diff options
Diffstat (limited to 'Source/Panel.cpp')
-rw-r--r-- | Source/Panel.cpp | 245 |
1 files changed, 162 insertions, 83 deletions
diff --git a/Source/Panel.cpp b/Source/Panel.cpp index b6f0403..f8dc36b 100644 --- a/Source/Panel.cpp +++ b/Source/Panel.cpp | |||
@@ -10,6 +10,7 @@ Puzzle PuzzleSerializer::ReadPuzzle(int id) { | |||
10 | Puzzle p; | 10 | Puzzle p; |
11 | p.width = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_X, 1)[0] - 1; | 11 | p.width = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_X, 1)[0] - 1; |
12 | p.height = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_Y, 1)[0] - 1; | 12 | p.height = 2 * _memory->ReadPanelData<int>(id, GRID_SIZE_Y, 1)[0] - 1; |
13 | if (p.width < 0 || p.height < 0) return p; // @Error: Grid size should be always positive? Looks like the starting panels break this rule, though. | ||
13 | p.grid.resize(p.width); | 14 | p.grid.resize(p.width); |
14 | for (auto& row : p.grid) row.resize(p.height); | 15 | for (auto& row : p.grid) row.resize(p.height); |
15 | 16 | ||
@@ -22,78 +23,87 @@ Puzzle PuzzleSerializer::ReadPuzzle(int id) { | |||
22 | void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) { | 23 | void PuzzleSerializer::ReadIntersections(Puzzle& p, int id) { |
23 | int numIntersections = _memory->ReadPanelData<int>(id, NUM_DOTS, 1)[0]; | 24 | int numIntersections = _memory->ReadPanelData<int>(id, NUM_DOTS, 1)[0]; |
24 | std::vector<int> intersectionFlags = _memory->ReadArray<int>(id, DOT_FLAGS, numIntersections); | 25 | std::vector<int> intersectionFlags = _memory->ReadArray<int>(id, DOT_FLAGS, numIntersections); |
26 | int numConnections = _memory->ReadPanelData<int>(id, NUM_CONNECTIONS, 1)[0]; | ||
27 | std::vector<int> connections_a = _memory->ReadArray<int>(id, DOT_CONNECTION_A, numConnections); | ||
28 | std::vector<int> connections_b = _memory->ReadArray<int>(id, DOT_CONNECTION_B, numConnections); | ||
29 | std::vector<float> intersectionLocations = _memory->ReadArray<float>(id, DOT_POSITIONS, numIntersections*2); | ||
25 | 30 | ||
31 | // @Cleanup: Change defaults? | ||
32 | for (int x=0; x<p.width; x++) { | ||
33 | for (int y=0; y<p.height; y++) { | ||
34 | if (x%2 == y%2) continue; | ||
35 | p.grid[x][y].gap = Cell::Gap::FULL; | ||
36 | } | ||
37 | } | ||
38 | |||
39 | for (int j=0; j<numIntersections; j++) { | ||
40 | float x1 = intersectionLocations[2*connections_a[j]]; | ||
41 | float y1 = intersectionLocations[2*connections_a[j]+1]; | ||
42 | float x2 = intersectionLocations[2*connections_b[j]]; | ||
43 | float y2 = intersectionLocations[2*connections_b[j]+1]; | ||
44 | auto [x, y] = loc_to_xy(p, connections_a[j]); | ||
45 | |||
46 | if (x1 < x2) x++; | ||
47 | else if (x1 > x2) x--; | ||
48 | else if (y1 < y2) y--; | ||
49 | else if (y1 > y2) y++; | ||
50 | p.grid[x][y].gap = Cell::Gap::NONE; | ||
51 | } | ||
52 | |||
53 | // This iterates bottom-top, left-right | ||
26 | int i = 0; | 54 | int i = 0; |
27 | for (;; i++) { | 55 | for (;; i++) { |
56 | int flags = intersectionFlags[i]; | ||
28 | auto [x, y] = loc_to_xy(p, i); | 57 | auto [x, y] = loc_to_xy(p, i); |
29 | if (y < 0) break; | 58 | if (y < 0) break; |
30 | if (intersectionFlags[i] & Flags::IS_STARTPOINT) { | 59 | if (flags & Flags::IS_STARTPOINT) { |
31 | p.grid[x][y].start = true; | 60 | p.grid[x][y].start = true; |
32 | } | 61 | } |
33 | p.grid[x][y].dot = FlagsToDot(intersectionFlags[i]); | 62 | p.grid[x][y].dot = FlagsToDot(flags); |
63 | if (flags & Flags::IS_FULL_GAP) { | ||
64 | p.grid[x][y].gap = Cell::Gap::FULL; | ||
65 | } | ||
34 | } | 66 | } |
35 | 67 | ||
36 | int numConnections = _memory->ReadPanelData<int>(id, NUM_CONNECTIONS, 1)[0]; | ||
37 | std::vector<int> connections_a = _memory->ReadArray<int>(id, DOT_CONNECTION_A, numConnections); | ||
38 | std::vector<int> connections_b = _memory->ReadArray<int>(id, DOT_CONNECTION_B, numConnections); | ||
39 | std::vector<float> intersections = _memory->ReadArray<float>(id, DOT_POSITIONS, numIntersections*2); | ||
40 | |||
41 | // Iterate the remaining intersections (endpoints, dots, gaps) | 68 | // Iterate the remaining intersections (endpoints, dots, gaps) |
42 | for (; i < numIntersections; i++) { | 69 | for (; i < numIntersections; i++) { |
70 | int location = FindConnection(i, connections_a, connections_b); | ||
71 | if (location == -1) continue; // @Error: Unable to find connection point | ||
72 | // (x1, y1) location of this intersection | ||
73 | // (x2, y2) location of the connected intersection | ||
74 | float x1 = intersectionLocations[2*i]; | ||
75 | float y1 = intersectionLocations[2*i+1]; | ||
76 | float x2 = intersectionLocations[2*location]; | ||
77 | float y2 = intersectionLocations[2*location+1]; | ||
78 | auto [x, y] = loc_to_xy(p, location); | ||
79 | |||
43 | if (intersectionFlags[i] & Flags::IS_ENDPOINT) { | 80 | if (intersectionFlags[i] & Flags::IS_ENDPOINT) { |
44 | for (int j=0; j<numConnections; j++) { | 81 | // Our x coordinate is less than the target's |
45 | int location = 0; | 82 | if (x1 < x2) p.grid[x][y].end = Cell::Dir::LEFT; |
46 | if (connections_a[j] == i) location = connections_b[j]; | 83 | else if (x1 > x2) p.grid[x][y].end = Cell::Dir::RIGHT; |
47 | if (connections_b[j] == i) location = connections_a[j]; | 84 | // Note that Y coordinates are reversed: 0.0 (bottom) 1.0 (top) |
48 | if (location != 0) { | 85 | else if (y1 < y2) p.grid[x][y].end = Cell::Dir::DOWN; |
49 | auto [x, y] = loc_to_xy(p, location); | 86 | else if (y1 > y2) p.grid[x][y].end = Cell::Dir::UP; |
50 | if (intersections[2*i] < intersections[2*location]) { // Our (i) x coordinate is less than the target's (location) | ||
51 | p.grid[x][y].end = Cell::Dir::LEFT; | ||
52 | } else if (intersections[2*i] > intersections[2*location]) { | ||
53 | p.grid[x][y].end = Cell::Dir::RIGHT; | ||
54 | } else if (intersections[2*i + 1] > intersections[2*location + 1]) { // y coordinate is 0 (bottom) 1 (top), so this check is reversed. | ||
55 | p.grid[x][y].end = Cell::Dir::UP; | ||
56 | } else { | ||
57 | p.grid[x][y].end = Cell::Dir::DOWN; | ||
58 | } | ||
59 | break; | ||
60 | } | ||
61 | } | ||
62 | } else if (intersectionFlags[i] & Flags::HAS_DOT) { | 87 | } else if (intersectionFlags[i] & Flags::HAS_DOT) { |
63 | for (int j=0; j<numConnections; j++) { | 88 | if (x1 < x2) x--; |
64 | int location = 0; | 89 | else if (x1 > x2) x++; |
65 | if (connections_a[j] == i) location = connections_b[j]; | 90 | else if (y1 < y2) y++; |
66 | if (connections_b[j] == i) location = connections_a[j]; | 91 | else if (y1 > y2) y--; |
67 | if (location != 0) { | 92 | p.grid[x][y].dot = FlagsToDot(intersectionFlags[i]); |
68 | auto [x, y] = loc_to_xy(p, location); | 93 | } else if (intersectionFlags[i] & Flags::HAS_NO_CONN) { |
69 | float x1 = intersections[2*i]; | 94 | if (x1 < x2) x--; |
70 | float y1 = intersections[2*i+1]; | 95 | else if (x1 > x2) x++; |
71 | float x2 = intersections[2*location]; | 96 | else if (y1 < y2) y++; |
72 | float y2 = intersections[2*location+1]; | 97 | else if (y1 > y2) y--; |
73 | if (intersections[2*i] < intersections[2*location]) { | 98 | p.grid[x][y].gap = Cell::Gap::BREAK; |
74 | // Our (i) x coordinate is less than the target's (location), so we are to the left | 99 | } |
75 | x--; | ||
76 | } else if (intersections[2*i] > intersections[2*location]) { // To the right | ||
77 | x++; | ||
78 | } else if (intersections[2*i + 1] > intersections[2*location + 1]) { | ||
79 | // y coordinate is 0 (bottom) 1 (top), so this check is reversed. We are above the target (location) | ||
80 | y--; | ||
81 | } else { // Beleow the target | ||
82 | y++; | ||
83 | } | ||
84 | |||
85 | p.grid[x][y].dot = FlagsToDot(intersectionFlags[i]); | ||
86 | break; | ||
87 | } | ||
88 | } | ||
89 | } | ||
90 | } | 100 | } |
91 | } | 101 | } |
92 | 102 | ||
93 | void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) { | 103 | void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) { |
94 | int numDecorations = _memory->ReadPanelData<int>(id, NUM_DECORATIONS, 1)[0]; | 104 | int numDecorations = _memory->ReadPanelData<int>(id, NUM_DECORATIONS, 1)[0]; |
95 | std::vector<int> decorations = _memory->ReadArray<int>(id, DECORATIONS, numDecorations); | 105 | std::vector<int> decorations = _memory->ReadArray<int>(id, DECORATIONS, numDecorations); |
96 | if (numDecorations != decorations.size()) return; // @Error! | 106 | if (numDecorations > 0) p.hasDecorations = true; |
97 | 107 | ||
98 | for (int i=0; i<numDecorations; i++) { | 108 | for (int i=0; i<numDecorations; i++) { |
99 | auto [x, y] = dloc_to_xy(p, i); | 109 | auto [x, y] = dloc_to_xy(p, i); |
@@ -119,13 +129,13 @@ void PuzzleSerializer::WritePuzzle(const Puzzle& p, int id) { | |||
119 | _memory->WritePanelData<int>(id, GRID_SIZE_Y, {(p.height + 1)/2}); | 129 | _memory->WritePanelData<int>(id, GRID_SIZE_Y, {(p.height + 1)/2}); |
120 | 130 | ||
121 | WriteIntersections(p, id); | 131 | WriteIntersections(p, id); |
122 | WriteDecorations(p, id); | 132 | if (p.hasDecorations) WriteDecorations(p, id); |
123 | 133 | ||
124 | _memory->WritePanelData<int>(id, NEEDS_REDRAW, {1}); | 134 | _memory->WritePanelData<int>(id, NEEDS_REDRAW, {1}); |
125 | } | 135 | } |
126 | 136 | ||
127 | void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | 137 | void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { |
128 | std::vector<float> intersections; | 138 | std::vector<float> intersectionLocations; |
129 | std::vector<int> intersectionFlags; | 139 | std::vector<int> intersectionFlags; |
130 | std::vector<int> connections_a; | 140 | std::vector<int> connections_a; |
131 | std::vector<int> connections_b; | 141 | std::vector<int> connections_b; |
@@ -134,30 +144,56 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
134 | float max = 0.9f; | 144 | float max = 0.9f; |
135 | float width_interval = (max - min) / (p.width/2); | 145 | float width_interval = (max - min) / (p.width/2); |
136 | float height_interval = (max - min) / (p.height/2); | 146 | float height_interval = (max - min) / (p.height/2); |
147 | float horiz_gap_size = width_interval / 2; | ||
148 | float verti_gap_size = height_interval / 2; | ||
137 | 149 | ||
138 | // @Cleanup: If I write directly to locations, then I can remove this gross loop iterator. | 150 | // TODO: Compute HAS_NO_CONN / HAS_HORIZ_CONN / HAS_VERTI_CONN in this loop. |
151 | // @Cleanup: If I write directly to locations, then I can simplify this gross loop iterator. | ||
152 | // int numIntersections = (p.width / 2 + 1) * (p.height / 2 + 1); | ||
153 | // Grided intersections | ||
139 | for (int y=p.height-1; y>=0; y-=2) { | 154 | for (int y=p.height-1; y>=0; y-=2) { |
140 | for (int x=0; x<p.width; x+=2) { | 155 | for (int x=0; x<p.width; x+=2) { |
141 | intersections.push_back(static_cast<float>(min + (x/2) * width_interval)); | 156 | intersectionLocations.push_back(min + (x/2) * width_interval); |
142 | intersections.push_back(static_cast<float>(max - (y/2) * height_interval)); | 157 | intersectionLocations.push_back(max - (y/2) * height_interval); |
143 | int flags = 0; | 158 | int flags = 0; |
144 | if (p.grid[x][y].start) { | 159 | if (p.grid[x][y].start) { |
145 | flags |= Flags::IS_STARTPOINT; | 160 | flags |= Flags::IS_STARTPOINT; |
146 | } | 161 | } |
162 | if (p.grid[x][y].gap == Cell::Gap::FULL) { | ||
163 | flags |= Flags::IS_FULL_GAP; | ||
164 | } | ||
165 | switch (p.grid[x][y].dot) { | ||
166 | case Cell::Dot::BLACK: | ||
167 | flags |= Flags::HAS_DOT; | ||
168 | break; | ||
169 | case Cell::Dot::BLUE: | ||
170 | flags |= Flags::HAS_DOT | Flags::DOT_IS_BLUE; | ||
171 | break; | ||
172 | case Cell::Dot::YELLOW: | ||
173 | flags |= Flags::HAS_DOT | Flags::DOT_IS_ORANGE; | ||
174 | break; | ||
175 | case Cell::Dot::INVISIBLE: | ||
176 | flags |= Flags::HAS_DOT | Flags::DOT_IS_INVISIBLE; | ||
177 | break; | ||
178 | } | ||
179 | |||
147 | intersectionFlags.push_back(flags); | 180 | intersectionFlags.push_back(flags); |
148 | 181 | ||
149 | // Create connections for this intersection -- always write low -> high | 182 | // Create connections for this intersection -- always write the smaller value into a, the larger into b |
150 | if (y > 0) { | 183 | // Bottom connection |
184 | if (y > 0 && p.grid[x][y-1].gap == Cell::Gap::NONE) { | ||
151 | connections_a.push_back(xy_to_loc(p, x, y-2)); | 185 | connections_a.push_back(xy_to_loc(p, x, y-2)); |
152 | connections_b.push_back(xy_to_loc(p, x, y)); | 186 | connections_b.push_back(xy_to_loc(p, x, y)); |
153 | } | 187 | } |
154 | if (x > 0) { | 188 | // Left connection |
189 | if (x > 0 && p.grid[x-1][y].gap == Cell::Gap::NONE) { | ||
155 | connections_a.push_back(xy_to_loc(p, x-2, y)); | 190 | connections_a.push_back(xy_to_loc(p, x-2, y)); |
156 | connections_b.push_back(xy_to_loc(p, x, y)); | 191 | connections_b.push_back(xy_to_loc(p, x, y)); |
157 | } | 192 | } |
158 | } | 193 | } |
159 | } | 194 | } |
160 | 195 | ||
196 | // Endpoints | ||
161 | for (int x=0; x<p.width; x++) { | 197 | for (int x=0; x<p.width; x++) { |
162 | for (int y=0; y<p.height; y++) { | 198 | for (int y=0; y<p.height; y++) { |
163 | if (p.grid[x][y].end == Cell::Dir::NONE) continue; | 199 | if (p.grid[x][y].end == Cell::Dir::NONE) continue; |
@@ -180,8 +216,8 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
180 | yPos -= .05f; | 216 | yPos -= .05f; |
181 | break; | 217 | break; |
182 | } | 218 | } |
183 | intersections.push_back(xPos); | 219 | intersectionLocations.push_back(xPos); |
184 | intersections.push_back(yPos); | 220 | intersectionLocations.push_back(yPos); |
185 | intersectionFlags.push_back(Flags::IS_ENDPOINT); | 221 | intersectionFlags.push_back(Flags::IS_ENDPOINT); |
186 | } | 222 | } |
187 | } | 223 | } |
@@ -190,7 +226,28 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
190 | for (int x=0; x<p.width; x++) { | 226 | for (int x=0; x<p.width; x++) { |
191 | for (int y=0; y<p.height; y++) { | 227 | for (int y=0; y<p.height; y++) { |
192 | if (p.grid[x][y].dot == Cell::Dot::NONE) continue; | 228 | if (p.grid[x][y].dot == Cell::Dot::NONE) continue; |
193 | if (x%2 == 1 && y%2 == 1) continue; | 229 | if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled. |
230 | |||
231 | // We need to introduce a new segment -- | ||
232 | // Locate the segment we're breaking | ||
233 | for (int i=0; i<connections_a.size(); i++) { | ||
234 | auto [x1, y1] = loc_to_xy(p, connections_a[i]); | ||
235 | auto [x2, y2] = loc_to_xy(p, connections_b[i]); | ||
236 | if ((x1+1 == x && x2-1 == x && y1 == y && y2 == y) || | ||
237 | (y1+1 == y && y2-1 == y && x1 == x && x2 == x)) { | ||
238 | int other_connection = connections_b[i]; | ||
239 | connections_b[i] = static_cast<int>(intersectionFlags.size()); // This endpoint | ||
240 | |||
241 | connections_a.push_back(other_connection); | ||
242 | connections_b.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | ||
243 | break; | ||
244 | } | ||
245 | } | ||
246 | // Add this dot to the end | ||
247 | float xPos = min + (x/2.0f) * width_interval; | ||
248 | float yPos = max - (y/2.0f) * height_interval; | ||
249 | intersectionLocations.push_back(xPos); | ||
250 | intersectionLocations.push_back(yPos); | ||
194 | 251 | ||
195 | int flags = Flags::HAS_DOT; | 252 | int flags = Flags::HAS_DOT; |
196 | switch (p.grid[x][y].dot) { | 253 | switch (p.grid[x][y].dot) { |
@@ -206,15 +263,16 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
206 | flags |= DOT_IS_INVISIBLE; | 263 | flags |= DOT_IS_INVISIBLE; |
207 | break; | 264 | break; |
208 | } | 265 | } |
266 | intersectionFlags.push_back(flags); | ||
267 | } | ||
268 | } | ||
209 | 269 | ||
210 | // Dot is already a point the grid, just overwrite the flags | 270 | // Gaps |
211 | if (x%2 == 0 && y%2 == 0) { | 271 | for (int x=0; x<p.width; x++) { |
212 | intersectionFlags[xy_to_loc(p, x, y)] |= flags; | 272 | for (int y=0; y<p.height; y++) { |
213 | continue; | 273 | if (p.grid[x][y].gap == Cell::Gap::NONE) continue; |
214 | } | 274 | if (x%2 == y%2) continue; // Cells are invalid, intersections are already handled. |
215 | 275 | ||
216 | // Else, we need to introduce a new segment | ||
217 | // Locate the segment we're breaking | ||
218 | for (int i=0; i<connections_a.size(); i++) { | 276 | for (int i=0; i<connections_a.size(); i++) { |
219 | auto [x1, y1] = loc_to_xy(p, connections_a[i]); | 277 | auto [x1, y1] = loc_to_xy(p, connections_a[i]); |
220 | auto [x2, y2] = loc_to_xy(p, connections_b[i]); | 278 | auto [x2, y2] = loc_to_xy(p, connections_b[i]); |
@@ -223,22 +281,35 @@ void PuzzleSerializer::WriteIntersections(const Puzzle& p, int id) { | |||
223 | int other_connection = connections_b[i]; | 281 | int other_connection = connections_b[i]; |
224 | connections_b[i] = static_cast<int>(intersectionFlags.size()); // This endpoint | 282 | connections_b[i] = static_cast<int>(intersectionFlags.size()); // This endpoint |
225 | 283 | ||
226 | connections_a.push_back(static_cast<int>(intersectionFlags.size())); // This endpoint | 284 | connections_a.push_back(other_connection); |
227 | connections_b.push_back(other_connection); | 285 | connections_b.push_back(static_cast<int>(intersectionFlags.size() + 1)); // Next endpoint |
228 | break; | 286 | break; |
229 | } | 287 | } |
230 | } | 288 | } |
231 | // Add this dot to the end | 289 | // Add the two halves of this gap to the end |
232 | float xPos = min + (x/2.0f) * width_interval; | 290 | float xPos = min + (x/2.0f) * width_interval; |
233 | float yPos = max - (y/2.0f) * height_interval; | 291 | float yPos = max - (y/2.0f) * height_interval; |
234 | intersections.push_back(xPos); | 292 | // Reminder: Y goes from 0.0 (bottom) to 1.0 (top) |
235 | intersections.push_back(yPos); | 293 | if (x%2 == 0) { // Vertical gap |
236 | intersectionFlags.push_back(flags); | 294 | intersectionLocations.push_back(xPos); |
295 | intersectionLocations.push_back(yPos + verti_gap_size / 2); | ||
296 | intersectionLocations.push_back(xPos); | ||
297 | intersectionLocations.push_back(yPos - verti_gap_size / 2); | ||
298 | intersectionFlags.push_back(Flags::HAS_NO_CONN | Flags::HAS_VERTI_CONN); | ||
299 | intersectionFlags.push_back(Flags::HAS_NO_CONN | Flags::HAS_VERTI_CONN); | ||
300 | } else if (y%2 == 0) { // Horizontal gap | ||
301 | intersectionLocations.push_back(xPos - horiz_gap_size / 2); | ||
302 | intersectionLocations.push_back(yPos); | ||
303 | intersectionLocations.push_back(xPos + horiz_gap_size / 2); | ||
304 | intersectionLocations.push_back(yPos); | ||
305 | intersectionFlags.push_back(Flags::HAS_NO_CONN | Flags::HAS_VERTI_CONN); | ||
306 | intersectionFlags.push_back(Flags::HAS_NO_CONN | Flags::HAS_VERTI_CONN); | ||
307 | } | ||
237 | } | 308 | } |
238 | } | 309 | } |
239 | 310 | ||
240 | _memory->WritePanelData<int>(id, NUM_DOTS, {static_cast<int>(intersectionFlags.size())}); | 311 | _memory->WritePanelData<int>(id, NUM_DOTS, {static_cast<int>(intersectionFlags.size())}); |
241 | _memory->WriteArray<float>(id, DOT_POSITIONS, intersections); | 312 | _memory->WriteArray<float>(id, DOT_POSITIONS, intersectionLocations); |
242 | _memory->WriteArray<int>(id, DOT_FLAGS, intersectionFlags); | 313 | _memory->WriteArray<int>(id, DOT_FLAGS, intersectionFlags); |
243 | _memory->WritePanelData<int>(id, NUM_CONNECTIONS, {static_cast<int>(connections_a.size())}); | 314 | _memory->WritePanelData<int>(id, NUM_CONNECTIONS, {static_cast<int>(connections_a.size())}); |
244 | _memory->WriteArray<int>(id, DOT_CONNECTION_A, connections_a); | 315 | _memory->WriteArray<int>(id, DOT_CONNECTION_A, connections_a); |
@@ -262,7 +333,7 @@ void PuzzleSerializer::WriteDecorations(const Puzzle& p, int id) { | |||
262 | _memory->WriteArray<int>(id, DECORATIONS, decorations); | 333 | _memory->WriteArray<int>(id, DECORATIONS, decorations); |
263 | } | 334 | } |
264 | 335 | ||
265 | std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) { | 336 | std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) const { |
266 | int height2 = (p.height - 1) / 2; | 337 | int height2 = (p.height - 1) / 2; |
267 | int width2 = (p.width + 1) / 2; | 338 | int width2 = (p.width + 1) / 2; |
268 | 339 | ||
@@ -271,7 +342,7 @@ std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location) | |||
271 | return {x, y}; | 342 | return {x, y}; |
272 | } | 343 | } |
273 | 344 | ||
274 | int PuzzleSerializer::xy_to_loc(const Puzzle& p, int x, int y) { | 345 | int PuzzleSerializer::xy_to_loc(const Puzzle& p, int x, int y) const { |
275 | int height2 = (p.height - 1) / 2; | 346 | int height2 = (p.height - 1) / 2; |
276 | int width2 = (p.width + 1) / 2; | 347 | int width2 = (p.width + 1) / 2; |
277 | 348 | ||
@@ -279,7 +350,7 @@ int PuzzleSerializer::xy_to_loc(const Puzzle& p, int x, int y) { | |||
279 | return rowsFromBottom * width2 + x/2; | 350 | return rowsFromBottom * width2 + x/2; |
280 | } | 351 | } |
281 | 352 | ||
282 | std::tuple<int, int> PuzzleSerializer::dloc_to_xy(const Puzzle& p, int location) { | 353 | std::tuple<int, int> PuzzleSerializer::dloc_to_xy(const Puzzle& p, int location) const { |
283 | int height2 = (p.height - 3) / 2; | 354 | int height2 = (p.height - 3) / 2; |
284 | int width2 = (p.width - 1) / 2; | 355 | int width2 = (p.width - 1) / 2; |
285 | 356 | ||
@@ -288,7 +359,7 @@ std::tuple<int, int> PuzzleSerializer::dloc_to_xy(const Puzzle& p, int location) | |||
288 | return {x, y}; | 359 | return {x, y}; |
289 | } | 360 | } |
290 | 361 | ||
291 | int PuzzleSerializer::xy_to_dloc(const Puzzle& p, int x, int y) { | 362 | int PuzzleSerializer::xy_to_dloc(const Puzzle& p, int x, int y) const { |
292 | int height2 = (p.height - 3) / 2; | 363 | int height2 = (p.height - 3) / 2; |
293 | int width2 = (p.width - 1) / 2; | 364 | int width2 = (p.width - 1) / 2; |
294 | 365 | ||
@@ -296,7 +367,7 @@ int PuzzleSerializer::xy_to_dloc(const Puzzle& p, int x, int y) { | |||
296 | return rowsFromBottom * width2 + (x - 1)/2; | 367 | return rowsFromBottom * width2 + (x - 1)/2; |
297 | } | 368 | } |
298 | 369 | ||
299 | Cell::Dot PuzzleSerializer::FlagsToDot(int flags) { | 370 | Cell::Dot PuzzleSerializer::FlagsToDot(int flags) const { |
300 | if (!(flags & Flags::HAS_DOT)) return Cell::Dot::NONE; | 371 | if (!(flags & Flags::HAS_DOT)) return Cell::Dot::NONE; |
301 | if (flags & Flags::DOT_IS_BLUE) { | 372 | if (flags & Flags::DOT_IS_BLUE) { |
302 | return Cell::Dot::BLUE; | 373 | return Cell::Dot::BLUE; |
@@ -308,3 +379,11 @@ Cell::Dot PuzzleSerializer::FlagsToDot(int flags) { | |||
308 | return Cell::Dot::BLACK; | 379 | return Cell::Dot::BLACK; |
309 | } | 380 | } |
310 | } | 381 | } |
382 | |||
383 | int PuzzleSerializer::FindConnection(int i, const std::vector<int>& connections_a, const std::vector<int>& connections_b) const { | ||
384 | for (int j=0; j<connections_a.size(); j++) { | ||
385 | if (connections_a[j] == i) return connections_b[j]; | ||
386 | if (connections_b[j] == i) return connections_a[j]; | ||
387 | } | ||
388 | return -1; | ||
389 | } | ||