/* * BUGS: * Shipwreck vault is solved reversed? -> Not reversed, just "half", you can normally solve orange. Seems to need pattern name. * Tutorial sounds don't always play -> Unsure. Not controlled by pattern name. * Make sure that monastery 1 isn't forced to trigger monastery 2 * Rainbow seems to be not copying background? ** Rainbow 1 <-> Green 3 (the poly one) worked ** Rainbow 2 <-> Treehouse Right Orange 1 didn't * FEATURES: * Start the game if it isn't running? * Stop swapping colors in desert * Randomize audio logs -- Hard, seem to be unloaded some times? * Swap sounds in jungle (along with panels) -- maybe impossible * Make orange 7 (all of oranges?) hard. Like big = hard. (See: HARD_MODE) * Add a setting for "disable wonkavator and hotel", so that 100% runs are possible * Try to stabilize challenge/doors RNG * I probably can randomize targets in bunker UV * Random *rotation* of desert laser redirect? * Add setting to disable laser randomization * Try randomizing default-on for pitches & bunker * Try turning on first half of wire in shadows once tutorial is done * It might be possible to remove the texture on top of rainbow 5 (so that any panel can be placed there) */ #include "Memory.h" #include "Randomizer.h" #include "Panels.h" #include "Random.h" #include #include #include template int find(const std::vector &data, T search, size_t startIndex = 0) { for (size_t i=startIndex ; i(i); } std::cout << "Couldn't find " << search << " in data!" << std::endl; throw std::exception("Couldn't find value in data!"); } bool Randomizer::GameIsRandomized() { int currentFrame = _memory->GetCurrentFrame(); if (currentFrame >= _lastRandomizedFrame) { // Time went forwards, presumably we're still on the same save _lastRandomizedFrame = currentFrame; return true; } // Otherwise, time has gone backwards, so assume new game return false; } void Randomizer::Randomize() { if (GameIsRandomized()) return; // Nice sanity check, but should be unnecessary (since Main checks anyways) _lastRandomizedFrame = _memory->GetCurrentFrame(); // Content swaps -- must happen before squarePanels Randomize(upDownPanels, SWAP::LINES); Randomize(leftForwardRightPanels, SWAP::LINES); Randomize(squarePanels, SWAP::LINES); // Individual area modifications RandomizeTutorial(); RandomizeSymmetry(); RandomizeDesert(); RandomizeQuarry(); RandomizeTreehouse(); RandomizeKeep(); RandomizeShadows(); RandomizeTown(); RandomizeMonastery(); RandomizeBunker(); RandomizeJungle(); RandomizeSwamp(); RandomizeMountain(); // RandomizeChallenge(); // RandomizeAudioLogs(); } void Randomizer::AdjustSpeed() { // Desert Surface Final Control _memory->WritePanelData(0x09F95, OPEN_RATE, {0.04f}); // 4x // Swamp Sliding Bridge _memory->WritePanelData(0x0061A, OPEN_RATE, {0.1f}); // 4x // Mountain 2 Elevator _memory->WritePanelData(0x09EEC, OPEN_RATE, {0.075f}); // 3x } void Randomizer::RandomizeTutorial() { // Disable tutorial cursor speed modifications (not working?) _memory->WritePanelData(0x00295, CURSOR_SPEED_SCALE, {1.0}); _memory->WritePanelData(0x0C373, CURSOR_SPEED_SCALE, {1.0}); _memory->WritePanelData(0x00293, CURSOR_SPEED_SCALE, {1.0}); _memory->WritePanelData(0x002C2, CURSOR_SPEED_SCALE, {1.0}); } void Randomizer::RandomizeSymmetry() { } void Randomizer::RandomizeDesert() { Randomize(desertPanels, SWAP::LINES); // Turn off desert surface 8 _memory->WritePanelData(0x09F94, POWER, {0.0, 0.0}); // Turn off desert flood final _memory->WritePanelData(0x18076, POWER, {0.0, 0.0}); // Change desert floating target to desert flood final _memory->WritePanelData(0x17ECA, TARGET, {0x18077}); } void Randomizer::RandomizeQuarry() { } void Randomizer::RandomizeTreehouse() { // Ensure that whatever pivot panels we have are flagged as "pivotable" int panelFlags = _memory->ReadPanelData(0x17DD1, STYLE_FLAGS, 1)[0]; _memory->WritePanelData(0x17DD1, STYLE_FLAGS, {panelFlags | 0x8000}); panelFlags = _memory->ReadPanelData(0x17CE3, STYLE_FLAGS, 1)[0]; _memory->WritePanelData(0x17CE3, STYLE_FLAGS, {panelFlags | 0x8000}); panelFlags = _memory->ReadPanelData(0x17DB7, STYLE_FLAGS, 1)[0]; _memory->WritePanelData(0x17DB7, STYLE_FLAGS, {panelFlags | 0x8000}); panelFlags = _memory->ReadPanelData(0x17E52, STYLE_FLAGS, 1)[0]; _memory->WritePanelData(0x17E52, STYLE_FLAGS, {panelFlags | 0x8000}); } void Randomizer::RandomizeKeep() { } void Randomizer::RandomizeShadows() { // Distance-gate shadows laser to prevent sniping through the bars _memory->WritePanelData(0x19650, MAX_BROADCAST_DISTANCE, {2.5}); // Change the shadows tutorial cable to only activate avoid _memory->WritePanelData(0x319A8, CABLE_TARGET_2, {0}); // Change shadows avoid 8 to power shadows follow _memory->WritePanelData(0x1972F, TARGET, {0x1C34C}); std::vector randomOrder(shadowsPanels.size(), 0); std::iota(randomOrder.begin(), randomOrder.end(), 0); RandomizeRange(randomOrder, SWAP::NONE, 0, 8); // Tutorial RandomizeRange(randomOrder, SWAP::NONE, 8, 16); // Avoid RandomizeRange(randomOrder, SWAP::NONE, 16, 21); // Follow ReassignTargets(shadowsPanels, randomOrder); // Turn off original starting panel _memory->WritePanelData(shadowsPanels[0], POWER, {0.0f, 0.0f}); // Turn on new starting panel _memory->WritePanelData(shadowsPanels[randomOrder[0]], POWER, {1.0f, 1.0f}); } void Randomizer::RandomizeTown() { } void Randomizer::RandomizeMonastery() { std::vector randomOrder(monasteryPanels.size(), 0); std::iota(randomOrder.begin(), randomOrder.end(), 0); RandomizeRange(randomOrder, SWAP::NONE, 3, 9); // Outer 2 & 3, Inner 1-4 ReassignTargets(monasteryPanels, randomOrder); } void Randomizer::RandomizeBunker() { std::vector randomOrder(bunkerPanels.size(), 0); std::iota(randomOrder.begin(), randomOrder.end(), 0); // Randomize Tutorial 2-Advanced Tutorial 4 + Glass 1 // Tutorial 1 cannot be randomized, since no other panel can start on // Glass 1 will become door + glass 1, due to the targetting system RandomizeRange(randomOrder, SWAP::NONE, 1, 10); // Randomize Glass 1-3 into everything after the door/glass 1 const size_t glass1Index = find(randomOrder, 9); RandomizeRange(randomOrder, SWAP::NONE, glass1Index + 1, 12); ReassignTargets(bunkerPanels, randomOrder); } void Randomizer::RandomizeJungle() { std::vector randomOrder(junglePanels.size(), 0); std::iota(randomOrder.begin(), randomOrder.end(), 0); // Waves 1 cannot be randomized, since no other panel can start on RandomizeRange(randomOrder, SWAP::NONE, 1, 7); // Waves 2-7 RandomizeRange(randomOrder, SWAP::NONE, 8, 13); // Pitches 1-6 ReassignTargets(junglePanels, randomOrder); } void Randomizer::RandomizeSwamp() { // Distance-gate swamp snipe 1 to prevent RNG swamp snipe _memory->WritePanelData(0x17C05, MAX_BROADCAST_DISTANCE, {15.0}); } void Randomizer::RandomizeMountain() { // Randomize lasers & some of mountain Randomize(lasers, SWAP::TARGETS); Randomize(mountainMultipanel, SWAP::LINES); // Randomize final pillars order std::vector targets = {pillars[0] + 1}; for (const int pillar : pillars) { int target = _memory->ReadPanelData(pillar, TARGET, 1)[0]; targets.push_back(target); } targets[5] = pillars[5] + 1; std::vector randomOrder(pillars.size(), 0); std::iota(randomOrder.begin(), randomOrder.end(), 0); RandomizeRange(randomOrder, SWAP::NONE, 0, 4); // Left Pillars 1-4 RandomizeRange(randomOrder, SWAP::NONE, 5, 9); // Right Pillars 1-4 ReassignTargets(pillars, randomOrder, targets); // Turn off original starting panels _memory->WritePanelData(pillars[0], POWER, {0.0f, 0.0f}); _memory->WritePanelData(pillars[5], POWER, {0.0f, 0.0f}); // Turn on new starting panels _memory->WritePanelData(pillars[randomOrder[0]], POWER, {1.0f, 1.0f}); _memory->WritePanelData(pillars[randomOrder[5]], POWER, {1.0f, 1.0f}); // Read the target of keep front laser, and write it to keep back laser. std::vector keepFrontLaserTarget = _memory->ReadPanelData(0x0360E, TARGET, 1); _memory->WritePanelData(0x03317, TARGET, keepFrontLaserTarget); } void Randomizer::RandomizeChallenge() { std::vector randomOrder(challengePanels.size(), 0); std::iota(randomOrder.begin(), randomOrder.end(), 0); RandomizeRange(randomOrder, SWAP::NONE, 1, 9); // Easy maze - Triple 2 std::vector triple1Target = _memory->ReadPanelData(0x00C80, TARGET, 1); _memory->WritePanelData(0x00CA1, TARGET, triple1Target); _memory->WritePanelData(0x00CB9, TARGET, triple1Target); std::vector triple2Target = _memory->ReadPanelData(0x00C22, TARGET, 1); _memory->WritePanelData(0x00C59, TARGET, triple2Target); _memory->WritePanelData(0x00C68, TARGET, triple2Target); ReassignTargets(challengePanels, randomOrder); } void Randomizer::RandomizeAudioLogs() { std::vector randomOrder(audiologs.size(), 0); std::iota(randomOrder.begin(), randomOrder.end(), 0); Randomize(randomOrder, SWAP::NONE); ReassignNames(audiologs, randomOrder); } void Randomizer::Randomize(std::vector& panels, int flags) { return RandomizeRange(panels, flags, 0, panels.size()); } // Range is [start, end) void Randomizer::RandomizeRange(std::vector &panels, int flags, size_t startIndex, size_t endIndex) { if (panels.size() == 0) return; if (startIndex >= endIndex) return; if (endIndex >= panels.size()) endIndex = static_cast(panels.size()); for (size_t i = endIndex-1; i > startIndex; i--) { const int target = Random::RandInt(static_cast(startIndex), static_cast(i)); if (i != target) { // std::cout << "Swapping panels " << std::hex << panels[i] << " and " << std::hex << panels[target] << std::endl; SwapPanels(panels[i], panels[target], flags); std::swap(panels[i], panels[target]); // Panel indices in the array } } } void Randomizer::SwapPanels(int panel1, int panel2, int flags) { std::map offsets; if (flags & SWAP::TARGETS) { offsets[TARGET] = sizeof(int); } if (flags & SWAP::AUDIO_NAMES) { offsets[AUDIO_LOG_NAME] = sizeof(void*); } if (flags & SWAP::LINES) { offsets[PATH_COLOR] = 16; offsets[REFLECTION_PATH_COLOR] = 16; offsets[DOT_COLOR] = 16; offsets[ACTIVE_COLOR] = 16; offsets[BACKGROUND_REGION_COLOR] = 12; // Not copying alpha to preserve transparency. offsets[SUCCESS_COLOR_A] = 16; offsets[SUCCESS_COLOR_B] = 16; offsets[STROBE_COLOR_A] = 16; offsets[STROBE_COLOR_B] = 16; offsets[ERROR_COLOR] = 16; offsets[PATTERN_POINT_COLOR] = 16; offsets[PATTERN_POINT_COLOR_A] = 16; offsets[PATTERN_POINT_COLOR_B] = 16; offsets[SYMBOL_A] = 16; offsets[SYMBOL_B] = 16; offsets[SYMBOL_C] = 16; offsets[SYMBOL_D] = 16; offsets[SYMBOL_E] = 16; offsets[PUSH_SYMBOL_COLORS] = sizeof(int); offsets[OUTER_BACKGROUND] = 16; offsets[OUTER_BACKGROUND_MODE] = sizeof(int); offsets[TRACED_EDGES] = 16; offsets[AUDIO_PREFIX] = sizeof(void*); // offsets[IS_CYLINDER] = sizeof(int); // offsets[CYLINDER_Z0] = sizeof(float); // offsets[CYLINDER_Z1] = sizeof(float); // offsets[CYLINDER_RADIUS] = sizeof(float); offsets[SPECULAR_ADD] = sizeof(float); offsets[SPECULAR_POWER] = sizeof(int); offsets[PATH_WIDTH_SCALE] = sizeof(float); offsets[STARTPOINT_SCALE] = sizeof(float); offsets[NUM_DOTS] = sizeof(int); offsets[NUM_CONNECTIONS] = sizeof(int); offsets[DOT_POSITIONS] = sizeof(void*); offsets[DOT_FLAGS] = sizeof(void*); offsets[DOT_CONNECTION_A] = sizeof(void*); offsets[DOT_CONNECTION_B] = sizeof(void*); offsets[DECORATIONS] = sizeof(void*); offsets[DECORATION_FLAGS] = sizeof(void*); offsets[DECORATION_COLORS] = sizeof(void*); offsets[NUM_DECORATIONS] = sizeof(int); offsets[REFLECTION_DATA] = sizeof(void*); offsets[GRID_SIZE_X] = sizeof(int); offsets[GRID_SIZE_Y] = sizeof(int); offsets[STYLE_FLAGS] = sizeof(int); offsets[SEQUENCE_LEN] = sizeof(int); offsets[SEQUENCE] = sizeof(void*); offsets[DOT_SEQUENCE_LEN] = sizeof(int); offsets[DOT_SEQUENCE] = sizeof(void*); offsets[DOT_SEQUENCE_LEN_REFLECTION] = sizeof(int); offsets[DOT_SEQUENCE_REFLECTION] = sizeof(void*); offsets[NUM_COLORED_REGIONS] = sizeof(int); offsets[COLORED_REGIONS] = sizeof(void*); offsets[PANEL_TARGET] = sizeof(void*); offsets[SPECULAR_TEXTURE] = sizeof(void*); } for (auto const& [offset, size] : offsets) { std::vector panel1data = _memory->ReadPanelData(panel1, offset, size); std::vector panel2data = _memory->ReadPanelData(panel2, offset, size); _memory->WritePanelData(panel2, offset, panel1data); _memory->WritePanelData(panel1, offset, panel2data); } } void Randomizer::ReassignTargets(const std::vector& panels, const std::vector& order, std::vector targets) { if (targets.empty()) { // This list is offset by 1, so the target of the Nth panel is in position N (aka the N+1th element) // The first panel may not have a wire to power it, so we use the panel ID itself. targets = {panels[0] + 1}; for (const int panel : panels) { int target = _memory->ReadPanelData(panel, TARGET, 1)[0]; targets.push_back(target); } } for (size_t i=0; iWritePanelData(panels[order[i]], TARGET, {panelTarget}); } } void Randomizer::ReassignNames(const std::vector& panels, const std::vector& order) { std::vector names; for (const int panel : panels) { names.push_back(_memory->ReadPanelData(panel, AUDIO_LOG_NAME, 1)[0]); } for (int i=0; iWritePanelData(panels[i], AUDIO_LOG_NAME, {names[order[i]]}); } }