#include "Puzzle.h" #include "Memory.h" #pragma warning (disable:26451) #pragma warning (disable:26812) PuzzleSerializer::PuzzleSerializer(const std::shared_ptr& memory) : _memory(memory) {} Puzzle PuzzleSerializer::ReadPuzzle(int id) { Puzzle p; p.width = 2 * _memory->ReadPanelData(id, GRID_SIZE_X, 1)[0] - 1; p.height = 2 * _memory->ReadPanelData(id, GRID_SIZE_Y, 1)[0] - 1; if (p.width < 0 || p.height < 0) return p; // @Error: Grid size should be always positive? Looks like the starting panels break this rule, though. p.grid.resize(p.width); for (auto& row : p.grid) row.resize(p.height); ReadIntersections(p, id); ReadDecorations(p, id); return p; } void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) { int numIntersections = _memory->ReadPanelData(id, NUM_DOTS, 1)[0]; std::vector intersectionFlags = _memory->ReadArray(id, DOT_FLAGS, numIntersections); int numConnections = _memory->ReadPanelData(id, NUM_CONNECTIONS, 1)[0]; std::vector connections_a = _memory->ReadArray(id, DOT_CONNECTION_A, numConnections); std::vector connections_b = _memory->ReadArray(id, DOT_CONNECTION_B, numConnections); std::vector intersectionLocations = _memory->ReadArray(id, DOT_POSITIONS, numIntersections*2); // @Cleanup: Change defaults? for (int x=0; x x2) x--; else if (y1 < y2) y--; else if (y1 > y2) y++; p.grid[x][y].gap = Cell::Gap::NONE; } // This iterates bottom-top, left-right int i = 0; for (;; i++) { int flags = intersectionFlags[i]; auto [x, y] = loc_to_xy(p, i); if (y < 0) break; if (flags & Flags::IS_STARTPOINT) { p.grid[x][y].start = true; } p.grid[x][y].dot = FlagsToDot(flags); if (flags & Flags::IS_FULL_GAP) { p.grid[x][y].gap = Cell::Gap::FULL; } } // Iterate the remaining intersections (endpoints, dots, gaps) for (; i < numIntersections; i++) { int location = FindConnection(i, connections_a, connections_b); if (location == -1) continue; // @Error: Unable to find connection point // (x1, y1) location of this intersection // (x2, y2) location of the connected intersection float x1 = intersectionLocations[2*i]; float y1 = intersectionLocations[2*i+1]; float x2 = intersectionLocations[2*location]; float y2 = intersectionLocations[2*location+1]; auto [x, y] = loc_to_xy(p, location); if (intersectionFlags[i] & Flags::IS_ENDPOINT) { // Our x coordinate is less than the target's if (x1 < x2) p.grid[x][y].end = Cell::Dir::LEFT; else if (x1 > x2) p.grid[x][y].end = Cell::Dir::RIGHT; // Note that Y coordinates are reversed: 0.0 (bottom) 1.0 (top) else if (y1 < y2) p.grid[x][y].end = Cell::Dir::DOWN; else if (y1 > y2) p.grid[x][y].end = Cell::Dir::UP; } else if (intersectionFlags[i] & Flags::HAS_DOT) { if (x1 < x2) x--; else if (x1 > x2) x++; else if (y1 < y2) y++; else if (y1 > y2) y--; p.grid[x][y].dot = FlagsToDot(intersectionFlags[i]); } else if (intersectionFlags[i] & Flags::HAS_ONE_CONN) { if (x1 < x2) x--; else if (x1 > x2) x++; else if (y1 < y2) y++; else if (y1 > y2) y--; p.grid[x][y].gap = Cell::Gap::BREAK; } } } void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) { int numDecorations = _memory->ReadPanelData(id, NUM_DECORATIONS, 1)[0]; std::vector decorations = _memory->ReadArray(id, DECORATIONS, numDecorations); if (numDecorations > 0) p.hasDecorations = true; for (int i=0; i(); p.grid[x][y].decoration = d; d->type = static_cast(decorations[i] & 0xFF00); switch(d->type) { case Type::Poly: case Type::RPoly: case Type::Ylop: d->polyshape = decorations[i] & 0xFFFF0000; break; case Type::Triangle: d->count = decorations[i] & 0x000F0000; break; } d->color = static_cast(decorations[i] & 0xF); } } void PuzzleSerializer::WritePuzzle(const Puzzle& p, int id) { _memory->WritePanelData(id, GRID_SIZE_X, {(p.width + 1)/2}); _memory->WritePanelData(id, GRID_SIZE_Y, {(p.height + 1)/2}); WriteIntersections(p, id); if (p.hasDecorations) WriteDecorations(p, id); _memory->WritePanelData(id, NEEDS_REDRAW, {1}); } void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { std::vector intersectionLocations; std::vector intersectionFlags; std::vector connections_a; std::vector connections_b; float min = 0.1f; float max = 0.9f; float width_interval = (max - min) / (p.width/2); float height_interval = (max - min) / (p.height/2); float horiz_gap_size = width_interval / 2; float verti_gap_size = height_interval / 2; // @Cleanup: If I write directly to locations, then I can simplify this gross loop iterator. // int numIntersections = (p.width / 2 + 1) * (p.height / 2 + 1); // Grided intersections for (int y=p.height-1; y>=0; y-=2) { for (int x=0; x 0 && p.grid[x][y-1].gap == Cell::Gap::NONE) { connections_a.push_back(xy_to_loc(p, x, y-2)); connections_b.push_back(xy_to_loc(p, x, y)); flags |= Flags::HAS_VERTI_CONN; numConnections++; } // Top connection if (y < p.height - 1 && p.grid[x][y+1].gap == Cell::Gap::NONE) { flags |= Flags::HAS_VERTI_CONN; numConnections++; } // Left connection if (x > 0 && p.grid[x-1][y].gap == Cell::Gap::NONE) { connections_a.push_back(xy_to_loc(p, x-2, y)); connections_b.push_back(xy_to_loc(p, x, y)); flags |= Flags::HAS_HORIZ_CONN; numConnections++; } // Right connection if (x < p.width - 1 && p.grid[x+1][y].gap == Cell::Gap::NONE) { flags |= Flags::HAS_HORIZ_CONN; numConnections++; } if (numConnections == 1) flags |= HAS_ONE_CONN; intersectionFlags.push_back(flags); } } // Endpoints for (int x=0; x(intersectionFlags.size())); // This endpoint float xPos = min + (x/2) * width_interval; float yPos = max - (y/2) * height_interval; switch (p.grid[x][y].end) { case Cell::Dir::LEFT: xPos -= .05f; break; case Cell::Dir::RIGHT: xPos += .05f; break; case Cell::Dir::UP: yPos += .05f; // Y position goes from 0 (bottom) to 1 (top), so this is reversed. break; case Cell::Dir::DOWN: yPos -= .05f; break; } intersectionLocations.push_back(xPos); intersectionLocations.push_back(yPos); intersectionFlags.push_back(Flags::IS_ENDPOINT); } } // Dots for (int x=0; x(intersectionFlags.size()); // This endpoint connections_a.push_back(other_connection); connections_b.push_back(static_cast(intersectionFlags.size())); // This endpoint break; } } // Add this dot to the end float xPos = min + (x/2.0f) * width_interval; float yPos = max - (y/2.0f) * height_interval; intersectionLocations.push_back(xPos); intersectionLocations.push_back(yPos); int flags = Flags::HAS_DOT; switch (p.grid[x][y].dot) { case Cell::Dot::BLACK: break; case Cell::Dot::BLUE: flags |= DOT_IS_BLUE; break; case Cell::Dot::YELLOW: flags |= DOT_IS_ORANGE; break; case Cell::Dot::INVISIBLE: flags |= DOT_IS_INVISIBLE; break; } intersectionFlags.push_back(flags); } } // Gaps for (int x=0; x(intersectionFlags.size())); // This endpoint intersectionLocations.push_back(xPos); intersectionLocations.push_back(yPos + verti_gap_size / 2); intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN); connections_a.push_back(xy_to_loc(p, x, y+1)); connections_b.push_back(static_cast(intersectionFlags.size())); // This endpoint intersectionLocations.push_back(xPos); intersectionLocations.push_back(yPos - verti_gap_size / 2); intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_VERTI_CONN); } else if (y%2 == 0) { // Horizontal gap connections_a.push_back(xy_to_loc(p, x-1, y)); connections_b.push_back(static_cast(intersectionFlags.size())); // This endpoint intersectionLocations.push_back(xPos - horiz_gap_size / 2); intersectionLocations.push_back(yPos); intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN); connections_a.push_back(xy_to_loc(p, x+1, y)); connections_b.push_back(static_cast(intersectionFlags.size())); // This endpoint intersectionLocations.push_back(xPos + horiz_gap_size / 2); intersectionLocations.push_back(yPos); intersectionFlags.push_back(Flags::HAS_ONE_CONN | Flags::HAS_HORIZ_CONN); } } } _memory->WritePanelData(id, NUM_DOTS, {static_cast(intersectionFlags.size())}); _memory->WriteArray(id, DOT_POSITIONS, intersectionLocations); _memory->WriteArray(id, DOT_FLAGS, intersectionFlags); _memory->WritePanelData(id, NUM_CONNECTIONS, {static_cast(connections_a.size())}); _memory->WriteArray(id, DOT_CONNECTION_A, connections_a); _memory->WriteArray(id, DOT_CONNECTION_B, connections_b); } void PuzzleSerializer::WriteDecorations(const Puzzle& p, int id) { std::vector decorations; for (int y=p.height-2; y>0; y-=2) { for (int x=1; xcolor | d->type | d->count | d->polyshape); } else { decorations.push_back(0); } } } _memory->WritePanelData(id, NUM_DECORATIONS, {static_cast(decorations.size())}); _memory->WriteArray(id, DECORATIONS, decorations); } std::tuple PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) const { int height2 = (p.height - 1) / 2; int width2 = (p.width + 1) / 2; int x = 2 * (location % width2); int y = 2 * (height2 - location / width2); return {x, y}; } int PuzzleSerializer::xy_to_loc(const Puzzle& p, int x, int y) const { int height2 = (p.height - 1) / 2; int width2 = (p.width + 1) / 2; int rowsFromBottom = height2 - y/2; return rowsFromBottom * width2 + x/2; } std::tuple PuzzleSerializer::dloc_to_xy(const Puzzle& p, int location) const { int height2 = (p.height - 3) / 2; int width2 = (p.width - 1) / 2; int x = 2 * (location % width2) + 1; int y = 2 * (height2 - location / width2) + 1; return {x, y}; } int PuzzleSerializer::xy_to_dloc(const Puzzle& p, int x, int y) const { int height2 = (p.height - 3) / 2; int width2 = (p.width - 1) / 2; int rowsFromBottom = height2 - (y - 1)/2; return rowsFromBottom * width2 + (x - 1)/2; } Cell::Dot PuzzleSerializer::FlagsToDot(int flags) const { if (!(flags & Flags::HAS_DOT)) return Cell::Dot::NONE; if (flags & Flags::DOT_IS_BLUE) { return Cell::Dot::BLUE; } else if (flags & Flags::DOT_IS_ORANGE) { return Cell::Dot::YELLOW; } else if (flags & Flags::DOT_IS_INVISIBLE) { return Cell::Dot::INVISIBLE; } else { return Cell::Dot::BLACK; } } int PuzzleSerializer::FindConnection(int i, const std::vector& connections_a, const std::vector& connections_b) const { for (int j=0; j