intersection
        float x1 = _intersectionLocations[2*i];
        float y1 = _intersectionLocations[2*i+1];
        float x2 = _intersectionLocations[2*location];
        float y2 = _intersectionLocations[2*location+1];
        auto [x, y] = loc_to_xy(p, location);

        if (_intersectionFlags[i] & Flags::IS_ENDPOINT) {
            // Our x coordinate is less than the target's
                 if (x1 < x2) p.grid[x][y].end = Cell::Dir::LEFT;
            else if (x1 > x2) p.grid[x][y].end = Cell::Dir::RIGHT;
            // Note that Y coordinates are reversed: 0.0 (bottom) 1.0 (top)
            else if (y1 < y2) p.grid[x][y].end = Cell::Dir::DOWN;
            else if (y1 > y2) p.grid[x][y].end = Cell::Dir::UP;
        } else if (_intersectionFlags[i] & Flags::HAS_DOT) {
                 if (x1 < x2) x--;
            else if (x1 > x2) x++;
            else if (y1 < y2) y++;
            else if (y1 > y2) y--;
            p.grid[x][y].dot = FlagsToDot(_intersectionFlags[i]);
        } else if (_intersectionFlags[i] & Flags::HAS_ONE_CONN) {
                 if (x1 < x2) x--;
            else if (x1 > x2) x++;
            else if (y1 < y2) y++;
            else if (y1 > y2) y--;
            p.grid[x][y].gap = Cell::Gap::BREAK;
            gapLocations[i] = Pos{x, y};
        }
    }

    // Fixups for asymmetrical gaps
    for (int i=0; i<_connectionsA.size(); i++) {
        // Only consider connections to non-grid locations
        int locationA = _connectionsA[i];
        if (locationA < _numGridLocations) continue;
        int locationB = _connectionsB[i];
        if (locationB < _numGridLocations) continue;

        Pos pos = gapLocations[locationA];
        if (pos == gapLocations[locationB]) {
            p.grid[pos.x][pos.y].gap = Cell::Gap::NONE;
        }
    }
}

void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) {
    int numDecorations = _memory->ReadEntityData<int>(id, NUM_DECORATIONS, 1)[0];
    std::vector<int> decorations = _memory->ReadArray<int>(id, DECORATIONS, numDecorations);
    if (numDecorations > 0) p.hasDecorations = true;

    for (int i=0; i<numDecorations; i++) {
        auto [x, y] = dloc_to_xy(p, i);
        auto d = std::make_shared<Decoration>();
        p.grid[x][y].decoration = d;
        d->type = static_cast<Type>(decorations[i] & 0xFF00);
        switch(d->type) {
            case Type::Poly:
            case Type::RPoly:
            case Type::Ylop:
                d->polyshape = decorations[i] & 0xFFFF0000;
                break;
            case Type::Triangle:
                d->count = decorations[i] & 0x000F0000;
                break;
        }
        d->color = static_cast<Color>(decorations[i] & 0xF);
    }
}

void PuzzleSerializer::ReadSequence(Puzzle& p, int id) {
    int sequenceLength = _memory->ReadEntityData<int>(id, SEQUENCE_LEN, 1)[0];
    std::vector<int> sequence = _memory->ReadArray<int>(id, SEQUENCE, sequenceLength);

    for (int location : sequence) {
        p.sequence.emplace_back(loc_to_xy(p, location));
    }
}

void PuzzleSerializer::ReadSymmetry(Puzzle& p, int id) {
    int hasSymmetry = _memory->ReadEntityData<int>(id, REFLECTION_DATA, 1)[0];
    if (hasSymmetry == 0) return; // Array is null, no puzzle symmetry

    std::vector<int> reflectionData = _memory->ReadArray<int>(id, REFLECTION_DATA, _numIntersections);
    Pos p1 = loc_to_xy(p, reflectionData[0]);
    Pos p2 = loc_to_xy(p, reflectionData[reflectionData[0]]);
    if (p1.x != p2.x) {
        p.symmetry = Puzzle::Symmetry::X;
    } else if (p1.y != p2.y) {
        p.symmetry = Puzzle::Symmetry::Y;
    } else {
        p.symmetry = Puzzle::Symmetry::XY;
    }
}

void PuzzleSerializer::WriteIntersections(const Puzzle& p) {
    // @Cleanup: If I write directly to locations, then I can simplify this gross loop iterator.
    // Use _numGridIntersections computation: = (p.width / 2 + 1) * (p.height / 2 + 1);
    // Grided intersections
    for (int y=p.height-1; y>=0; y-=2) {
        for (int x=0; x<p.width; x+=2) {
            int flags = 0;
            if (p.grid[x][y].start) {
                flags |= Flags::IS_STARTPOINT;
            }
            switch (p.grid[x][y].dot) {
                case Cell::Dot::BLACK:
                    flags |= Flags::HAS_DOT;
                    break;
                case Cell::Dot::BLUE:
                    flags |= Flags::HAS_DOT | Flags::DOT_IS_BLUE;
                    break;
                case Cell::Dot::YELLOW:
                    flags |= Flags::HAS_DOT | Flags::DOT_IS_ORANGE;
                    break;
                case Cell::Dot::INVISIBLE:
                    flags |= Flags::HAS_DOT | Flags::DOT_IS_INVISIBLE;
                    break;
            }

            int numConnections = 0;
            if (p.grid[x][y].end != Cell::Dir::NONE) numConnections++;
            // Create connections for this intersection for top/left only.
            // Top connection
            if (y > 0 && p.grid[x][y-1].gap != Cell::Gap::FULL) {
                _connectionsA.push_back(xy_to_loc(p, x, y-2));
                _connectionsB.push_back(xy_to_loc(p, x, y));
                flags |= Flags::HAS_VERTI_CONN;
                numConnections++;
            }
            // Bottom connection
            if (y < p.height - 1 && p.grid[x][y+1].gap != Cell::Gap::FULL) {
                flags |= Flags::HAS_VERTI_CONN;
                numConnections++;
            }
            // Left connection
            if (x > 0 && p.grid[x-1][y].gap != Cell::Gap::FULL) {
                _connectionsA.push_back(xy_to_loc(p, x-2, y));
                _connectionsB.push_back(xy_to_loc(p, x, y));
                flags |= Flags::HAS_HORIZ_CONN;
                numConnections++;
            }
            // Right connection
            if (x < p.width - 1 && p.grid[x+1][y].gap != Cell::Gap::FULL) {
                flags |= Flags::HAS_HORIZ_CONN;
                numConnections++;
            }
            if (numConnections == 0) flags |= HAS_NO_CONN;
            if (numConnections == 1) flags |= HAS_ONE_CONN;

            auto [xPos, yPos] = xy_to_pos(p, x, y);
            AddIntersection(p, x, y, xPos, yPos, flags);
        }
    }
}

void PuzzleSerializer::WriteEndpoints(const Puzzle& p) {
    for (int x=0; x<p.width; x++) {
        for (int y=0; y<p.height; y++) {
            if (p.grid[x][y].end == Cell::Dir::NONE) continue;
            _connectionsA.push_back(xy_to_loc(p, x, y));
            _connectionsB.push_back(static_cast<int>(_intersectionFlags.size()));

            auto [xPos, yPos] = xy_to_pos(p, x, y);
            switch (p.grid[x][y].end) {
                case Cell::Dir::LEFT:
                    xPos -= .05f;
                    break;
                case Cell::Dir::RIGHT:
                    xPos += .05f;
                    break;
                case Cell::Dir::UP:
                    yPos += .05f; // Y position goes from 0 (bottom) to 1 (top), so this is reversed.
                    break;
                case Cell::Dir::DOWN:
                    yPos -= .05f;
                    break;
            }
            AddIntersection(p, x, y, xPos, yPos, Flags::IS_ENDPOINT);
        }
    }
}

void PuzzleSerializer::WriteDots(const Puzzle& p) {
    for (int x=0; x<p.width; x++) {
        for (int y=0; y<p.height; y++) {
            if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled.
            if (p.grid[x][y].dot == Cell::Dot::NONE) continue;

            // We need to introduce a new segment which contains this dot. Break the existing segment, and add one.
            int connectionLocation = -1;
            for (int i=0; i<_connectionsA.size(); i++) {
                auto [x1, y1] = loc_to_xy(p, _connectionsA[i]);
                auto [x2, y2] = loc_to_xy(p, _connectionsB[i]);
                if ((x1+1 == x && x2-1 == x && y1 == y && y2 == y) ||
                    (y1+1 == y && y2-1 == y && x1 == x && x2 == x)) {
                    connectionLocation = i;
                    break;
                }
            }
            if (connectionLocation == -1) continue; // @Error

            // @Assume: B > A for connections. To remove, add the horiz/verti check, see gaps.
            int other_connection = _connectionsB[connectionLocation];
            _connectionsB[connectionLocation] = static_cast<int>(_intersectionFlags.size());
            _connectionsA.push_back(other_connection);
            _connectionsB.push_back(static_cast<int>(_intersectionFlags.size()));

            int flags = Flags::HAS_DOT;
            switch (p.grid[x][y].dot) {
                case Cell::Dot::BLACK:
                    break;
                case Cell::Dot::BLUE:
                    flags |= DOT_IS_BLUE;
                    break;
                case Cell::Dot::YELLOW:
                    flags |= DOT_IS_ORANGE;
                    break;
                case Cell::Dot::INVISIBLE:
                    flags |= DOT_IS_INVISIBLE;
                    break;
            }

            auto [xPos, yPos] = xy_to_pos(p, x, y);
            AddIntersection(p, x, y, xPos, yPos, flags);
        }
    }
}

void PuzzleSerializer::WriteGaps(const Puzzle& p) {
    for (int x=0; x<p.width; x++) {
        for (int y=0; y<p.height; y++) {
            if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled.

            bool shouldWriteGap = false;
            if (p.grid[x][y].gap == Cell::Gap::BREAK) {
                shouldWriteGap = true;
            } else if (p.symmetry != Puzzle::Symmetry::NONE) {
                Pos sym = p.GetSymmetricalPos(x, y);
                // Write symmetrical gaps, but also add an extra connection so they don't look like a gap.
                if (p.grid[sym.x][sym.y].gap == Cell::Gap::BREAK) {
                    shouldWriteGap = true;
                }
            }
            if (!shouldWriteGap) continue;

            // We need to introduce a new segment which contains this dot. Break the existing segment, and add one.
            int connectionLocation = -1;
            for (int i=0; i<_connectionsA.size(); i++) {
                auto [x1, y1] = loc_to_xy(p, _connectionsA[i]);
                auto [x2, y2] = loc_to_xy(p, _connectionsB[i]);
                if ((x1+1 == x && x2-1 == x && y1 == y && y2 == y) ||
                    (y1+1 == y && y2-1 == y && x1 == x && x2 == x)) {
                    connectionLocation = i;
                    break;
                }
            }
            if (connectionLocation == -1) continue; // @Error

            int gap1Location, gap2Location;
            auto [xPos, yPos] = xy_to_pos(p, x, y);
            // Reminder: Y goes from 0.0 (bottom) to 1.0 (top)
            if (x%2 == 0) { // Vertical gap
                gap1Location = static_cast<int>(_intersectionFlags.size());
                _connectionsA[connectionLocation] = xy_to_loc(p, x, y-1);
                _connectionsB[connectionLocation] = gap1Location;
                AddIntersection(p, x, y, xPos, yPos + GAP_SIZE / 2, Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN);

                gap2Location = static_cast<int>(_intersectionFlags.size());
                _connectionsA.push_back(xy_to_loc(p, x, y+1));
                _connectionsB.push_back(gap2Location);
                AddIntersection(p, x, y, xPos, yPos - GAP_SIZE / 2, Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN);
            } else if (y%2 == 0) { // Horizontal gap
                gap1Location = static_cast<int>(_intersectionFlags.size());
                _connectionsA[connectionLocation] = xy_to_loc(p, x-1, y);
                _connectionsB[connectionLocation] = gap1Location;
                AddIntersection(p, x, y, xPos - GAP_SIZE / 2, yPos, Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN);

                gap2Location = static_cast<int>(_intersectionFlags.size());
                _connectionsA.push_back(xy_to_loc(p, x+1, y));
                _connectionsB.push_back(gap2Location);
                AddIntersection(p, x, y, xPos + GAP_SIZE / 2, yPos, Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN);
            }
            if (p.symmetry != Puzzle::Symmetry::NONE) {
                if (p.grid[x][y].gap == Cell::Gap::NONE) {
                    // A gap was asked to be introduced strictly for interaction reasons, but it shouldn't look like a gap.
                    // Add a connection between two halves of the gap to cover it graphically.
                    _connectionsA.push_back(gap1Location);
                    _connectionsB.push_back(gap2Location);
                }
            }
        }
    }
}

void PuzzleSerializer::WriteDecorations(const Puzzle& p, int id) {
    if (!p.hasDecorations) return;

    std::vector<int> decorations;
    for (int y=p.height-2; y>0; y-=2) {
        for (int x=1; x<p.width-1; x+=2) {
            auto d = p.grid[x][y].decoration;
            if (d) {
                decorations.push_back(d->color | d->type | d->count | d->polyshape);
            } else {
                decorations.push_back(0);
            }
        }
    }

#ifndef NDEBUG
    int maxDecorations = _memory->ReadEntityData<int>(id, NUM_DECORATIONS, 1)[0];
    assert(decorations.size() < maxDecorations);
#endif
    _memory->WriteEntityData<int>(id, NUM_DECORATIONS, {static_cast<int>(decorations.size())});
    _memory->WriteArray<int>(id, DECORATIONS, decorations);
}

void PuzzleSerializer::WriteSequence(const Puzzle& p, int id) {
    if (p.sequence.size() == 0) return;

    std::vector<int> sequence;
    for (Pos pos : p.sequence) {
        // Only include intersections, the game does not treat segments as real objects
        if (pos.x%2 == 0 && pos.y%2 == 0) {
            sequence.emplace_back(xy_to_loc(p, pos.x, pos.y));
        }
    }

    // TODO: Orphaned code?
    // Pos endpoint = p.sequence[p.sequence.size() - 1];
    // int location = extra_xy_to_loc(p, endpoint.x, endpoint.y);

    _memory->WriteEntityData<int>(id, SEQUENCE_LEN, {static_cast<int>(sequence.size())});
    _memory->WriteNewArray<int>(id, SEQUENCE, sequence);
}

void PuzzleSerializer::WriteSymmetry(const Puzzle& p, int id) {
    if (p.symmetry == Puzzle::Symmetry::NONE) {
        _memory->WriteEntityData<int>(id, REFLECTION_DATA, {0});
        return;
    }

    std::vector<int> reflectionData;
    reflectionData.resize(_intersectionFlags.size());

    // Wow, what a horrible solution. But hey, whatever, if it works.
    for (int x=0; x<p.width; x+=2) {
        for (int y=0; y<p.height; y+=2) {
            Pos sym = p.GetSymmetricalPos(x, y);
            int location = xy_to_loc(p, x, y);
            int symLocation = xy_to_loc(p, sym.x, sym.y);
            reflectionData[location] = symLocation;
            reflectionData[symLocation] = location;
            if (p.grid[x][y].end != Cell::Dir::NONE) {
                location = extra_xy_to_loc(p, x, y);
                Pos sym = p.GetSymmetricalPos(x, y);
                symLocation = extra_xy_to_loc(p, sym.x, sym.y);
                reflectionData[location] = symLocation; // @Assume the symmetrical endpoint will write the other pair
            }
        }
    }

    for (int x=0; x<p.width; x++) {
        for (int y=0; y<p.height; y++) {
            if (x%2 == y%2) continue;
            if (p.grid[x][y].gap != Cell::Gap::BREAK) continue;

            Pos sym = p.GetSymmetricalPos(x, y);
            int location = extra_xy_to_loc(p, x, y);
            int symLocation = extra_xy_to_loc(p, sym.x, sym.y);
            // Each gap results in two intersections, @Assume they're written consecutively

            if ((x%2 != 0 && p.symmetry & Puzzle::Symmetry::X) || 
                (y%2 != 0 && p.symmetry & Puzzle::Symmetry::Y)) {
                // Write data inverted, because it's being reflected
                reflectionData[location] = symLocation-1;
                reflectionData[location-1] = symLocation;
                reflectionData[symLocation] = location-1;
                reflectionData[symLocation-1] = location;
            } else { // Write data normally
                reflectionData[location] = symLocation;
                reflectionData[location-1] = symLocation-1;
                reflectionData[symLocation] = location;
                reflectionData[symLocation-1] = location-1;
            }
        }
    }

    _memory->WriteArray<int>(id, REFLECTION_DATA, reflectionData);
}

std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) const {
    int height2 = (p.height - 1) / 2;
    int width2 = (p.width + 1) / 2;

    int x = 2 * (location % width2);
    int y = 2 * (height2 - location / width2);
    return {x, y};
}

int PuzzleSerializer::xy_to_loc(const Puzzle& p, int x, int y) const {
    assert(x%2 == 0);
    assert(y%2 == 0);
    int height2 = (p.height - 1) / 2;
    int width2 = (p.width + 1) / 2;

    int rowsFromBottom = height2 - y/2;
    return rowsFromBottom * width2 + x/2;
}

int PuzzleSerializer::extra_xy_to_loc(const Puzzle& p, int x, int y) const {
    auto search = _extraLocations.find(x * p.height + y);
    if (search == _extraLocations.end()) return -1; // @Error
    return search->second;
}

std::tuple<int, int> PuzzleSerializer::dloc_to_xy(const Puzzle& p, int location) const {
    int height2 = (p.height - 3) / 2;
    int width2 = (p.width - 1) / 2;

    int x = 2 * (location % width2) + 1;
    int y = 2 * (height2 - location / width2) + 1;
    return {x, y};
}

int PuzzleSerializer::xy_to_dloc(const Puzzle& p, int x, int y) const {
    int height2 = (p.height - 3) / 2;
    int width2 = (p.width - 1) / 2;

    int rowsFromBottom = height2 - (y - 1)/2;
    return rowsFromBottom * width2 + (x - 1)/2;
}

std::tuple<float, float> PuzzleSerializer::xy_to_pos(const Puzzle& p, int x, int y) const {
    return {
        MIN + (x/2.0f) * WIDTH_INTERVAL,
        MAX - (y/2.0f) * HEIGHT_INTERVAL
    };
}

Cell::Dot PuzzleSerializer::FlagsToDot(int flags) const {
    if (!(flags & Flags::HAS_DOT)) return Cell::Dot::NONE;
    if (flags & Flags::DOT_IS_BLUE) return Cell::Dot::BLUE;
    else if (flags & Flags::DOT_IS_ORANGE) return Cell::Dot::YELLOW;
    else if (flags & Flags::DOT_IS_INVISIBLE) return Cell::Dot::INVISIBLE;
    else return Cell::Dot::BLACK;
}

int PuzzleSerializer::FindConnection(int location) const {
    for (int j=0; j<_connectionsA.size(); j++) {
        if (_connectionsA[j] == location) return _connectionsB[j];
        if (_connectionsB[j] == location) return _connectionsA[j];
    }
    return -1;
}

void PuzzleSerializer::AddIntersection(const Puzzle& p, int x, int y, float xPos, float yPos, int flags) {
    _extraLocations[x * p.height + y] = static_cast<int>(_intersectionFlags.size());
    _intersectionLocations.push_back(xPos);
    _intersectionLocations.push_back(yPos);
    _intersectionFlags.push_back(flags);
}