summary refs log tree commit diff stats
path: root/Source/Panel.cpp
blob: b6f04034fb8a342ada969069918ab9e3295a973f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#include "Panel.h"
#include "Memory.h"

#pragma warning (disable:26451)
#pragma warning (disable:26812)

PuzzleSerializer::PuzzleSerializer(const std::shared_ptr<Memory>& memory) : _memory(memory) {}

Puzzle PuzzleSerializer::ReadPuzzle(int id) {
    Puzzle p;
    p.width = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_X, 1)[0] - 1;
    p.height = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_Y, 1)[0] - 1;
    p.grid.resize(p.width);
	for (auto& row : p.grid) row.resize(p.height);

	ReadIntersections(p, id);
	ReadDecorations(p, id);

    return p;
}

void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) {
	int numIntersections = _memory->ReadPanelData<int>(id, NUM_DOTS, 1)[0];
	std::vector<int> intersectionFlags = _memory->ReadArray<int>(id, DOT_FLAGS, numIntersections);

	int i = 0;
	for (;; i++) {
		auto [x, y] = loc_to_xy(p, i);
		if (y < 0) break;
		if (intersectionFlags[i] & Flags::IS_STARTPOINT) {
            p.grid[x][y].start = true;
		}
        p.grid[x][y].dot = FlagsToDot(intersectionFlags[i]);
	}

	int numConnections = _memory->ReadPanelData<int>(id, NUM_CONNECTIONS, 1)[0];
	std::vector<int> connections_a = _memory->ReadArray<int>(id, DOT_CONNECTION_A, numConnections);
	std::vector<int> connections_b = _memory->ReadArray<int>(id, DOT_CONNECTION_B, numConnections);
	std::vector<float> intersections = _memory->ReadArray<float>(id, DOT_POSITIONS, numIntersections*2);

	// Iterate the remaining intersections (endpoints, dots, gaps)
	for (; i < numIntersections; i++) {
		if (intersectionFlags[i] & Flags::IS_ENDPOINT) {
			for (int j=0; j<numConnections; j++) {
				int location = 0;
				if (connections_a[j] == i) location = connections_b[j];
				if (connections_b[j] == i) location = connections_a[j];
				if (location != 0) {
					auto [x, y] = loc_to_xy(p, location);
					if (intersections[2*i] < intersections[2*location]) { // Our (i) x coordinate is less than the target's (location)
                        p.grid[x][y].end = Cell::Dir::LEFT;
					} else if (intersections[2*i] > intersections[2*location]) {
                        p.grid[x][y].end = Cell::Dir::RIGHT;
					} else if (intersections[2*i + 1] > intersections[2*location + 1]) { // y coordinate is 0 (bottom) 1 (top), so this check is reversed.
                        p.grid[x][y].end = Cell::Dir::UP;
					} else {
                        p.grid[x][y].end = Cell::Dir::DOWN;
					}
					break;
				}
			}
		} else if (intersectionFlags[i] & Flags::HAS_DOT) {
			for (int j=0; j<numConnections; j++) {
				int location = 0;
				if (connections_a[j] == i) location = connections_b[j];
				if (connections_b[j] == i) location = connections_a[j];
				if (location != 0) {
					auto [x, y] = loc_to_xy(p, location);
					float x1 = intersections[2*i];
					float y1 = intersections[2*i+1];
					float x2 = intersections[2*location];
					float y2 = intersections[2*location+1];
					if (intersections[2*i] < intersections[2*location]) {
						// Our (i) x coordinate is less than the target's (location), so we are to the left
						x--;
					} else if (intersections[2*i] > intersections[2*location]) { // To the right
						x++;
					} else if (intersections[2*i + 1] > intersections[2*location + 1]) {
						// y coordinate is 0 (bottom) 1 (top), so this check is reversed. We are above the target (location)
						y--;
					} else { // Beleow the target
						y++;
					}

                    p.grid[x][y].dot = FlagsToDot(intersectionFlags[i]);
					break;
				}
			}
		}
	}	
}

void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) {
	int numDecorations = _memory->ReadPanelData<int>(id, NUM_DECORATIONS, 1)[0];
	std::vector<int> decorations = _memory->ReadArray<int>(id, DECORATIONS, numDecorations);
    if (numDecorations != decorations.size()) return; // @Error!

	for (int i=0; i<numDecorations; i++) {
		auto [x, y] = dloc_to_xy(p, i);
        auto d = std::make_shared<Decoration>();
        p.grid[x][y].decoration = d;
        d->type = static_cast<Shape>(decorations[i] & 0xFF00);
        switch(d->type) {
            case Shape::Poly:
            case Shape::RPoly:
            case Shape::Ylop:
                d->polyshape = decorations[i] & 0xFFFF0000;
                break;
            case Shape::Triangle:
                d->count = decorations[i] & 0x000F0000;
                break;
        }
        d->color = static_cast<Color>(decorations[i] & 0xF);
	}
}

void PuzzleSerializer::WritePuzzle(const Puzzle& p, int id) {
	_memory->WritePanelData<int>(id, GRID_SIZE_X, {(p.width + 1)/2});
	_memory->WritePanelData<int>(id, GRID_SIZE_Y, {(p.height + 1)/2});

	WriteIntersections(p, id);
	WriteDecorations(p, id);

	_memory->WritePanelData<int>(id, NEEDS_REDRAW, {1});
}

void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) {
	std::vector<float> intersections;
	std::vector<int> intersectionFlags;
	std::vector<int> connections_a;
	std::vector<int> connections_b;

	float min = 0.1f;
	float max = 0.9f;
	float width_interval = (max - min) / (p.width/2);
	float height_interval = (max - min) / (p.height/2);

	// @Cleanup: If I write directly to locations, then I can remove this gross loop iterator.
	for (int y=p.height-1; y>=0; y-=2) {
		for (int x=0; x<p.width; x+=2) {
			intersections.push_back(static_cast<float>(min + (x/2) * width_interval));
			intersections.push_back(static_cast<float>(max - (y/2) * height_interval));
			int flags = 0;
            if (p.grid[x][y].start) {
                flags |= Flags::IS_STARTPOINT;
            }
			intersectionFlags.push_back(flags);

			// Create connections for this intersection -- always write low -> high
			if (y > 0) {
				connections_a.push_back(xy_to_loc(p, x, y-2));
				connections_b.push_back(xy_to_loc(p, x, y));
			}
			if (x > 0) {
				connections_a.push_back(xy_to_loc(p, x-2, y));
				connections_b.push_back(xy_to_loc(p, x, y));
			}
		}
	}

    for (int x=0; x<p.width; x++) {
        for (int y=0; y<p.height; y++) {
            if (p.grid[x][y].end == Cell::Dir::NONE) continue;
            connections_a.push_back(xy_to_loc(p, x, y)); // Target to connect to
		    connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint

		    float xPos = min + (x/2) * width_interval;
		    float yPos = max - (y/2) * height_interval;
            switch (p.grid[x][y].end) {
                case Cell::Dir::LEFT:
			        xPos -= .05f;
                    break;
                case Cell::Dir::RIGHT:
			        xPos += .05f;
                    break;
                case Cell::Dir::UP:
			        yPos += .05f; // Y position goes from 0 (bottom) to 1 (top), so this is reversed.
                    break;
                case Cell::Dir::DOWN:
			        yPos -= .05f;
                    break;
            }
		    intersections.push_back(xPos);
		    intersections.push_back(yPos);
		    intersectionFlags.push_back(Flags::IS_ENDPOINT);
        }
    }

	// Dots
    for (int x=0; x<p.width; x++) {
        for (int y=0; y<p.height; y++) {
			if (p.grid[x][y].dot == Cell::Dot::NONE) continue;
			if (x%2 == 1 && y%2 == 1) continue;

            int flags = Flags::HAS_DOT;
            switch (p.grid[x][y].dot) {
                case Cell::Dot::BLACK:
                    break;
                case Cell::Dot::BLUE:
                    flags |= DOT_IS_BLUE;
                    break;
                case Cell::Dot::YELLOW:
                    flags |= DOT_IS_ORANGE;
                    break;
                case Cell::Dot::INVISIBLE:
                    flags |= DOT_IS_INVISIBLE;
                    break;
            }

            // Dot is already a point the grid, just overwrite the flags
			if (x%2 == 0 && y%2 == 0) {
				intersectionFlags[xy_to_loc(p, x, y)] |= flags;
				continue;
			}

            // Else, we need to introduce a new segment
			// Locate the segment we're breaking
			for (int i=0; i<connections_a.size(); i++) {
				auto [x1, y1] = loc_to_xy(p, connections_a[i]);
				auto [x2, y2] = loc_to_xy(p, connections_b[i]);
				if ((x1+1 == x && x2-1 == x && y1 == y && y2 == y) ||
					(y1+1 == y && y2-1 == y && x1 == x && x2 == x)) {
					int other_connection = connections_b[i];
					connections_b[i] = static_cast<int>(intersectionFlags.size()); // This endpoint
					
					connections_a.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint
					connections_b.push_back(other_connection);
					break;
				}
			}
			// Add this dot to the end
			float xPos = min + (x/2.0f) * width_interval;
			float yPos = max - (y/2.0f) * height_interval;
			intersections.push_back(xPos);
			intersections.push_back(yPos);
            intersectionFlags.push_back(flags);
		}
	}

	_memory->WritePanelData<int>(id, NUM_DOTS, {static_cast<int>(intersectionFlags.size())});
	_memory->WriteArray<float>(id, DOT_POSITIONS, intersections);
	_memory->WriteArray<int>(id, DOT_FLAGS, intersectionFlags);
	_memory->WritePanelData<int>(id, NUM_CONNECTIONS, {static_cast<int>(connections_a.size())});
	_memory->WriteArray<int>(id, DOT_CONNECTION_A, connections_a);
	_memory->WriteArray<int>(id, DOT_CONNECTION_B, connections_b);
}

void PuzzleSerializer::WriteDecorations(const Puzzle& p, int id) {
	std::vector<int> decorations;
	for (int y=p.height-2; y>0; y-=2) {
		for (int x=1; x<p.width-1; x+=2) {
            auto d = p.grid[x][y].decoration;
            if (d) {
                decorations.push_back(d->color | d->type | d->count | d->polyshape);
            } else {
                decorations.push_back(0);
            }
		}
	}

	_memory->WritePanelData<int>(id, NUM_DECORATIONS, {static_cast<int>(decorations.size())});
	_memory->WriteArray<int>(id, DECORATIONS, decorations);
}

std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) {
    int height2 = (p.height - 1) / 2;
    int width2 = (p.width + 1) / 2;

    int x = 2 * (location % width2);
    int y = 2 * (height2 - location / width2);
    return {x, y};
}

int PuzzleSerializer::xy_to_loc(const Puzzle& p, int x, int y) {
    int height2 = (p.height - 1) / 2;
    int width2 = (p.width + 1) / 2;

    int rowsFromBottom = height2 - y/2;
    return rowsFromBottom * width2 + x/2;
}

std::tuple<int, int> PuzzleSerializer::dloc_to_xy(const Puzzle& p, int location) {
    int height2 = (p.height - 3) / 2;
    int width2 = (p.width - 1) / 2;

    int x = 2 * (location % width2) + 1;
    int y = 2 * (height2 - location / width2) + 1;
    return {x, y};
}

int PuzzleSerializer::xy_to_dloc(const Puzzle& p, int x, int y) {
    int height2 = (p.height - 3) / 2;
    int width2 = (p.width - 1) / 2;

    int rowsFromBottom = height2 - (y - 1)/2;
    return rowsFromBottom * width2 + (x - 1)/2;
}

Cell::Dot PuzzleSerializer::FlagsToDot(int flags) {
    if (!(flags & Flags::HAS_DOT)) return Cell::Dot::NONE;
    if (flags & Flags::DOT_IS_BLUE) {
        return Cell::Dot::BLUE;
    } else if (flags & Flags::DOT_IS_ORANGE) {
        return Cell::Dot::YELLOW;
    } else if (flags & Flags::DOT_IS_INVISIBLE) {
        return Cell::Dot::INVISIBLE;
    } else {
        return Cell::Dot::BLACK;
    }
}