summary refs log tree commit diff stats
path: root/Source/Panel.cpp
blob: 5465bef275dc034cf5bcff363f4def346d337311 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include "Panel.h"
#include "Random.h"
#include <sstream>

template <class T>
int find(const std::vector<T> &data, T search, size_t startIndex = 0) {
	for (size_t i=startIndex ; i<data.size(); i++) {
		if (data[i] == search) return i;
	}
	return -1;
}

Panel::Panel(int id) {
	_width = 2 * _memory.ReadPanelData<int>(id, GRID_SIZE_X, 1)[0] - 1;
	_height = 2 * _memory.ReadPanelData<int>(id, GRID_SIZE_Y, 1)[0] - 1;
	_grid.resize(_width);
	for (auto& row : _grid) row.resize(_height);

	ReadIntersections(id);
	ReadDecorations(id);
}

void Panel::Write(int id) {
	WriteIntersections(id);
	WriteDecorations(id);
	
	_memory.WritePanelData<int>(id, GRID_SIZE_X, {(_width + 1)/2});
	_memory.WritePanelData<int>(id, GRID_SIZE_Y, {(_height + 1)/2});
}

nlohmann::json Panel::Serialize() {
	nlohmann::json puzzle = {
		{"pillar", false},
		{"dots", nlohmann::json::array()},
		{"gaps", nlohmann::json::array()},
		{"name", "Imported from The Witness :O"},
		{"regionCache", nlohmann::json::object()},
	};
	if (_grid.empty()) return {};
	puzzle["grid"] = nlohmann::json::array();
	
	for (int x=0; x<_width; x++) {
		for (int y=0; y<_height; y++) {
			if (x%2 == 1 && y%2 == 1) {
				puzzle["grid"][x][y] = Decoration::to_json(_grid[x][y]);
			} else {
				puzzle["grid"][x][y] = false;
			}
		}
	}

	puzzle["startPoints"] = nlohmann::json::array();
	for (auto [x, y] : _startpoints) {
		nlohmann::json startPoint = {{"x", x}, {"y", y}};
		puzzle["startPoints"].emplace_back(startPoint);
	}
	puzzle["endPoints"] = nlohmann::json::array();
	for (Endpoint endpoint : _endpoints) {
		puzzle["endPoints"].emplace_back(endpoint.to_json());
	}

	std::string out = puzzle.dump();
	return puzzle;
}

void Panel::Random() {
/*
	for (auto& row : _decorations) {
		for (auto& cell : row) {
			cell.SetShape(cell.GetShape() & 0xFFFFFFF0);
			cell.SetShape(cell.GetShape() | Random::RandInt(1, 10));
		}
	}
*/
}

void Panel::ReadDecorations(int id) {
	int numDecorations = _memory.ReadPanelData<int>(id, NUM_DECORATIONS, 1)[0];
	std::vector<int> decorations = _memory.ReadArray<int>(id, DECORATIONS, numDecorations);

	int x = 1;
	int y = _height - 2;
	for (int decoration : decorations) {
		_grid[x][y] = decoration;
		x += 2;
		if (x > _width - 1) {
			x = 1;
			y -= 2;
		}
	}
}

void Panel::WriteDecorations(int id) {
	std::vector<int> decorations;
	for (int y=_height - 2; y>0; y-=2) {
		for (int x=1; x<_width - 1; x+=2) {
			decorations.push_back(_grid[x][y]);
		}
	}

	_memory.WritePanelData<int>(id, NUM_DECORATIONS, {static_cast<int>(decorations.size())});
	_memory.WriteArray<int>(id, DECORATIONS, decorations);
}

void Panel::ReadIntersections(int id) {
	int numIntersections = _memory.ReadPanelData<int>(id, NUM_DOTS, 1)[0];
	std::vector<int> intersectionFlags = _memory.ReadArray<int>(id, DOT_FLAGS, numIntersections);

	int x = 0;
	int y = _height - 1;
	int i = 0;
	for (;; i++) {
		if (intersectionFlags[i] & IntersectionFlags::IS_STARTPOINT) {
			_startpoints.push_back({x, y});
		}
		x += 2;
		if (x > _width) {
			x = 0;
			y -= 2;
		}
		if (y < 0) break;
	}

	std::pair<std::vector<int>, std::vector<int>> connections;
	int numConnections = _memory.ReadPanelData<int>(id, NUM_CONNECTIONS, 1)[0];
	connections.first = _memory.ReadArray<int>(id, DOT_CONNECTION_A, numConnections);
	connections.second = _memory.ReadArray<int>(id, DOT_CONNECTION_B, numConnections);
	std::vector<float> intersections = _memory.ReadArray<float>(id, DOT_POSITIONS, numIntersections*2);

	// Iterate the remaining intersections (either endpoints or gaps)
	for (; i < numIntersections; i++) {
		if (intersectionFlags[i] & IntersectionFlags::IS_ENDPOINT) {
			for (int j=0; j<numConnections; j++) {
				int location = 0;
				if (connections.first[j] == i) location = connections.second[j];
				if (connections.second[j] == i) location = connections.first[j];
				if (location != 0) {
					Endpoint::Direction dir;
					if (intersections[2*i] < intersections[2*location]) { // Our (i) x coordinate is less than the target's (location)
						dir = Endpoint::Direction::LEFT;
					} else if (intersections[2*i] > intersections[2*location]) {
						dir = Endpoint::Direction::RIGHT;
					} else if (intersections[2*i + 1] > intersections[2*location + 1]) { // y coordinate is 0 (bottom) 1 (top), so this check is reversed.
						dir = Endpoint::Direction::UP;
					} else {
						dir = Endpoint::Direction::DOWN;
					}
					int x = 2 * (location % ((_width + 1) / 2));
					int y = (_height - 1) - 2 * (location / ((_width + 1) / 2));
					_endpoints.push_back(Endpoint(x, y, dir));
				}
			}
		}
	}	
}

void Panel::WriteIntersections(int id) {
	std::vector<float> intersections;
	std::vector<int> intersectionFlags;
	std::pair<std::vector<int>, std::vector<int>> connections;

	double min = 0.1;
	double max = 0.9;
	double width_interval = (max - min) / (_width - 1);
	double height_interval = (max - min) / (_height - 1);

	for (int y=0; y<_height; y++) {
		for (int x=0; x<_width; x++) {
			intersections.push_back(min + x * width_interval);
			intersections.push_back(min + y * height_interval);
			int flags = 0;
			if (find(_startpoints, {x, y}) != -1) flags |= IntersectionFlags::IS_STARTPOINT;
			intersectionFlags.push_back(flags);
			if (y > 0) {
				connections.first.push_back(y * _width + x);
				connections.second.push_back((y - 1) * _width + x);
			}
			if (x > 0) {
				connections.first.push_back(y * _width + x);
				connections.second.push_back(y * _width + (x - 1));
			}
		}
	}

	for (Endpoint endpoint : _endpoints) {
		float xPos = min + endpoint.GetX() * width_interval;
		float yPos = min + endpoint.GetY() * height_interval;
		if (endpoint.GetDir()== Endpoint::Direction::LEFT) {
			xPos -= .05f;
		} else if (endpoint.GetDir() == Endpoint::Direction::RIGHT) {
			xPos += .05f;
		} else if (endpoint.GetDir() == Endpoint::Direction::UP) {
			yPos += .05f; // Y position goes from 0 (bottom) to 1 (top), so this is reversed.
		} else if (endpoint.GetDir() == Endpoint::Direction::DOWN) {
			yPos -= .05f;
		}
		intersections.push_back(xPos);
		intersections.push_back(yPos);

		connections.first.push_back(endpoint.GetY() * _width + endpoint.GetX()); // Target to connect to
		connections.second.push_back(intersectionFlags.size()); // This endpoint
		intersectionFlags.push_back(IntersectionFlags::IS_ENDPOINT);
	}

	_memory.WritePanelData<int>(id, NUM_DOTS, {static_cast<int>(intersectionFlags.size())});
	_memory.WriteArray<float>(id, DOT_POSITIONS, intersections);
	_memory.WriteArray<int>(id, DOT_FLAGS, intersectionFlags);
	_memory.WritePanelData<int>(id, NUM_CONNECTIONS, {static_cast<int>(connections.first.size())});
	_memory.WriteArray<int>(id, DOT_CONNECTION_A, connections.first);
	_memory.WriteArray<int>(id, DOT_CONNECTION_B, connections.second);
	_memory.WritePanelData<int>(id, NEEDS_REDRAW, {1});
}