diff options
Diffstat (limited to 'Source/Randomizer2.cpp')
| -rw-r--r-- | Source/Randomizer2.cpp | 310 |
1 files changed, 161 insertions, 149 deletions
| diff --git a/Source/Randomizer2.cpp b/Source/Randomizer2.cpp index b5218bf..81b6874 100644 --- a/Source/Randomizer2.cpp +++ b/Source/Randomizer2.cpp | |||
| @@ -3,6 +3,7 @@ | |||
| 3 | #include "Random.h" | 3 | #include "Random.h" |
| 4 | #include "Solver.h" | 4 | #include "Solver.h" |
| 5 | #include "Memory.h" | 5 | #include "Memory.h" |
| 6 | #include "Randomizer2Core.h" | ||
| 6 | #include "PuzzlerSerializer.h" | 7 | #include "PuzzlerSerializer.h" |
| 7 | #include <cassert> | 8 | #include <cassert> |
| 8 | #include <string> | 9 | #include <string> |
| @@ -155,173 +156,184 @@ void Randomizer2::Randomize() { | |||
| 155 | 156 | ||
| 156 | } | 157 | } |
| 157 | 158 | ||
| 158 | void DebugColorGrid(const std::vector<std::vector<int>>& colorGrid) { | 159 | void Randomizer2::RandomizeKeep() { |
| 159 | for (int y=0; y<colorGrid[0].size(); y++) { | 160 | // *** Hedges 1 *** |
| 160 | std::wstring row; | 161 | { |
| 161 | for (int x=0; x<colorGrid.size(); x++) { | 162 | Puzzle p; |
| 162 | row += std::to_wstring(colorGrid[x][y]); | 163 | p.NewGrid(4, 4); |
| 164 | |||
| 165 | p.grid[2][1].gap = Cell::Gap::FULL; | ||
| 166 | p.grid[4][1].gap = Cell::Gap::FULL; | ||
| 167 | p.grid[6][1].gap = Cell::Gap::FULL; | ||
| 168 | p.grid[3][2].gap = Cell::Gap::FULL; | ||
| 169 | p.grid[5][2].gap = Cell::Gap::FULL; | ||
| 170 | p.grid[8][3].gap = Cell::Gap::FULL; | ||
| 171 | p.grid[2][5].gap = Cell::Gap::FULL; | ||
| 172 | p.grid[6][5].gap = Cell::Gap::FULL; | ||
| 173 | p.grid[7][6].gap = Cell::Gap::FULL; | ||
| 174 | p.grid[2][7].gap = Cell::Gap::FULL; | ||
| 175 | p.grid[4][7].gap = Cell::Gap::FULL; | ||
| 176 | |||
| 177 | p.grid[4][8].start = true; | ||
| 178 | p.grid[6][0].end = Cell::Dir::UP; | ||
| 179 | |||
| 180 | std::vector<Pos> cutEdges = Randomizer2Core::CutEdgesToBeUnique(p); | ||
| 181 | assert(cutEdges.size() == 5); | ||
| 182 | Puzzle copy = p; | ||
| 183 | std::vector<int> gates = {0x00344, 0x00488, 0x00489, 0x00495, 0x00496}; | ||
| 184 | for (int i=0; i<gates.size(); i++) { | ||
| 185 | Pos pos = cutEdges[i]; | ||
| 186 | copy.grid[pos.x][pos.y].gap = Cell::Gap::BREAK; | ||
| 187 | SetGate(gates[i], pos.x, pos.y); | ||
| 163 | } | 188 | } |
| 164 | row += L'\n'; | 189 | auto solutions = Solver::Solve(copy); |
| 165 | OutputDebugString(row.c_str()); | 190 | assert(solutions.size() == 1); |
| 191 | p.sequence = solutions[0].sequence; | ||
| 192 | PuzzleSerializer(_memory).WritePuzzle(solutions[0], 0x139); | ||
| 166 | } | 193 | } |
| 167 | OutputDebugString(L"\n"); | ||
| 168 | } | ||
| 169 | |||
| 170 | void FloodFill(const Puzzle& p, std::vector<std::vector<int>>& colorGrid, int color, int x, int y) { | ||
| 171 | if (!p.SafeCell(x, y)) return; | ||
| 172 | if (colorGrid[x][y] != 0) return; // Already processed. | ||
| 173 | colorGrid[x][y] = color; | ||
| 174 | 194 | ||
| 175 | FloodFill(p, colorGrid, color, x, y+1); | 195 | // *** Hedges 2 *** |
| 176 | FloodFill(p, colorGrid, color, x, y-1); | 196 | { |
| 177 | FloodFill(p, colorGrid, color, x+1, y); | 197 | Puzzle p; |
| 178 | FloodFill(p, colorGrid, color, x-1, y); | 198 | p.NewGrid(4, 4); |
| 179 | } | ||
| 180 | |||
| 181 | void FloodFillOutside(const Puzzle&p, std::vector<std::vector<int>>& colorGrid, int x, int y) { | ||
| 182 | if (!p.SafeCell(x, y)) return; | ||
| 183 | if (colorGrid[x][y] != 0) return; // Already processed. | ||
| 184 | if (x%2 != y%2 && p.grid[x][y].gap != Cell::Gap::FULL) return; // Only flood-fill through full gaps | ||
| 185 | colorGrid[x][y] = 1; // Outside color | ||
| 186 | |||
| 187 | FloodFillOutside(p, colorGrid, x, y+1); | ||
| 188 | FloodFillOutside(p, colorGrid, x, y-1); | ||
| 189 | FloodFillOutside(p, colorGrid, x+1, y); | ||
| 190 | FloodFillOutside(p, colorGrid, x-1, y); | ||
| 191 | } | ||
| 192 | 199 | ||
| 193 | /* | 200 | p.grid[2][1].gap = Cell::Gap::FULL; |
| 194 | undefined -> 1 (color of outside) or * (any colored cell) or -1 (edge/intersection not part of any region) | 201 | p.grid[1][2].gap = Cell::Gap::FULL; |
| 202 | p.grid[5][2].gap = Cell::Gap::FULL; | ||
| 203 | p.grid[7][4].gap = Cell::Gap::FULL; | ||
| 204 | p.grid[4][5].gap = Cell::Gap::FULL; | ||
| 205 | p.grid[6][5].gap = Cell::Gap::FULL; | ||
| 206 | p.grid[1][6].gap = Cell::Gap::FULL; | ||
| 207 | p.grid[2][7].gap = Cell::Gap::FULL; | ||
| 208 | p.grid[5][8].gap = Cell::Gap::FULL; | ||
| 195 | 209 | ||
| 196 | 0 -> {} (this is a special edge case, which I don't need right now) | 210 | p.grid[0][8].start = true; |
| 197 | 1 -> 0 (uncolored / ready to color) | 211 | p.grid[8][0].end = Cell::Dir::RIGHT; |
| 198 | 2 -> | ||
| 199 | */ | ||
| 200 | std::vector<std::vector<int>> CreateColorGrid(const Puzzle& p) { | ||
| 201 | std::vector<std::vector<int>> colorGrid; | ||
| 202 | colorGrid.resize(p.width); | ||
| 203 | 212 | ||
| 204 | for (int x=0; x<p.width; x++) { | 213 | std::vector<Pos> cutEdges = Randomizer2Core::CutEdgesToBeUnique(p); |
| 205 | colorGrid[x].resize(p.height); | 214 | assert(cutEdges.size() == 7); |
| 206 | for (int y=0; y<p.height; y++) { | 215 | for (Pos pos : cutEdges) { |
| 207 | // Mark all unbroken edges and intersections as 'do not color' | 216 | p.grid[pos.x][pos.y].gap = Cell::Gap::FULL; |
| 208 | if (x%2 != y%2) { | 217 | } |
| 209 | if (p.grid[x][y].gap == Cell::Gap::NONE) colorGrid[x][y] = 1; | 218 | auto solutions = Solver::Solve(p); |
| 210 | } else if (x%2 == 0 && y%2 == 0) { | 219 | assert(solutions.size() == 1); |
| 211 | // @Future: What about empty intersections? | 220 | |
| 212 | colorGrid[x][y] = 1; // do not color intersections | 221 | Puzzle q; |
| 213 | } | 222 | q.NewGrid(4, 4); |
| 223 | q.grid[0][8].start = true; | ||
| 224 | q.grid[8][0].end = Cell::Dir::RIGHT; | ||
| 225 | q.sequence = solutions[0].sequence; | ||
| 226 | for (Pos pos : cutEdges) { | ||
| 227 | q.grid[pos.x][pos.y].gap = Cell::Gap::FULL; | ||
| 214 | } | 228 | } |
| 229 | // Cut to 4 of 9 additional edges (total: 11) | ||
| 230 | Randomizer2Core::CutEdgesNotOutsideNotBreakingSequence(q, 4); | ||
| 231 | PuzzleSerializer(_memory).WritePuzzle(q, 0x19DC); | ||
| 215 | } | 232 | } |
| 233 | |||
| 234 | // *** Hedges 3 ** | ||
| 235 | { | ||
| 236 | std::vector<int> audioMarkers = { | ||
| 237 | 0x000034a9, | ||
| 238 | 0x000034b1, | ||
| 239 | 0x000034be, | ||
| 240 | 0x000034c4, | ||
| 241 | 0x000034cb, | ||
| 242 | 0x000034cc, | ||
| 243 | 0x000034cd, | ||
| 244 | 0x000034ce, | ||
| 245 | 0x000034df, | ||
| 246 | 0x000034e0, | ||
| 247 | 0x000034e1, | ||
| 248 | 0x000034e2, | ||
| 249 | 0x000034f3, | ||
| 250 | 0x000131cb, | ||
| 251 | 0x00017e34, | ||
| 252 | 0x00017e6f, | ||
| 253 | 0x00017e76, | ||
| 254 | 0x00017e77, | ||
| 255 | 0x00017e7a, | ||
| 256 | 0x00017e7e, | ||
| 257 | 0x00017e8b, | ||
| 258 | 0x00017e8d, | ||
| 259 | 0x00017eb5, | ||
| 260 | 0x000394a4, | ||
| 261 | 0x0003b54e, | ||
| 262 | }; | ||
| 263 | std::vector<int> good; | ||
| 264 | for (int marker : audioMarkers) { | ||
| 265 | // std::vector<char> assetName = _memory->ReadArray<char>(marker, 0xD8, 100); | ||
| 266 | std::vector<char> name = {'m', 'a', 'z', 'e', '_', 'p', 'e', 'b', 'b', 'l', 'e', '\0'}; | ||
| 267 | _memory->WriteNewArray(marker, 0xD8, name); | ||
| 268 | } | ||
| 216 | 269 | ||
| 217 | // @Future: Skip this loop if pillar = true; | 270 | Puzzle p; |
| 218 | for (int y=1; y<p.height; y+=2) { | 271 | p.NewGrid(4, 4); |
| 219 | FloodFillOutside(p, colorGrid, 0, y); | ||
| 220 | FloodFillOutside(p, colorGrid, p.width - 1, y); | ||
| 221 | } | ||
| 222 | 272 | ||
| 223 | for (int x=1; x<p.width; x+=2) { | 273 | p.grid[2][1].gap = Cell::Gap::FULL; |
| 224 | FloodFillOutside(p, colorGrid, x, 0); | 274 | p.grid[5][2].gap = Cell::Gap::FULL; |
| 225 | FloodFillOutside(p, colorGrid, x, p.height - 1); | 275 | p.grid[7][2].gap = Cell::Gap::FULL; |
| 226 | } | 276 | p.grid[4][3].gap = Cell::Gap::FULL; |
| 277 | p.grid[1][4].gap = Cell::Gap::FULL; | ||
| 278 | p.grid[6][5].gap = Cell::Gap::FULL; | ||
| 279 | p.grid[1][6].gap = Cell::Gap::FULL; | ||
| 280 | p.grid[3][6].gap = Cell::Gap::FULL; | ||
| 281 | p.grid[6][7].gap = Cell::Gap::FULL; | ||
| 227 | 282 | ||
| 228 | int color = 1; | 283 | p.grid[0][8].start = true; |
| 229 | for (int x=0; x<p.width; x++) { | 284 | p.grid[8][2].end = Cell::Dir::RIGHT; |
| 230 | for (int y=0; y<p.height; y++) { | 285 | |
| 231 | if (colorGrid[x][y] != 0) continue; // No dead colors | 286 | std::vector<Pos> cutEdges = Randomizer2Core::CutEdgesToBeUnique(p); |
| 232 | color++; | 287 | assert(cutEdges.size() == 7); |
| 233 | FloodFill(p, colorGrid, color, x, y); | 288 | for (Pos pos : cutEdges) { |
| 289 | p.grid[pos.x][pos.y].gap = Cell::Gap::BREAK; | ||
| 234 | } | 290 | } |
| 291 | PuzzleSerializer(_memory).WritePuzzle(p, 0x19E7); | ||
| 235 | } | 292 | } |
| 236 | 293 | ||
| 237 | return colorGrid; | 294 | // *** Hedges 4 *** |
| 238 | } | 295 | { |
| 296 | Puzzle p; | ||
| 297 | p.NewGrid(4, 4); | ||
| 239 | 298 | ||
| 240 | void Randomizer2::RandomizeKeep() { | 299 | p.grid[3][0].gap = Cell::Gap::FULL; |
| 241 | Puzzle p; | 300 | p.grid[4][1].gap = Cell::Gap::FULL; |
| 242 | p.NewGrid(4, 4); | 301 | p.grid[8][1].gap = Cell::Gap::FULL; |
| 243 | // p.width = 9; | 302 | p.grid[1][2].gap = Cell::Gap::FULL; |
| 244 | // p.height = 10; | 303 | p.grid[4][3].gap = Cell::Gap::FULL; |
| 245 | // p.grid.clear(); | 304 | p.grid[8][3].gap = Cell::Gap::FULL; |
| 246 | // p.grid.resize(p.width); | 305 | p.grid[1][4].gap = Cell::Gap::FULL; |
| 247 | // for (int x=0; x<p.width; x++) p.grid[x].resize(p.height); | 306 | p.grid[5][4].gap = Cell::Gap::FULL; |
| 248 | 307 | p.grid[2][5].gap = Cell::Gap::FULL; | |
| 249 | p.grid[2][1].gap = Cell::Gap::FULL; | 308 | p.grid[6][5].gap = Cell::Gap::FULL; |
| 250 | p.grid[4][1].gap = Cell::Gap::FULL; | 309 | p.grid[3][6].gap = Cell::Gap::FULL; |
| 251 | p.grid[6][1].gap = Cell::Gap::FULL; | 310 | p.grid[0][7].gap = Cell::Gap::FULL; |
| 252 | p.grid[3][2].gap = Cell::Gap::FULL; | 311 | p.grid[8][7].gap = Cell::Gap::FULL; |
| 253 | p.grid[5][2].gap = Cell::Gap::FULL; | 312 | p.grid[5][8].gap = Cell::Gap::FULL; |
| 254 | p.grid[8][3].gap = Cell::Gap::FULL; | ||
| 255 | p.grid[2][5].gap = Cell::Gap::FULL; | ||
| 256 | p.grid[6][5].gap = Cell::Gap::FULL; | ||
| 257 | p.grid[7][6].gap = Cell::Gap::FULL; | ||
| 258 | p.grid[2][7].gap = Cell::Gap::FULL; | ||
| 259 | p.grid[4][7].gap = Cell::Gap::FULL; | ||
| 260 | // p.grid[0][9].gap = Cell::Gap::FULL; | ||
| 261 | // p.grid[2][9].gap = Cell::Gap::FULL; | ||
| 262 | // p.grid[6][9].gap = Cell::Gap::FULL; | ||
| 263 | // p.grid[8][9].gap = Cell::Gap::FULL; | ||
| 264 | |||
| 265 | p.grid[6][0].end = Cell::Dir::UP; | ||
| 266 | p.grid[4][8].start = true; | ||
| 267 | |||
| 268 | auto colorGrid = CreateColorGrid(p); | ||
| 269 | |||
| 270 | std::vector<Pos> edges; | ||
| 271 | for (int x=0; x<p.width; x++) { | ||
| 272 | for (int y=0; y<p.height; y++) { | ||
| 273 | if (x%2 == y%2) continue; | ||
| 274 | if (p.grid[x][y].gap != Cell::Gap::NONE) continue; | ||
| 275 | edges.emplace_back(Pos{x, y}); | ||
| 276 | } | ||
| 277 | } | ||
| 278 | 313 | ||
| 279 | Puzzle copy = p; | 314 | p.grid[0][8].start = true; |
| 280 | std::vector<int> gates = {0x00344, 0x00488, 0x00489, 0x00495, 0x00496}; | 315 | p.grid[4][0].end = Cell::Dir::UP; |
| 281 | for (int i=0; i<5; i++) { | 316 | |
| 282 | for (int j=0; j<edges.size(); j++) { | 317 | std::vector<Pos> cutEdges = Randomizer2Core::CutEdgesToBeUnique(p); |
| 283 | int edge = Random::RandInt(0, static_cast<int>(edges.size() - 1)); | 318 | assert(cutEdges.size() == 2); |
| 284 | Pos pos = edges[edge]; | 319 | for (Pos pos : cutEdges) { |
| 285 | edges.erase(edges.begin() + edge); | 320 | p.grid[pos.x][pos.y].gap = Cell::Gap::FULL; |
| 286 | |||
| 287 | int color1 = 0; | ||
| 288 | int color2 = 0; | ||
| 289 | if (pos.x%2 == 0 && pos.y%2 == 1) { // Vertical | ||
| 290 | if (pos.x > 0) color1 = colorGrid[pos.x-1][pos.y]; | ||
| 291 | else color1 = 1; | ||
| 292 | |||
| 293 | if (pos.x < p.width - 1) color2 = colorGrid[pos.x+1][pos.y]; | ||
| 294 | else color2 = 1; | ||
| 295 | } else { // Horizontal | ||
| 296 | assert(pos.x%2 == 1 && pos.y%2 == 0); | ||
| 297 | if (pos.y > 0) color1 = colorGrid[pos.x][pos.y-1]; | ||
| 298 | else color1 = 1; | ||
| 299 | |||
| 300 | if (pos.y < p.height - 1) color2 = colorGrid[pos.x][pos.y+1]; | ||
| 301 | else color2 = 1; | ||
| 302 | } | ||
| 303 | // Enforce color1 < color2 | ||
| 304 | if (color1 > color2) std::swap(color1, color2); | ||
| 305 | |||
| 306 | // Colors mismatch, valid cut | ||
| 307 | if (color1 != color2) { | ||
| 308 | // @Performance... have a lookup table instead? | ||
| 309 | for (int x=0; x<p.width; x++) { | ||
| 310 | for (int y=0; y<p.height; y++) { | ||
| 311 | if (colorGrid[x][y] == color2) colorGrid[x][y] = color1; | ||
| 312 | } | ||
| 313 | } | ||
| 314 | copy.grid[pos.x][pos.y].gap = Cell::Gap::BREAK; | ||
| 315 | SetGate(gates[i], pos.x, pos.y); | ||
| 316 | break; | ||
| 317 | } | ||
| 318 | } | 321 | } |
| 322 | auto solutions = Solver::Solve(p); | ||
| 323 | assert(solutions.size() == 1); | ||
| 324 | |||
| 325 | Puzzle q; | ||
| 326 | q.NewGrid(4, 4); | ||
| 327 | q.grid[0][8].start = true; | ||
| 328 | q.grid[4][0].end = Cell::Dir::UP; | ||
| 329 | q.sequence = solutions[0].sequence; | ||
| 330 | for (Pos pos : cutEdges) { | ||
| 331 | q.grid[pos.x][pos.y].gap = Cell::Gap::FULL; | ||
| 332 | } | ||
| 333 | // 9 cuts, -2 from existing cuts | ||
| 334 | Randomizer2Core::CutEdgesNotOutsideNotBreakingSequence(q, 7); | ||
| 335 | PuzzleSerializer(_memory).WritePuzzle(q, 0x1A0F); | ||
| 319 | } | 336 | } |
| 320 | |||
| 321 | auto solutions = Solver::Solve(copy); | ||
| 322 | assert(solutions.size() == 1); | ||
| 323 | p.sequence = solutions[0].sequence; | ||
| 324 | PuzzleSerializer(_memory).WritePuzzle(solutions[0], 0x139); | ||
| 325 | } | 337 | } |
| 326 | 338 | ||
| 327 | void Randomizer2::SetGate(int panel, int X, int Y) { | 339 | void Randomizer2::SetGate(int panel, int X, int Y) { |
