summary refs log tree commit diff stats
path: root/Source/Memory.cpp
blob: e240b900badfb7f3e7e71566b45bb95cec6901ad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#include "Memory.h"
#include <psapi.h>
#include <tlhelp32.h>
#include <iostream>
#include <string>
#include <cassert>

#undef PROCESSENTRY32
#undef Process32Next

Memory::Memory(const std::wstring& processName) : _processName(processName) {
}

Memory::~Memory() {
    if (_threadActive) {
        _threadActive = false;
        _thread.join();
    }
    if (_handle != nullptr) {
	    CloseHandle(_handle);
    }
}

void Memory::StartHeartbeat(HWND window, std::chrono::milliseconds beat) {
    if (_threadActive) return;
    _threadActive = true;
    _thread = std::thread([sharedThis = shared_from_this(), window, beat]{
        while (sharedThis->_threadActive) {
            sharedThis->Heartbeat(window);
            std::this_thread::sleep_for(beat);
        }
    });
    _thread.detach();
}

void Memory::Heartbeat(HWND window) {
    if (!_handle && !Initialize()) {
        // Couldn't initialize, definitely not running
        PostMessage(window, WM_COMMAND, HEARTBEAT, (LPARAM)ProcStatus::NotRunning);
        return;
    }

    DWORD exitCode = 0;
    assert(_handle);
    GetExitCodeProcess(_handle, &exitCode);
    if (exitCode != STILL_ACTIVE) {
        // Process has exited, clean up.
        _computedAddresses.clear();
        _handle = NULL;
        PostMessage(window, WM_COMMAND, HEARTBEAT, (LPARAM)ProcStatus::NotRunning);
        return;
    }

#if GLOBALS == 0x5B28C0
    int currentFrame = ReadData<int>({0x5BE3B0}, 1)[0];
#elif GLOBALS == 0x62D0A0
    int currentFrame = ReadData<int>({0x63954C}, 1)[0];
#endif
    int frameDelta = currentFrame - _previousFrame;
    _previousFrame = currentFrame;
    if (frameDelta < 0 && currentFrame < 250) {
        // Some addresses (e.g. Entity Manager) may get re-allocated on newgame.
        _computedAddresses.clear();
        PostMessage(window, WM_COMMAND, HEARTBEAT, (LPARAM)ProcStatus::NewGame);
        return;
    }

    // TODO: Some way to return ProcStatus::Randomized vs ProcStatus::NotRandomized vs ProcStatus::DeRandomized;

    PostMessage(window, WM_COMMAND, HEARTBEAT, (LPARAM)ProcStatus::Running);
}

[[nodiscard]]
bool Memory::Initialize() {
	// First, get the handle of the process
	PROCESSENTRY32W entry;
	entry.dwSize = sizeof(entry);
	HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
	while (Process32NextW(snapshot, &entry)) {
		if (_processName == entry.szExeFile) {
			_handle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, entry.th32ProcessID);
			break;
		}
	}
	if (!_handle) {
		std::cerr << "Couldn't find " << _processName.c_str() << ", is it open?" << std::endl;
        return false;
	}

	// Next, get the process base address
	DWORD numModules;
	std::vector<HMODULE> moduleList(1024);
	EnumProcessModulesEx(_handle, &moduleList[0], static_cast<DWORD>(moduleList.size()), &numModules, 3);

	std::wstring name(64, '\0');
	for (DWORD i = 0; i < numModules / sizeof(HMODULE); i++) {
		int length = GetModuleBaseNameW(_handle, moduleList[i], &name[0], static_cast<DWORD>(name.size()));
		name.resize(length);
		if (_processName == name) {
			_baseAddress = (uintptr_t)moduleList[i];
			break;
		}
	}
	if (_baseAddress == 0) {
        std::cerr << "Couldn't locate base address" << std::endl;
        return false;
	}

    return true;
}

void Memory::AddSigScan(const std::vector<byte>& scanBytes, const std::function<void(int index)>& scanFunc)
{
	_sigScans[scanBytes] = {scanFunc, false};
}

int find(const std::vector<byte> &data, const std::vector<byte>& search, size_t startIndex = 0) {
	for (size_t i=startIndex; i<data.size() - search.size(); i++) {
		bool match = true;
		for (size_t j=0; j<search.size(); j++) {
			if (data[i+j] == search[j]) {
				continue;
			}
			match = false;
			break;
		}
		if (match) return static_cast<int>(i);
	}
	return -1;
}

int Memory::ExecuteSigScans()
{
	for (int i=0; i<0x200000; i+=0x1000) {
		std::vector<byte> data = ReadData<byte>({i}, 0x1100);
		
		for (auto& [scanBytes, sigScan] : _sigScans) {
			if (sigScan.found) continue;
			int index = find(data, scanBytes);
			if (index == -1) continue;
			sigScan.scanFunc(i + index);
			sigScan.found = true;
		}
	}

	int notFound = 0;
	for (auto it : _sigScans) {
		if (it.second.found == false) notFound++;
	}
	return notFound;
}

void Memory::ThrowError() {
	std::wstring message(256, '\0');
    DWORD error = GetLastError();
	int length = FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, error, 1024, &message[0], static_cast<DWORD>(message.size()), nullptr);
	message.resize(length);
#ifndef NDEBUG
    MessageBox(NULL, message.c_str(), L"Please tell darkid about this", MB_OK);
#endif
}

void* Memory::ComputeOffset(std::vector<int> offsets) {
	// Leave off the last offset, since it will be either read/write, and may not be of type uintptr_t.
	int final_offset = offsets.back();
	offsets.pop_back();

	uintptr_t cumulativeAddress = _baseAddress;
	for (const int offset : offsets) {
		cumulativeAddress += offset;

		const auto search = _computedAddresses.find(cumulativeAddress);
        // This is an issue with re-randomization. Always. Just disable it in debug mode!
#ifdef NDEBUG
	    if (search == std::end(_computedAddresses)) {
#endif
			// If the address is not yet computed, then compute it.
			uintptr_t computedAddress = 0;
			if (bool result = !ReadProcessMemory(_handle, reinterpret_cast<LPVOID>(cumulativeAddress), &computedAddress, sizeof(uintptr_t), NULL)) {
				ThrowError();
			}
            if (computedAddress == 0) { // Attempting to dereference a nullptr
                ThrowError();
            }
			_computedAddresses[cumulativeAddress] = computedAddress;
#ifdef NDEBUG
		}
#endif

		cumulativeAddress = _computedAddresses[cumulativeAddress];
	}
	return reinterpret_cast<void*>(cumulativeAddress + final_offset);
}

uintptr_t Memory::Allocate(size_t bytes) {
/*
uintptr_t ForeignProcessMemory::AllocateMemory(size_t Size, DWORD Flags) const {
    if (!ProcessHandle) {
        return 0;
    }
    return (uintptr_t)VirtualAllocEx(ProcessHandle, nullptr, Size, MEM_RESERVE | MEM_COMMIT, Flags);
}

void ForeignProcessMemory::DeallocateMemory(uintptr_t Addr) const {
    if (!ProcessHandle || Addr == 0) {
        return;
    }
    VirtualFreeEx(ProcessHandle, (void*)Addr, 0, MEM_RELEASE);
}
*/
    uintptr_t current = _freeMem;
    _freeMem += bytes;

    if (_freeMem > _freeMemEnd) {
        // If we don't have enough space at our current location, go allocate some more space.
        // Note that the remaining space in our current page is unused. Oh well.
        _freeMem = reinterpret_cast<uintptr_t>(::VirtualAllocEx(_handle, NULL, 0x1000, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE));
        _freeMemEnd = _freeMem + 0x1000;

        current = _freeMem;
        _freeMem += bytes;
        assert(_freeMem <= _freeMemEnd); // Don't allocate data > 0x1000 at a time. Duh.
    }

    return current;
}