summary refs log tree commit diff stats
path: root/Source
diff options
context:
space:
mode:
authorjbzdarkid <jbzdarkid@gmail.com>2020-03-03 21:25:56 -0800
committerjbzdarkid <jbzdarkid@gmail.com>2020-03-03 21:25:56 -0800
commit3ece17f201686342e8aff90148f360245788b234 (patch)
treea1deba5c1b09ecdc56d2c94b880ef8767289371d /Source
parente77cfa1596f996cc50c1601ee29891a7fb7eb62d (diff)
downloadwitness-tutorializer-3ece17f201686342e8aff90148f360245788b234.tar.gz
witness-tutorializer-3ece17f201686342e8aff90148f360245788b234.tar.bz2
witness-tutorializer-3ece17f201686342e8aff90148f360245788b234.zip
add support for puzzle serialization
Diffstat (limited to 'Source')
-rw-r--r--Source/Puzzle.cpp88
-rw-r--r--Source/Puzzle.h3
-rw-r--r--Source/PuzzleSerializer.cpp4
-rw-r--r--Source/Random.h1
-rw-r--r--Source/Randomizer.cpp1
-rw-r--r--Source/Source.vcxproj1
-rw-r--r--Source/json.hpp22875
7 files changed, 22973 insertions, 0 deletions
diff --git a/Source/Puzzle.cpp b/Source/Puzzle.cpp index f0664c7..101ec7c 100644 --- a/Source/Puzzle.cpp +++ b/Source/Puzzle.cpp
@@ -45,6 +45,94 @@ Pos Puzzle::GetSymmetricalPos(int x, int y) const {
45 return Pos{x, y}; 45 return Pos{x, y};
46} 46}
47 47
48#include "json.hpp"
49nlohmann::json newGrid(int width, int height) {
50 using namespace nlohmann;
51
52 json grid;
53 for (int x=0; x<width; x++) {
54 grid[x] = json::array();
55 for (int y=0; y<height; y++) {
56 if (x%2 == 1 && y%2 == 1) grid[x][y] = json::object();
57 else grid[x][y] = {{"type", "line"}, {"color", 0}};
58 }
59 }
60 return grid;
61}
62
63std::string Puzzle::Serialize() {
64 using namespace nlohmann;
65
66 json puzzle;
67 puzzle["grid"] = {};
68 for (int x=0; x<width; x++) {
69 puzzle["grid"][x] = json::array();
70 for (int y=0; y<height; y++) {
71 if (x%2 == 1 && y%2 == 1) puzzle["grid"][x][y] = json::object();
72 else puzzle["grid"][x][y] = {{"type", "line"}, {"color", 0}};
73 }
74 }
75 puzzle["pillar"] = pillar;
76 if (symmetry == Symmetry::X) puzzle["symmetry"] = {{"x", true}, {"y", false}};
77 else if (symmetry == Symmetry::Y) puzzle["symmetry"] = {{"x", false}, {"y", true}};
78 else if (symmetry == Symmetry::XY) puzzle["symmetry"] = {{"x", true}, {"y", true}};
79
80 for (int x=0; x<width; x++) {
81 for (int y=0; y<height; y++) {
82 const Cell& cell = grid[x][y];
83 json j = puzzle["grid"][x][y];
84 if (cell.dot != Cell::Dot::NONE) {
85 if (cell.dot == Cell::Dot::BLACK) j["dot"] = 1;
86 if (cell.dot == Cell::Dot::BLUE) j["dot"] = 2;
87 if (cell.dot == Cell::Dot::YELLOW) j["dot"] = 3;
88 if (cell.dot == Cell::Dot::INVISIBLE) j["dot"] = 4;
89 } else if (cell.gap != Cell::Gap::NONE) {
90 if (cell.gap == Cell::Gap::BREAK) j["gap"] = 1;
91 if (cell.gap == Cell::Gap::FULL) j["gap"] = 2;
92 } else if (cell.decoration != nullptr) {
93 if (cell.decoration->color == Color::Black) j["color"] = "black";
94 else if (cell.decoration->color == Color::Blue) j["color"] = "blue";
95 else if (cell.decoration->color == Color::Cyan) j["color"] = "cyan";
96 else if (cell.decoration->color == Color::Gray) j["color"] = "gray";
97 else if (cell.decoration->color == Color::Green) j["color"] = "green";
98 else if (cell.decoration->color == Color::Orange) j["color"] = "orange";
99 else if (cell.decoration->color == Color::Pink) j["color"] = "pink";
100 else if (cell.decoration->color == Color::Purple) j["color"] = "purple";
101 else if (cell.decoration->color == Color::White) j["color"] = "white";
102 else if (cell.decoration->color == Color::Yellow) j["color"] = "yellow";
103
104 if (cell.decoration->type == Type::Stone) {
105 j["type"] = "square";
106 } else if (cell.decoration->type == Type::Star) {
107 j["type"] = "star";
108 } else if (cell.decoration->type == Type::Poly) {
109 j["type"] = "poly";
110 j["polyshape"] = cell.decoration->polyshape;
111 } else if (cell.decoration->type == Type::Ylop) {
112 j["type"] = "ylop";
113 j["polyshape"] = cell.decoration->polyshape;
114 } else if (cell.decoration->type == Type::Nega) {
115 j["type"] = "nega";
116 } else if (cell.decoration->type == Type::Triangle) {
117 j["type"] = "triangle";
118 j["count"] = cell.decoration->count;
119 }
120 }
121
122 if (cell.start) j["start"] = true;
123 if (cell.end != Cell::Dir::NONE) {
124 if (cell.end == Cell::Dir::LEFT) j["end"] = "left";
125 else if (cell.end == Cell::Dir::RIGHT) j["end"] = "right";
126 else if (cell.end == Cell::Dir::UP) j["end"] = "top";
127 else if (cell.end == Cell::Dir::DOWN) j["end"] = "bottom";
128 }
129 puzzle["grid"][x][y] = j;
130 }
131 }
132
133 return puzzle.dump();
134}
135
48int Puzzle::Mod(int x) const { 136int Puzzle::Mod(int x) const {
49 if (!pillar) return x; 137 if (!pillar) return x;
50 return (x + width * height * 2) % width; 138 return (x + width * height * 2) % width;
diff --git a/Source/Puzzle.h b/Source/Puzzle.h index c2a8fce..6ba6bc1 100644 --- a/Source/Puzzle.h +++ b/Source/Puzzle.h
@@ -45,6 +45,7 @@ struct Cell {
45 std::shared_ptr<Decoration> decoration = nullptr; 45 std::shared_ptr<Decoration> decoration = nullptr;
46 46
47 bool start = false; 47 bool start = false;
48 // TODO: Top/bottom
48 enum class Dir {NONE, LEFT, RIGHT, UP, DOWN}; 49 enum class Dir {NONE, LEFT, RIGHT, UP, DOWN};
49 Dir end = Dir::NONE; 50 Dir end = Dir::NONE;
50 51
@@ -92,6 +93,8 @@ public:
92 void NewGrid(int newWidth, int newHeight); 93 void NewGrid(int newWidth, int newHeight);
93 Pos GetSymmetricalPos(int x, int y) const; 94 Pos GetSymmetricalPos(int x, int y) const;
94 95
96 std::string Serialize();
97
95// private: 98// private:
96 std::vector<std::vector<Cell>> grid; 99 std::vector<std::vector<Cell>> grid;
97 100
diff --git a/Source/PuzzleSerializer.cpp b/Source/PuzzleSerializer.cpp index 3732db8..e316216 100644 --- a/Source/PuzzleSerializer.cpp +++ b/Source/PuzzleSerializer.cpp
@@ -179,6 +179,7 @@ void PuzzleSerializer::ReadExtras(Puzzle& p) {
179 179
180void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) { 180void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) {
181 int numDecorations = _memory->ReadEntityData<int>(id, NUM_DECORATIONS, 1)[0]; 181 int numDecorations = _memory->ReadEntityData<int>(id, NUM_DECORATIONS, 1)[0];
182 if (numDecorations == 0) return;
182 std::vector<int> decorations = _memory->ReadArray<int>(id, DECORATIONS, numDecorations); 183 std::vector<int> decorations = _memory->ReadArray<int>(id, DECORATIONS, numDecorations);
183 if (numDecorations > 0) p.hasDecorations = true; 184 if (numDecorations > 0) p.hasDecorations = true;
184 185
@@ -203,6 +204,7 @@ void PuzzleSerializer::ReadDecorations(Puzzle& p, int id) {
203 204
204void PuzzleSerializer::ReadSequence(Puzzle& p, int id) { 205void PuzzleSerializer::ReadSequence(Puzzle& p, int id) {
205 int sequenceLength = _memory->ReadEntityData<int>(id, SEQUENCE_LEN, 1)[0]; 206 int sequenceLength = _memory->ReadEntityData<int>(id, SEQUENCE_LEN, 1)[0];
207 if (sequenceLength == 0) return;
206 std::vector<int> sequence = _memory->ReadArray<int>(id, SEQUENCE, sequenceLength); 208 std::vector<int> sequence = _memory->ReadArray<int>(id, SEQUENCE, sequenceLength);
207 209
208 for (int location : sequence) { 210 for (int location : sequence) {
@@ -545,6 +547,8 @@ std::tuple<int, int> PuzzleSerializer::loc_to_xy(const Puzzle& p, int location)
545 547
546 int x = 2 * (location % width2); 548 int x = 2 * (location % width2);
547 int y = 2 * (height2 - location / width2); 549 int y = 2 * (height2 - location / width2);
550 assert(x >= 0 && x < p.width);
551 assert(y >= 0 && y < p.height);
548 return {x, y}; 552 return {x, y};
549} 553}
550 554
diff --git a/Source/Random.h b/Source/Random.h index 36b6dc1..e3737ed 100644 --- a/Source/Random.h +++ b/Source/Random.h
@@ -17,6 +17,7 @@ public:
17 set[index] = set[setSize-1]; 17 set[index] = set[setSize-1];
18 setSize--; 18 setSize--;
19 } 19 }
20 assert(selection.size() == count);
20 return selection; 21 return selection;
21 } 22 }
22 23
diff --git a/Source/Randomizer.cpp b/Source/Randomizer.cpp index 01d1e2e..72072a8 100644 --- a/Source/Randomizer.cpp +++ b/Source/Randomizer.cpp
@@ -97,6 +97,7 @@ Things to do for V2:
97#include "Panels.h" 97#include "Panels.h"
98#include "Random.h" 98#include "Random.h"
99 99
100
100template <class T> 101template <class T>
101int find(const std::vector<T> &data, T search, size_t startIndex = 0) { 102int find(const std::vector<T> &data, T search, size_t startIndex = 0) {
102 for (size_t i=startIndex ; i<data.size(); i++) { 103 for (size_t i=startIndex ; i<data.size(); i++) {
diff --git a/Source/Source.vcxproj b/Source/Source.vcxproj index 76fdcef..78b5f00 100644 --- a/Source/Source.vcxproj +++ b/Source/Source.vcxproj
@@ -162,6 +162,7 @@
162 </ItemDefinitionGroup> 162 </ItemDefinitionGroup>
163 <ItemGroup> 163 <ItemGroup>
164 <ClInclude Include="ChallengeRandomizer.h" /> 164 <ClInclude Include="ChallengeRandomizer.h" />
165 <ClInclude Include="json.hpp" />
165 <ClInclude Include="Memory.h" /> 166 <ClInclude Include="Memory.h" />
166 <ClInclude Include="MemoryException.h" /> 167 <ClInclude Include="MemoryException.h" />
167 <ClInclude Include="pch.h" /> 168 <ClInclude Include="pch.h" />
diff --git a/Source/json.hpp b/Source/json.hpp new file mode 100644 index 0000000..06da815 --- /dev/null +++ b/Source/json.hpp
@@ -0,0 +1,22875 @@
1/*
2 __ _____ _____ _____
3 __| | __| | | | JSON for Modern C++
4| | |__ | | | | | | version 3.7.3
5|_____|_____|_____|_|___| https://github.com/nlohmann/json
6
7Licensed under the MIT License <http://opensource.org/licenses/MIT>.
8SPDX-License-Identifier: MIT
9Copyright (c) 2013-2019 Niels Lohmann <http://nlohmann.me>.
10
11Permission is hereby granted, free of charge, to any person obtaining a copy
12of this software and associated documentation files (the "Software"), to deal
13in the Software without restriction, including without limitation the rights
14to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15copies of the Software, and to permit persons to whom the Software is
16furnished to do so, subject to the following conditions:
17
18The above copyright notice and this permission notice shall be included in all
19copies or substantial portions of the Software.
20
21THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27SOFTWARE.
28*/
29
30#ifndef INCLUDE_NLOHMANN_JSON_HPP_
31#define INCLUDE_NLOHMANN_JSON_HPP_
32
33#define NLOHMANN_JSON_VERSION_MAJOR 3
34#define NLOHMANN_JSON_VERSION_MINOR 7
35#define NLOHMANN_JSON_VERSION_PATCH 3
36
37#include <algorithm> // all_of, find, for_each
38#include <cassert> // assert
39#include <ciso646> // and, not, or
40#include <cstddef> // nullptr_t, ptrdiff_t, size_t
41#include <functional> // hash, less
42#include <initializer_list> // initializer_list
43#include <iosfwd> // istream, ostream
44#include <iterator> // random_access_iterator_tag
45#include <memory> // unique_ptr
46#include <numeric> // accumulate
47#include <string> // string, stoi, to_string
48#include <utility> // declval, forward, move, pair, swap
49#include <vector> // vector
50
51// #include <nlohmann/adl_serializer.hpp>
52
53
54#include <utility>
55
56// #include <nlohmann/detail/conversions/from_json.hpp>
57
58
59#include <algorithm> // transform
60#include <array> // array
61#include <ciso646> // and, not
62#include <forward_list> // forward_list
63#include <iterator> // inserter, front_inserter, end
64#include <map> // map
65#include <string> // string
66#include <tuple> // tuple, make_tuple
67#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
68#include <unordered_map> // unordered_map
69#include <utility> // pair, declval
70#include <valarray> // valarray
71
72// #include <nlohmann/detail/exceptions.hpp>
73
74
75#include <exception> // exception
76#include <stdexcept> // runtime_error
77#include <string> // to_string
78
79// #include <nlohmann/detail/input/position_t.hpp>
80
81
82#include <cstddef> // size_t
83
84namespace nlohmann
85{
86namespace detail
87{
88/// struct to capture the start position of the current token
89struct position_t
90{
91 /// the total number of characters read
92 std::size_t chars_read_total = 0;
93 /// the number of characters read in the current line
94 std::size_t chars_read_current_line = 0;
95 /// the number of lines read
96 std::size_t lines_read = 0;
97
98 /// conversion to size_t to preserve SAX interface
99 constexpr operator size_t() const
100 {
101 return chars_read_total;
102 }
103};
104
105} // namespace detail
106} // namespace nlohmann
107
108// #include <nlohmann/detail/macro_scope.hpp>
109
110
111#include <utility> // pair
112// #include <nlohmann/thirdparty/hedley/hedley.hpp>
113/* Hedley - https://nemequ.github.io/hedley
114 * Created by Evan Nemerson <evan@nemerson.com>
115 *
116 * To the extent possible under law, the author(s) have dedicated all
117 * copyright and related and neighboring rights to this software to
118 * the public domain worldwide. This software is distributed without
119 * any warranty.
120 *
121 * For details, see <http://creativecommons.org/publicdomain/zero/1.0/>.
122 * SPDX-License-Identifier: CC0-1.0
123 */
124
125#if !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < 11)
126#if defined(JSON_HEDLEY_VERSION)
127 #undef JSON_HEDLEY_VERSION
128#endif
129#define JSON_HEDLEY_VERSION 11
130
131#if defined(JSON_HEDLEY_STRINGIFY_EX)
132 #undef JSON_HEDLEY_STRINGIFY_EX
133#endif
134#define JSON_HEDLEY_STRINGIFY_EX(x) #x
135
136#if defined(JSON_HEDLEY_STRINGIFY)
137 #undef JSON_HEDLEY_STRINGIFY
138#endif
139#define JSON_HEDLEY_STRINGIFY(x) JSON_HEDLEY_STRINGIFY_EX(x)
140
141#if defined(JSON_HEDLEY_CONCAT_EX)
142 #undef JSON_HEDLEY_CONCAT_EX
143#endif
144#define JSON_HEDLEY_CONCAT_EX(a,b) a##b
145
146#if defined(JSON_HEDLEY_CONCAT)
147 #undef JSON_HEDLEY_CONCAT
148#endif
149#define JSON_HEDLEY_CONCAT(a,b) JSON_HEDLEY_CONCAT_EX(a,b)
150
151#if defined(JSON_HEDLEY_VERSION_ENCODE)
152 #undef JSON_HEDLEY_VERSION_ENCODE
153#endif
154#define JSON_HEDLEY_VERSION_ENCODE(major,minor,revision) (((major) * 1000000) + ((minor) * 1000) + (revision))
155
156#if defined(JSON_HEDLEY_VERSION_DECODE_MAJOR)
157 #undef JSON_HEDLEY_VERSION_DECODE_MAJOR
158#endif
159#define JSON_HEDLEY_VERSION_DECODE_MAJOR(version) ((version) / 1000000)
160
161#if defined(JSON_HEDLEY_VERSION_DECODE_MINOR)
162 #undef JSON_HEDLEY_VERSION_DECODE_MINOR
163#endif
164#define JSON_HEDLEY_VERSION_DECODE_MINOR(version) (((version) % 1000000) / 1000)
165
166#if defined(JSON_HEDLEY_VERSION_DECODE_REVISION)
167 #undef JSON_HEDLEY_VERSION_DECODE_REVISION
168#endif
169#define JSON_HEDLEY_VERSION_DECODE_REVISION(version) ((version) % 1000)
170
171#if defined(JSON_HEDLEY_GNUC_VERSION)
172 #undef JSON_HEDLEY_GNUC_VERSION
173#endif
174#if defined(__GNUC__) && defined(__GNUC_PATCHLEVEL__)
175 #define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__)
176#elif defined(__GNUC__)
177 #define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, 0)
178#endif
179
180#if defined(JSON_HEDLEY_GNUC_VERSION_CHECK)
181 #undef JSON_HEDLEY_GNUC_VERSION_CHECK
182#endif
183#if defined(JSON_HEDLEY_GNUC_VERSION)
184 #define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GNUC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
185#else
186 #define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (0)
187#endif
188
189#if defined(JSON_HEDLEY_MSVC_VERSION)
190 #undef JSON_HEDLEY_MSVC_VERSION
191#endif
192#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 140000000)
193 #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 10000000, (_MSC_FULL_VER % 10000000) / 100000, (_MSC_FULL_VER % 100000) / 100)
194#elif defined(_MSC_FULL_VER)
195 #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 1000000, (_MSC_FULL_VER % 1000000) / 10000, (_MSC_FULL_VER % 10000) / 10)
196#elif defined(_MSC_VER)
197 #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_VER / 100, _MSC_VER % 100, 0)
198#endif
199
200#if defined(JSON_HEDLEY_MSVC_VERSION_CHECK)
201 #undef JSON_HEDLEY_MSVC_VERSION_CHECK
202#endif
203#if !defined(_MSC_VER)
204 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (0)
205#elif defined(_MSC_VER) && (_MSC_VER >= 1400)
206 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 10000000) + (minor * 100000) + (patch)))
207#elif defined(_MSC_VER) && (_MSC_VER >= 1200)
208 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 1000000) + (minor * 10000) + (patch)))
209#else
210 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_VER >= ((major * 100) + (minor)))
211#endif
212
213#if defined(JSON_HEDLEY_INTEL_VERSION)
214 #undef JSON_HEDLEY_INTEL_VERSION
215#endif
216#if defined(__INTEL_COMPILER) && defined(__INTEL_COMPILER_UPDATE)
217 #define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, __INTEL_COMPILER_UPDATE)
218#elif defined(__INTEL_COMPILER)
219 #define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, 0)
220#endif
221
222#if defined(JSON_HEDLEY_INTEL_VERSION_CHECK)
223 #undef JSON_HEDLEY_INTEL_VERSION_CHECK
224#endif
225#if defined(JSON_HEDLEY_INTEL_VERSION)
226 #define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_INTEL_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
227#else
228 #define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (0)
229#endif
230
231#if defined(JSON_HEDLEY_PGI_VERSION)
232 #undef JSON_HEDLEY_PGI_VERSION
233#endif
234#if defined(__PGI) && defined(__PGIC__) && defined(__PGIC_MINOR__) && defined(__PGIC_PATCHLEVEL__)
235 #define JSON_HEDLEY_PGI_VERSION JSON_HEDLEY_VERSION_ENCODE(__PGIC__, __PGIC_MINOR__, __PGIC_PATCHLEVEL__)
236#endif
237
238#if defined(JSON_HEDLEY_PGI_VERSION_CHECK)
239 #undef JSON_HEDLEY_PGI_VERSION_CHECK
240#endif
241#if defined(JSON_HEDLEY_PGI_VERSION)
242 #define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PGI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
243#else
244 #define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (0)
245#endif
246
247#if defined(JSON_HEDLEY_SUNPRO_VERSION)
248 #undef JSON_HEDLEY_SUNPRO_VERSION
249#endif
250#if defined(__SUNPRO_C) && (__SUNPRO_C > 0x1000)
251 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_C >> 16) & 0xf) * 10) + ((__SUNPRO_C >> 12) & 0xf), (((__SUNPRO_C >> 8) & 0xf) * 10) + ((__SUNPRO_C >> 4) & 0xf), (__SUNPRO_C & 0xf) * 10)
252#elif defined(__SUNPRO_C)
253 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_C >> 8) & 0xf, (__SUNPRO_C >> 4) & 0xf, (__SUNPRO_C) & 0xf)
254#elif defined(__SUNPRO_CC) && (__SUNPRO_CC > 0x1000)
255 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_CC >> 16) & 0xf) * 10) + ((__SUNPRO_CC >> 12) & 0xf), (((__SUNPRO_CC >> 8) & 0xf) * 10) + ((__SUNPRO_CC >> 4) & 0xf), (__SUNPRO_CC & 0xf) * 10)
256#elif defined(__SUNPRO_CC)
257 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_CC >> 8) & 0xf, (__SUNPRO_CC >> 4) & 0xf, (__SUNPRO_CC) & 0xf)
258#endif
259
260#if defined(JSON_HEDLEY_SUNPRO_VERSION_CHECK)
261 #undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
262#endif
263#if defined(JSON_HEDLEY_SUNPRO_VERSION)
264 #define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_SUNPRO_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
265#else
266 #define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (0)
267#endif
268
269#if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
270 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION
271#endif
272#if defined(__EMSCRIPTEN__)
273 #define JSON_HEDLEY_EMSCRIPTEN_VERSION JSON_HEDLEY_VERSION_ENCODE(__EMSCRIPTEN_major__, __EMSCRIPTEN_minor__, __EMSCRIPTEN_tiny__)
274#endif
275
276#if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK)
277 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
278#endif
279#if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
280 #define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_EMSCRIPTEN_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
281#else
282 #define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (0)
283#endif
284
285#if defined(JSON_HEDLEY_ARM_VERSION)
286 #undef JSON_HEDLEY_ARM_VERSION
287#endif
288#if defined(__CC_ARM) && defined(__ARMCOMPILER_VERSION)
289 #define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCOMPILER_VERSION / 1000000, (__ARMCOMPILER_VERSION % 1000000) / 10000, (__ARMCOMPILER_VERSION % 10000) / 100)
290#elif defined(__CC_ARM) && defined(__ARMCC_VERSION)
291 #define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCC_VERSION / 1000000, (__ARMCC_VERSION % 1000000) / 10000, (__ARMCC_VERSION % 10000) / 100)
292#endif
293
294#if defined(JSON_HEDLEY_ARM_VERSION_CHECK)
295 #undef JSON_HEDLEY_ARM_VERSION_CHECK
296#endif
297#if defined(JSON_HEDLEY_ARM_VERSION)
298 #define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_ARM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
299#else
300 #define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (0)
301#endif
302
303#if defined(JSON_HEDLEY_IBM_VERSION)
304 #undef JSON_HEDLEY_IBM_VERSION
305#endif
306#if defined(__ibmxl__)
307 #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ibmxl_version__, __ibmxl_release__, __ibmxl_modification__)
308#elif defined(__xlC__) && defined(__xlC_ver__)
309 #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, (__xlC_ver__ >> 8) & 0xff)
310#elif defined(__xlC__)
311 #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, 0)
312#endif
313
314#if defined(JSON_HEDLEY_IBM_VERSION_CHECK)
315 #undef JSON_HEDLEY_IBM_VERSION_CHECK
316#endif
317#if defined(JSON_HEDLEY_IBM_VERSION)
318 #define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IBM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
319#else
320 #define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (0)
321#endif
322
323#if defined(JSON_HEDLEY_TI_VERSION)
324 #undef JSON_HEDLEY_TI_VERSION
325#endif
326#if defined(__TI_COMPILER_VERSION__)
327 #define JSON_HEDLEY_TI_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
328#endif
329
330#if defined(JSON_HEDLEY_TI_VERSION_CHECK)
331 #undef JSON_HEDLEY_TI_VERSION_CHECK
332#endif
333#if defined(JSON_HEDLEY_TI_VERSION)
334 #define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
335#else
336 #define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (0)
337#endif
338
339#if defined(JSON_HEDLEY_CRAY_VERSION)
340 #undef JSON_HEDLEY_CRAY_VERSION
341#endif
342#if defined(_CRAYC)
343 #if defined(_RELEASE_PATCHLEVEL)
344 #define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, _RELEASE_PATCHLEVEL)
345 #else
346 #define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, 0)
347 #endif
348#endif
349
350#if defined(JSON_HEDLEY_CRAY_VERSION_CHECK)
351 #undef JSON_HEDLEY_CRAY_VERSION_CHECK
352#endif
353#if defined(JSON_HEDLEY_CRAY_VERSION)
354 #define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_CRAY_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
355#else
356 #define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (0)
357#endif
358
359#if defined(JSON_HEDLEY_IAR_VERSION)
360 #undef JSON_HEDLEY_IAR_VERSION
361#endif
362#if defined(__IAR_SYSTEMS_ICC__)
363 #if __VER__ > 1000
364 #define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE((__VER__ / 1000000), ((__VER__ / 1000) % 1000), (__VER__ % 1000))
365 #else
366 #define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE(VER / 100, __VER__ % 100, 0)
367 #endif
368#endif
369
370#if defined(JSON_HEDLEY_IAR_VERSION_CHECK)
371 #undef JSON_HEDLEY_IAR_VERSION_CHECK
372#endif
373#if defined(JSON_HEDLEY_IAR_VERSION)
374 #define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IAR_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
375#else
376 #define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (0)
377#endif
378
379#if defined(JSON_HEDLEY_TINYC_VERSION)
380 #undef JSON_HEDLEY_TINYC_VERSION
381#endif
382#if defined(__TINYC__)
383 #define JSON_HEDLEY_TINYC_VERSION JSON_HEDLEY_VERSION_ENCODE(__TINYC__ / 1000, (__TINYC__ / 100) % 10, __TINYC__ % 100)
384#endif
385
386#if defined(JSON_HEDLEY_TINYC_VERSION_CHECK)
387 #undef JSON_HEDLEY_TINYC_VERSION_CHECK
388#endif
389#if defined(JSON_HEDLEY_TINYC_VERSION)
390 #define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TINYC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
391#else
392 #define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (0)
393#endif
394
395#if defined(JSON_HEDLEY_DMC_VERSION)
396 #undef JSON_HEDLEY_DMC_VERSION
397#endif
398#if defined(__DMC__)
399 #define JSON_HEDLEY_DMC_VERSION JSON_HEDLEY_VERSION_ENCODE(__DMC__ >> 8, (__DMC__ >> 4) & 0xf, __DMC__ & 0xf)
400#endif
401
402#if defined(JSON_HEDLEY_DMC_VERSION_CHECK)
403 #undef JSON_HEDLEY_DMC_VERSION_CHECK
404#endif
405#if defined(JSON_HEDLEY_DMC_VERSION)
406 #define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_DMC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
407#else
408 #define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (0)
409#endif
410
411#if defined(JSON_HEDLEY_COMPCERT_VERSION)
412 #undef JSON_HEDLEY_COMPCERT_VERSION
413#endif
414#if defined(__COMPCERT_VERSION__)
415 #define JSON_HEDLEY_COMPCERT_VERSION JSON_HEDLEY_VERSION_ENCODE(__COMPCERT_VERSION__ / 10000, (__COMPCERT_VERSION__ / 100) % 100, __COMPCERT_VERSION__ % 100)
416#endif
417
418#if defined(JSON_HEDLEY_COMPCERT_VERSION_CHECK)
419 #undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
420#endif
421#if defined(JSON_HEDLEY_COMPCERT_VERSION)
422 #define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_COMPCERT_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
423#else
424 #define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (0)
425#endif
426
427#if defined(JSON_HEDLEY_PELLES_VERSION)
428 #undef JSON_HEDLEY_PELLES_VERSION
429#endif
430#if defined(__POCC__)
431 #define JSON_HEDLEY_PELLES_VERSION JSON_HEDLEY_VERSION_ENCODE(__POCC__ / 100, __POCC__ % 100, 0)
432#endif
433
434#if defined(JSON_HEDLEY_PELLES_VERSION_CHECK)
435 #undef JSON_HEDLEY_PELLES_VERSION_CHECK
436#endif
437#if defined(JSON_HEDLEY_PELLES_VERSION)
438 #define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PELLES_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
439#else
440 #define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (0)
441#endif
442
443#if defined(JSON_HEDLEY_GCC_VERSION)
444 #undef JSON_HEDLEY_GCC_VERSION
445#endif
446#if \
447 defined(JSON_HEDLEY_GNUC_VERSION) && \
448 !defined(__clang__) && \
449 !defined(JSON_HEDLEY_INTEL_VERSION) && \
450 !defined(JSON_HEDLEY_PGI_VERSION) && \
451 !defined(JSON_HEDLEY_ARM_VERSION) && \
452 !defined(JSON_HEDLEY_TI_VERSION) && \
453 !defined(__COMPCERT__)
454 #define JSON_HEDLEY_GCC_VERSION JSON_HEDLEY_GNUC_VERSION
455#endif
456
457#if defined(JSON_HEDLEY_GCC_VERSION_CHECK)
458 #undef JSON_HEDLEY_GCC_VERSION_CHECK
459#endif
460#if defined(JSON_HEDLEY_GCC_VERSION)
461 #define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GCC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
462#else
463 #define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (0)
464#endif
465
466#if defined(JSON_HEDLEY_HAS_ATTRIBUTE)
467 #undef JSON_HEDLEY_HAS_ATTRIBUTE
468#endif
469#if defined(__has_attribute)
470 #define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) __has_attribute(attribute)
471#else
472 #define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) (0)
473#endif
474
475#if defined(JSON_HEDLEY_GNUC_HAS_ATTRIBUTE)
476 #undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
477#endif
478#if defined(__has_attribute)
479 #define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) __has_attribute(attribute)
480#else
481 #define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
482#endif
483
484#if defined(JSON_HEDLEY_GCC_HAS_ATTRIBUTE)
485 #undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
486#endif
487#if defined(__has_attribute)
488 #define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) __has_attribute(attribute)
489#else
490 #define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
491#endif
492
493#if defined(JSON_HEDLEY_HAS_CPP_ATTRIBUTE)
494 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
495#endif
496#if \
497 defined(__has_cpp_attribute) && \
498 defined(__cplusplus) && \
499 (!defined(JSON_HEDLEY_SUNPRO_VERSION) || JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0))
500 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) __has_cpp_attribute(attribute)
501#else
502 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) (0)
503#endif
504
505#if defined(JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS)
506 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS
507#endif
508#if !defined(__cplusplus) || !defined(__has_cpp_attribute)
509 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) (0)
510#elif \
511 !defined(JSON_HEDLEY_PGI_VERSION) && \
512 (!defined(JSON_HEDLEY_SUNPRO_VERSION) || JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0)) && \
513 (!defined(JSON_HEDLEY_MSVC_VERSION) || JSON_HEDLEY_MSVC_VERSION_CHECK(19,20,0))
514 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) JSON_HEDLEY_HAS_CPP_ATTRIBUTE(ns::attribute)
515#else
516 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) (0)
517#endif
518
519#if defined(JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE)
520 #undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
521#endif
522#if defined(__has_cpp_attribute) && defined(__cplusplus)
523 #define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
524#else
525 #define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
526#endif
527
528#if defined(JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE)
529 #undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
530#endif
531#if defined(__has_cpp_attribute) && defined(__cplusplus)
532 #define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
533#else
534 #define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
535#endif
536
537#if defined(JSON_HEDLEY_HAS_BUILTIN)
538 #undef JSON_HEDLEY_HAS_BUILTIN
539#endif
540#if defined(__has_builtin)
541 #define JSON_HEDLEY_HAS_BUILTIN(builtin) __has_builtin(builtin)
542#else
543 #define JSON_HEDLEY_HAS_BUILTIN(builtin) (0)
544#endif
545
546#if defined(JSON_HEDLEY_GNUC_HAS_BUILTIN)
547 #undef JSON_HEDLEY_GNUC_HAS_BUILTIN
548#endif
549#if defined(__has_builtin)
550 #define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
551#else
552 #define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
553#endif
554
555#if defined(JSON_HEDLEY_GCC_HAS_BUILTIN)
556 #undef JSON_HEDLEY_GCC_HAS_BUILTIN
557#endif
558#if defined(__has_builtin)
559 #define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
560#else
561 #define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
562#endif
563
564#if defined(JSON_HEDLEY_HAS_FEATURE)
565 #undef JSON_HEDLEY_HAS_FEATURE
566#endif
567#if defined(__has_feature)
568 #define JSON_HEDLEY_HAS_FEATURE(feature) __has_feature(feature)
569#else
570 #define JSON_HEDLEY_HAS_FEATURE(feature) (0)
571#endif
572
573#if defined(JSON_HEDLEY_GNUC_HAS_FEATURE)
574 #undef JSON_HEDLEY_GNUC_HAS_FEATURE
575#endif
576#if defined(__has_feature)
577 #define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
578#else
579 #define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
580#endif
581
582#if defined(JSON_HEDLEY_GCC_HAS_FEATURE)
583 #undef JSON_HEDLEY_GCC_HAS_FEATURE
584#endif
585#if defined(__has_feature)
586 #define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
587#else
588 #define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
589#endif
590
591#if defined(JSON_HEDLEY_HAS_EXTENSION)
592 #undef JSON_HEDLEY_HAS_EXTENSION
593#endif
594#if defined(__has_extension)
595 #define JSON_HEDLEY_HAS_EXTENSION(extension) __has_extension(extension)
596#else
597 #define JSON_HEDLEY_HAS_EXTENSION(extension) (0)
598#endif
599
600#if defined(JSON_HEDLEY_GNUC_HAS_EXTENSION)
601 #undef JSON_HEDLEY_GNUC_HAS_EXTENSION
602#endif
603#if defined(__has_extension)
604 #define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
605#else
606 #define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
607#endif
608
609#if defined(JSON_HEDLEY_GCC_HAS_EXTENSION)
610 #undef JSON_HEDLEY_GCC_HAS_EXTENSION
611#endif
612#if defined(__has_extension)
613 #define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
614#else
615 #define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
616#endif
617
618#if defined(JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE)
619 #undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
620#endif
621#if defined(__has_declspec_attribute)
622 #define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) __has_declspec_attribute(attribute)
623#else
624 #define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) (0)
625#endif
626
627#if defined(JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE)
628 #undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
629#endif
630#if defined(__has_declspec_attribute)
631 #define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
632#else
633 #define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
634#endif
635
636#if defined(JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE)
637 #undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
638#endif
639#if defined(__has_declspec_attribute)
640 #define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
641#else
642 #define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
643#endif
644
645#if defined(JSON_HEDLEY_HAS_WARNING)
646 #undef JSON_HEDLEY_HAS_WARNING
647#endif
648#if defined(__has_warning)
649 #define JSON_HEDLEY_HAS_WARNING(warning) __has_warning(warning)
650#else
651 #define JSON_HEDLEY_HAS_WARNING(warning) (0)
652#endif
653
654#if defined(JSON_HEDLEY_GNUC_HAS_WARNING)
655 #undef JSON_HEDLEY_GNUC_HAS_WARNING
656#endif
657#if defined(__has_warning)
658 #define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
659#else
660 #define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
661#endif
662
663#if defined(JSON_HEDLEY_GCC_HAS_WARNING)
664 #undef JSON_HEDLEY_GCC_HAS_WARNING
665#endif
666#if defined(__has_warning)
667 #define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
668#else
669 #define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
670#endif
671
672/* JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_ is for
673 HEDLEY INTERNAL USE ONLY. API subject to change without notice. */
674#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_)
675 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_
676#endif
677#if defined(__cplusplus) && JSON_HEDLEY_HAS_WARNING("-Wc++98-compat")
678# define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(xpr) \
679 JSON_HEDLEY_DIAGNOSTIC_PUSH \
680 _Pragma("clang diagnostic ignored \"-Wc++98-compat\"") \
681 xpr \
682 JSON_HEDLEY_DIAGNOSTIC_POP
683#else
684# define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(x) x
685#endif
686
687#if \
688 (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
689 defined(__clang__) || \
690 JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
691 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
692 JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
693 JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0) || \
694 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
695 JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) || \
696 JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0) || \
697 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,17) || \
698 JSON_HEDLEY_SUNPRO_VERSION_CHECK(8,0,0) || \
699 (JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) && defined(__C99_PRAGMA_OPERATOR))
700 #define JSON_HEDLEY_PRAGMA(value) _Pragma(#value)
701#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
702 #define JSON_HEDLEY_PRAGMA(value) __pragma(value)
703#else
704 #define JSON_HEDLEY_PRAGMA(value)
705#endif
706
707#if defined(JSON_HEDLEY_DIAGNOSTIC_PUSH)
708 #undef JSON_HEDLEY_DIAGNOSTIC_PUSH
709#endif
710#if defined(JSON_HEDLEY_DIAGNOSTIC_POP)
711 #undef JSON_HEDLEY_DIAGNOSTIC_POP
712#endif
713#if defined(__clang__)
714 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("clang diagnostic push")
715 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("clang diagnostic pop")
716#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
717 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
718 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
719#elif JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0)
720 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("GCC diagnostic push")
721 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("GCC diagnostic pop")
722#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
723 #define JSON_HEDLEY_DIAGNOSTIC_PUSH __pragma(warning(push))
724 #define JSON_HEDLEY_DIAGNOSTIC_POP __pragma(warning(pop))
725#elif JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0)
726 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("push")
727 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("pop")
728#elif JSON_HEDLEY_TI_VERSION_CHECK(8,1,0)
729 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("diag_push")
730 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("diag_pop")
731#elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
732 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
733 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
734#else
735 #define JSON_HEDLEY_DIAGNOSTIC_PUSH
736 #define JSON_HEDLEY_DIAGNOSTIC_POP
737#endif
738
739#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED)
740 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
741#endif
742#if JSON_HEDLEY_HAS_WARNING("-Wdeprecated-declarations")
743 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("clang diagnostic ignored \"-Wdeprecated-declarations\"")
744#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
745 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warning(disable:1478 1786)")
746#elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
747 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1215,1444")
748#elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
749 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
750#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
751 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED __pragma(warning(disable:4996))
752#elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
753 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1291,1718")
754#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && !defined(__cplusplus)
755 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,E_DEPRECATED_ATT,E_DEPRECATED_ATT_MESS)")
756#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && defined(__cplusplus)
757 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,symdeprecated,symdeprecated2)")
758#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
759 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress=Pe1444,Pe1215")
760#elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
761 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warn(disable:2241)")
762#else
763 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
764#endif
765
766#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS)
767 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
768#endif
769#if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
770 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("clang diagnostic ignored \"-Wunknown-pragmas\"")
771#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
772 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("warning(disable:161)")
773#elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
774 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 1675")
775#elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
776 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("GCC diagnostic ignored \"-Wunknown-pragmas\"")
777#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
778 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS __pragma(warning(disable:4068))
779#elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
780 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 163")
781#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
782 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress=Pe161")
783#else
784 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
785#endif
786
787#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES)
788 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
789#endif
790#if JSON_HEDLEY_HAS_WARNING("-Wunknown-attributes")
791 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("clang diagnostic ignored \"-Wunknown-attributes\"")
792#elif JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0)
793 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
794#elif JSON_HEDLEY_INTEL_VERSION_CHECK(17,0,0)
795 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("warning(disable:1292)")
796#elif JSON_HEDLEY_MSVC_VERSION_CHECK(19,0,0)
797 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES __pragma(warning(disable:5030))
798#elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
799 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1097")
800#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,14,0) && defined(__cplusplus)
801 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("error_messages(off,attrskipunsup)")
802#elif JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
803 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1173")
804#else
805 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
806#endif
807
808#if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL)
809 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
810#endif
811#if JSON_HEDLEY_HAS_WARNING("-Wcast-qual")
812 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("clang diagnostic ignored \"-Wcast-qual\"")
813#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
814 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("warning(disable:2203 2331)")
815#elif JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0)
816 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("GCC diagnostic ignored \"-Wcast-qual\"")
817#else
818 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
819#endif
820
821#if defined(JSON_HEDLEY_DEPRECATED)
822 #undef JSON_HEDLEY_DEPRECATED
823#endif
824#if defined(JSON_HEDLEY_DEPRECATED_FOR)
825 #undef JSON_HEDLEY_DEPRECATED_FOR
826#endif
827#if defined(__cplusplus) && (__cplusplus >= 201402L)
828 #define JSON_HEDLEY_DEPRECATED(since) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[deprecated("Since " #since)]])
829 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[deprecated("Since " #since "; use " #replacement)]])
830#elif \
831 JSON_HEDLEY_HAS_EXTENSION(attribute_deprecated_with_message) || \
832 JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
833 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
834 JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
835 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) || \
836 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
837 JSON_HEDLEY_TI_VERSION_CHECK(8,3,0)
838 #define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__("Since " #since)))
839 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__("Since " #since "; use " #replacement)))
840#elif \
841 JSON_HEDLEY_HAS_ATTRIBUTE(deprecated) || \
842 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
843 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
844 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
845 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
846 #define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__))
847 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__))
848#elif JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0)
849 #define JSON_HEDLEY_DEPRECATED(since) __declspec(deprecated("Since " # since))
850 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated("Since " #since "; use " #replacement))
851#elif \
852 JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
853 JSON_HEDLEY_PELLES_VERSION_CHECK(6,50,0)
854 #define JSON_HEDLEY_DEPRECATED(since) __declspec(deprecated)
855 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated)
856#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
857 #define JSON_HEDLEY_DEPRECATED(since) _Pragma("deprecated")
858 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) _Pragma("deprecated")
859#else
860 #define JSON_HEDLEY_DEPRECATED(since)
861 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement)
862#endif
863
864#if defined(JSON_HEDLEY_UNAVAILABLE)
865 #undef JSON_HEDLEY_UNAVAILABLE
866#endif
867#if \
868 JSON_HEDLEY_HAS_ATTRIBUTE(warning) || \
869 JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0) || \
870 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
871 #define JSON_HEDLEY_UNAVAILABLE(available_since) __attribute__((__warning__("Not available until " #available_since)))
872#else
873 #define JSON_HEDLEY_UNAVAILABLE(available_since)
874#endif
875
876#if defined(JSON_HEDLEY_WARN_UNUSED_RESULT)
877 #undef JSON_HEDLEY_WARN_UNUSED_RESULT
878#endif
879#if defined(__cplusplus) && (__cplusplus >= 201703L)
880 #define JSON_HEDLEY_WARN_UNUSED_RESULT JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[nodiscard]])
881#elif \
882 JSON_HEDLEY_HAS_ATTRIBUTE(warn_unused_result) || \
883 JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
884 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
885 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
886 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
887 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
888 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
889 #define JSON_HEDLEY_WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))
890#elif defined(_Check_return_) /* SAL */
891 #define JSON_HEDLEY_WARN_UNUSED_RESULT _Check_return_
892#else
893 #define JSON_HEDLEY_WARN_UNUSED_RESULT
894#endif
895
896#if defined(JSON_HEDLEY_SENTINEL)
897 #undef JSON_HEDLEY_SENTINEL
898#endif
899#if \
900 JSON_HEDLEY_HAS_ATTRIBUTE(sentinel) || \
901 JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
902 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
903 JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0)
904 #define JSON_HEDLEY_SENTINEL(position) __attribute__((__sentinel__(position)))
905#else
906 #define JSON_HEDLEY_SENTINEL(position)
907#endif
908
909#if defined(JSON_HEDLEY_NO_RETURN)
910 #undef JSON_HEDLEY_NO_RETURN
911#endif
912#if JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
913 #define JSON_HEDLEY_NO_RETURN __noreturn
914#elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
915 #define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
916#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
917 #define JSON_HEDLEY_NO_RETURN _Noreturn
918#elif defined(__cplusplus) && (__cplusplus >= 201103L)
919 #define JSON_HEDLEY_NO_RETURN JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[noreturn]])
920#elif \
921 JSON_HEDLEY_HAS_ATTRIBUTE(noreturn) || \
922 JSON_HEDLEY_GCC_VERSION_CHECK(3,2,0) || \
923 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
924 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
925 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
926 JSON_HEDLEY_TI_VERSION_CHECK(18,0,0) || \
927 (JSON_HEDLEY_TI_VERSION_CHECK(17,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
928 #define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
929#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
930 #define JSON_HEDLEY_NO_RETURN _Pragma("does_not_return")
931#elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
932 #define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
933#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
934 #define JSON_HEDLEY_NO_RETURN _Pragma("FUNC_NEVER_RETURNS;")
935#elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
936 #define JSON_HEDLEY_NO_RETURN __attribute((noreturn))
937#elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
938 #define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
939#else
940 #define JSON_HEDLEY_NO_RETURN
941#endif
942
943#if defined(JSON_HEDLEY_NO_ESCAPE)
944 #undef JSON_HEDLEY_NO_ESCAPE
945#endif
946#if JSON_HEDLEY_HAS_ATTRIBUTE(noescape)
947 #define JSON_HEDLEY_NO_ESCAPE __attribute__((__noescape__))
948#else
949 #define JSON_HEDLEY_NO_ESCAPE
950#endif
951
952#if defined(JSON_HEDLEY_UNREACHABLE)
953 #undef JSON_HEDLEY_UNREACHABLE
954#endif
955#if defined(JSON_HEDLEY_UNREACHABLE_RETURN)
956 #undef JSON_HEDLEY_UNREACHABLE_RETURN
957#endif
958#if \
959 (JSON_HEDLEY_HAS_BUILTIN(__builtin_unreachable) && (!defined(JSON_HEDLEY_ARM_VERSION))) || \
960 JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
961 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
962 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,5)
963 #define JSON_HEDLEY_UNREACHABLE() __builtin_unreachable()
964#elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
965 #define JSON_HEDLEY_UNREACHABLE() __assume(0)
966#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0)
967 #if defined(__cplusplus)
968 #define JSON_HEDLEY_UNREACHABLE() std::_nassert(0)
969 #else
970 #define JSON_HEDLEY_UNREACHABLE() _nassert(0)
971 #endif
972 #define JSON_HEDLEY_UNREACHABLE_RETURN(value) return value
973#elif defined(EXIT_FAILURE)
974 #define JSON_HEDLEY_UNREACHABLE() abort()
975#else
976 #define JSON_HEDLEY_UNREACHABLE()
977 #define JSON_HEDLEY_UNREACHABLE_RETURN(value) return value
978#endif
979#if !defined(JSON_HEDLEY_UNREACHABLE_RETURN)
980 #define JSON_HEDLEY_UNREACHABLE_RETURN(value) JSON_HEDLEY_UNREACHABLE()
981#endif
982
983#if defined(JSON_HEDLEY_ASSUME)
984 #undef JSON_HEDLEY_ASSUME
985#endif
986#if \
987 JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
988 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
989 #define JSON_HEDLEY_ASSUME(expr) __assume(expr)
990#elif JSON_HEDLEY_HAS_BUILTIN(__builtin_assume)
991 #define JSON_HEDLEY_ASSUME(expr) __builtin_assume(expr)
992#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0)
993 #if defined(__cplusplus)
994 #define JSON_HEDLEY_ASSUME(expr) std::_nassert(expr)
995 #else
996 #define JSON_HEDLEY_ASSUME(expr) _nassert(expr)
997 #endif
998#elif \
999 (JSON_HEDLEY_HAS_BUILTIN(__builtin_unreachable) && !defined(JSON_HEDLEY_ARM_VERSION)) || \
1000 JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
1001 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1002 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,5)
1003 #define JSON_HEDLEY_ASSUME(expr) ((void) ((expr) ? 1 : (__builtin_unreachable(), 1)))
1004#else
1005 #define JSON_HEDLEY_ASSUME(expr) ((void) (expr))
1006#endif
1007
1008JSON_HEDLEY_DIAGNOSTIC_PUSH
1009#if JSON_HEDLEY_HAS_WARNING("-Wpedantic")
1010 #pragma clang diagnostic ignored "-Wpedantic"
1011#endif
1012#if JSON_HEDLEY_HAS_WARNING("-Wc++98-compat-pedantic") && defined(__cplusplus)
1013 #pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
1014#endif
1015#if JSON_HEDLEY_GCC_HAS_WARNING("-Wvariadic-macros",4,0,0)
1016 #if defined(__clang__)
1017 #pragma clang diagnostic ignored "-Wvariadic-macros"
1018 #elif defined(JSON_HEDLEY_GCC_VERSION)
1019 #pragma GCC diagnostic ignored "-Wvariadic-macros"
1020 #endif
1021#endif
1022#if defined(JSON_HEDLEY_NON_NULL)
1023 #undef JSON_HEDLEY_NON_NULL
1024#endif
1025#if \
1026 JSON_HEDLEY_HAS_ATTRIBUTE(nonnull) || \
1027 JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1028 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1029 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
1030 #define JSON_HEDLEY_NON_NULL(...) __attribute__((__nonnull__(__VA_ARGS__)))
1031#else
1032 #define JSON_HEDLEY_NON_NULL(...)
1033#endif
1034JSON_HEDLEY_DIAGNOSTIC_POP
1035
1036#if defined(JSON_HEDLEY_PRINTF_FORMAT)
1037 #undef JSON_HEDLEY_PRINTF_FORMAT
1038#endif
1039#if defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && !defined(__USE_MINGW_ANSI_STDIO)
1040 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(ms_printf, string_idx, first_to_check)))
1041#elif defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && defined(__USE_MINGW_ANSI_STDIO)
1042 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(gnu_printf, string_idx, first_to_check)))
1043#elif \
1044 JSON_HEDLEY_HAS_ATTRIBUTE(format) || \
1045 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1046 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1047 JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
1048 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1049 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1050 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1051 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(__printf__, string_idx, first_to_check)))
1052#elif JSON_HEDLEY_PELLES_VERSION_CHECK(6,0,0)
1053 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __declspec(vaformat(printf,string_idx,first_to_check))
1054#else
1055 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check)
1056#endif
1057
1058#if defined(JSON_HEDLEY_CONSTEXPR)
1059 #undef JSON_HEDLEY_CONSTEXPR
1060#endif
1061#if defined(__cplusplus)
1062 #if __cplusplus >= 201103L
1063 #define JSON_HEDLEY_CONSTEXPR JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(constexpr)
1064 #endif
1065#endif
1066#if !defined(JSON_HEDLEY_CONSTEXPR)
1067 #define JSON_HEDLEY_CONSTEXPR
1068#endif
1069
1070#if defined(JSON_HEDLEY_PREDICT)
1071 #undef JSON_HEDLEY_PREDICT
1072#endif
1073#if defined(JSON_HEDLEY_LIKELY)
1074 #undef JSON_HEDLEY_LIKELY
1075#endif
1076#if defined(JSON_HEDLEY_UNLIKELY)
1077 #undef JSON_HEDLEY_UNLIKELY
1078#endif
1079#if defined(JSON_HEDLEY_UNPREDICTABLE)
1080 #undef JSON_HEDLEY_UNPREDICTABLE
1081#endif
1082#if JSON_HEDLEY_HAS_BUILTIN(__builtin_unpredictable)
1083 #define JSON_HEDLEY_UNPREDICTABLE(expr) __builtin_unpredictable(!!(expr))
1084#endif
1085#if \
1086 JSON_HEDLEY_HAS_BUILTIN(__builtin_expect_with_probability) || \
1087 JSON_HEDLEY_GCC_VERSION_CHECK(9,0,0)
1088# define JSON_HEDLEY_PREDICT(expr, value, probability) __builtin_expect_with_probability(expr, value, probability)
1089# define JSON_HEDLEY_PREDICT_TRUE(expr, probability) __builtin_expect_with_probability(!!(expr), 1, probability)
1090# define JSON_HEDLEY_PREDICT_FALSE(expr, probability) __builtin_expect_with_probability(!!(expr), 0, probability)
1091# define JSON_HEDLEY_LIKELY(expr) __builtin_expect(!!(expr), 1)
1092# define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
1093#if !defined(JSON_HEDLEY_BUILTIN_UNPREDICTABLE)
1094 #define JSON_HEDLEY_BUILTIN_UNPREDICTABLE(expr) __builtin_expect_with_probability(!!(expr), 1, 0.5)
1095#endif
1096#elif \
1097 JSON_HEDLEY_HAS_BUILTIN(__builtin_expect) || \
1098 JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
1099 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1100 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
1101 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1102 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1103 JSON_HEDLEY_TI_VERSION_CHECK(6,1,0) || \
1104 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,27)
1105# define JSON_HEDLEY_PREDICT(expr, expected, probability) \
1106 (((probability) >= 0.9) ? __builtin_expect(!!(expr), (expected)) : (((void) (expected)), !!(expr)))
1107# define JSON_HEDLEY_PREDICT_TRUE(expr, probability) \
1108 (__extension__ ({ \
1109 JSON_HEDLEY_CONSTEXPR double hedley_probability_ = (probability); \
1110 ((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 1) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 0) : !!(expr))); \
1111 }))
1112# define JSON_HEDLEY_PREDICT_FALSE(expr, probability) \
1113 (__extension__ ({ \
1114 JSON_HEDLEY_CONSTEXPR double hedley_probability_ = (probability); \
1115 ((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 0) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 1) : !!(expr))); \
1116 }))
1117# define JSON_HEDLEY_LIKELY(expr) __builtin_expect(!!(expr), 1)
1118# define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
1119#else
1120# define JSON_HEDLEY_PREDICT(expr, expected, probability) (((void) (expected)), !!(expr))
1121# define JSON_HEDLEY_PREDICT_TRUE(expr, probability) (!!(expr))
1122# define JSON_HEDLEY_PREDICT_FALSE(expr, probability) (!!(expr))
1123# define JSON_HEDLEY_LIKELY(expr) (!!(expr))
1124# define JSON_HEDLEY_UNLIKELY(expr) (!!(expr))
1125#endif
1126#if !defined(JSON_HEDLEY_UNPREDICTABLE)
1127 #define JSON_HEDLEY_UNPREDICTABLE(expr) JSON_HEDLEY_PREDICT(expr, 1, 0.5)
1128#endif
1129
1130#if defined(JSON_HEDLEY_MALLOC)
1131 #undef JSON_HEDLEY_MALLOC
1132#endif
1133#if \
1134 JSON_HEDLEY_HAS_ATTRIBUTE(malloc) || \
1135 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1136 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1137 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1138 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1139 JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
1140 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1141 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1142 #define JSON_HEDLEY_MALLOC __attribute__((__malloc__))
1143#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1144 #define JSON_HEDLEY_MALLOC _Pragma("returns_new_memory")
1145#elif JSON_HEDLEY_MSVC_VERSION_CHECK(14, 0, 0)
1146 #define JSON_HEDLEY_MALLOC __declspec(restrict)
1147#else
1148 #define JSON_HEDLEY_MALLOC
1149#endif
1150
1151#if defined(JSON_HEDLEY_PURE)
1152 #undef JSON_HEDLEY_PURE
1153#endif
1154#if \
1155 JSON_HEDLEY_HAS_ATTRIBUTE(pure) || \
1156 JSON_HEDLEY_GCC_VERSION_CHECK(2,96,0) || \
1157 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1158 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1159 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1160 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1161 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1162 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1163 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
1164 #define JSON_HEDLEY_PURE __attribute__((__pure__))
1165#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1166 #define JSON_HEDLEY_PURE _Pragma("does_not_write_global_data")
1167#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
1168 #define JSON_HEDLEY_PURE _Pragma("FUNC_IS_PURE;")
1169#else
1170 #define JSON_HEDLEY_PURE
1171#endif
1172
1173#if defined(JSON_HEDLEY_CONST)
1174 #undef JSON_HEDLEY_CONST
1175#endif
1176#if \
1177 JSON_HEDLEY_HAS_ATTRIBUTE(const) || \
1178 JSON_HEDLEY_GCC_VERSION_CHECK(2,5,0) || \
1179 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1180 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1181 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1182 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1183 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1184 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1185 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
1186 #define JSON_HEDLEY_CONST __attribute__((__const__))
1187#elif \
1188 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1189 #define JSON_HEDLEY_CONST _Pragma("no_side_effect")
1190#else
1191 #define JSON_HEDLEY_CONST JSON_HEDLEY_PURE
1192#endif
1193
1194#if defined(JSON_HEDLEY_RESTRICT)
1195 #undef JSON_HEDLEY_RESTRICT
1196#endif
1197#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && !defined(__cplusplus)
1198 #define JSON_HEDLEY_RESTRICT restrict
1199#elif \
1200 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1201 JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0) || \
1202 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1203 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1204 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1205 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
1206 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1207 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,14,0) && defined(__cplusplus)) || \
1208 JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
1209 defined(__clang__)
1210 #define JSON_HEDLEY_RESTRICT __restrict
1211#elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,3,0) && !defined(__cplusplus)
1212 #define JSON_HEDLEY_RESTRICT _Restrict
1213#else
1214 #define JSON_HEDLEY_RESTRICT
1215#endif
1216
1217#if defined(JSON_HEDLEY_INLINE)
1218 #undef JSON_HEDLEY_INLINE
1219#endif
1220#if \
1221 (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
1222 (defined(__cplusplus) && (__cplusplus >= 199711L))
1223 #define JSON_HEDLEY_INLINE inline
1224#elif \
1225 defined(JSON_HEDLEY_GCC_VERSION) || \
1226 JSON_HEDLEY_ARM_VERSION_CHECK(6,2,0)
1227 #define JSON_HEDLEY_INLINE __inline__
1228#elif \
1229 JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0) || \
1230 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1231 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0)
1232 #define JSON_HEDLEY_INLINE __inline
1233#else
1234 #define JSON_HEDLEY_INLINE
1235#endif
1236
1237#if defined(JSON_HEDLEY_ALWAYS_INLINE)
1238 #undef JSON_HEDLEY_ALWAYS_INLINE
1239#endif
1240#if \
1241 JSON_HEDLEY_HAS_ATTRIBUTE(always_inline) || \
1242 JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
1243 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1244 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1245 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1246 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1247 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1248 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1249 #define JSON_HEDLEY_ALWAYS_INLINE __attribute__((__always_inline__)) JSON_HEDLEY_INLINE
1250#elif JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0)
1251 #define JSON_HEDLEY_ALWAYS_INLINE __forceinline
1252#elif JSON_HEDLEY_TI_VERSION_CHECK(7,0,0) && defined(__cplusplus)
1253 #define JSON_HEDLEY_ALWAYS_INLINE _Pragma("FUNC_ALWAYS_INLINE;")
1254#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1255 #define JSON_HEDLEY_ALWAYS_INLINE _Pragma("inline=forced")
1256#else
1257 #define JSON_HEDLEY_ALWAYS_INLINE JSON_HEDLEY_INLINE
1258#endif
1259
1260#if defined(JSON_HEDLEY_NEVER_INLINE)
1261 #undef JSON_HEDLEY_NEVER_INLINE
1262#endif
1263#if \
1264 JSON_HEDLEY_HAS_ATTRIBUTE(noinline) || \
1265 JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
1266 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1267 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1268 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1269 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1270 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1271 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1272 #define JSON_HEDLEY_NEVER_INLINE __attribute__((__noinline__))
1273#elif JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0)
1274 #define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
1275#elif JSON_HEDLEY_PGI_VERSION_CHECK(10,2,0)
1276 #define JSON_HEDLEY_NEVER_INLINE _Pragma("noinline")
1277#elif JSON_HEDLEY_TI_VERSION_CHECK(6,0,0) && defined(__cplusplus)
1278 #define JSON_HEDLEY_NEVER_INLINE _Pragma("FUNC_CANNOT_INLINE;")
1279#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1280 #define JSON_HEDLEY_NEVER_INLINE _Pragma("inline=never")
1281#elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
1282 #define JSON_HEDLEY_NEVER_INLINE __attribute((noinline))
1283#elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
1284 #define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
1285#else
1286 #define JSON_HEDLEY_NEVER_INLINE
1287#endif
1288
1289#if defined(JSON_HEDLEY_PRIVATE)
1290 #undef JSON_HEDLEY_PRIVATE
1291#endif
1292#if defined(JSON_HEDLEY_PUBLIC)
1293 #undef JSON_HEDLEY_PUBLIC
1294#endif
1295#if defined(JSON_HEDLEY_IMPORT)
1296 #undef JSON_HEDLEY_IMPORT
1297#endif
1298#if defined(_WIN32) || defined(__CYGWIN__)
1299 #define JSON_HEDLEY_PRIVATE
1300 #define JSON_HEDLEY_PUBLIC __declspec(dllexport)
1301 #define JSON_HEDLEY_IMPORT __declspec(dllimport)
1302#else
1303 #if \
1304 JSON_HEDLEY_HAS_ATTRIBUTE(visibility) || \
1305 JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1306 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1307 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1308 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1309 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
1310 JSON_HEDLEY_TI_VERSION_CHECK(8,0,0) || \
1311 (JSON_HEDLEY_TI_VERSION_CHECK(7,3,0) && defined(__TI_EABI__) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__))
1312 #define JSON_HEDLEY_PRIVATE __attribute__((__visibility__("hidden")))
1313 #define JSON_HEDLEY_PUBLIC __attribute__((__visibility__("default")))
1314 #else
1315 #define JSON_HEDLEY_PRIVATE
1316 #define JSON_HEDLEY_PUBLIC
1317 #endif
1318 #define JSON_HEDLEY_IMPORT extern
1319#endif
1320
1321#if defined(JSON_HEDLEY_NO_THROW)
1322 #undef JSON_HEDLEY_NO_THROW
1323#endif
1324#if \
1325 JSON_HEDLEY_HAS_ATTRIBUTE(nothrow) || \
1326 JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1327 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1328 #define JSON_HEDLEY_NO_THROW __attribute__((__nothrow__))
1329#elif \
1330 JSON_HEDLEY_MSVC_VERSION_CHECK(13,1,0) || \
1331 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
1332 #define JSON_HEDLEY_NO_THROW __declspec(nothrow)
1333#else
1334 #define JSON_HEDLEY_NO_THROW
1335#endif
1336
1337#if defined(JSON_HEDLEY_FALL_THROUGH)
1338 #undef JSON_HEDLEY_FALL_THROUGH
1339#endif
1340#if JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(fallthrough,7,0,0) && !defined(JSON_HEDLEY_PGI_VERSION)
1341 #define JSON_HEDLEY_FALL_THROUGH __attribute__((__fallthrough__))
1342#elif JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(clang,fallthrough)
1343 #define JSON_HEDLEY_FALL_THROUGH JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[clang::fallthrough]])
1344#elif JSON_HEDLEY_HAS_CPP_ATTRIBUTE(fallthrough)
1345 #define JSON_HEDLEY_FALL_THROUGH JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[fallthrough]])
1346#elif defined(__fallthrough) /* SAL */
1347 #define JSON_HEDLEY_FALL_THROUGH __fallthrough
1348#else
1349 #define JSON_HEDLEY_FALL_THROUGH
1350#endif
1351
1352#if defined(JSON_HEDLEY_RETURNS_NON_NULL)
1353 #undef JSON_HEDLEY_RETURNS_NON_NULL
1354#endif
1355#if \
1356 JSON_HEDLEY_HAS_ATTRIBUTE(returns_nonnull) || \
1357 JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0)
1358 #define JSON_HEDLEY_RETURNS_NON_NULL __attribute__((__returns_nonnull__))
1359#elif defined(_Ret_notnull_) /* SAL */
1360 #define JSON_HEDLEY_RETURNS_NON_NULL _Ret_notnull_
1361#else
1362 #define JSON_HEDLEY_RETURNS_NON_NULL
1363#endif
1364
1365#if defined(JSON_HEDLEY_ARRAY_PARAM)
1366 #undef JSON_HEDLEY_ARRAY_PARAM
1367#endif
1368#if \
1369 defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
1370 !defined(__STDC_NO_VLA__) && \
1371 !defined(__cplusplus) && \
1372 !defined(JSON_HEDLEY_PGI_VERSION) && \
1373 !defined(JSON_HEDLEY_TINYC_VERSION)
1374 #define JSON_HEDLEY_ARRAY_PARAM(name) (name)
1375#else
1376 #define JSON_HEDLEY_ARRAY_PARAM(name)
1377#endif
1378
1379#if defined(JSON_HEDLEY_IS_CONSTANT)
1380 #undef JSON_HEDLEY_IS_CONSTANT
1381#endif
1382#if defined(JSON_HEDLEY_REQUIRE_CONSTEXPR)
1383 #undef JSON_HEDLEY_REQUIRE_CONSTEXPR
1384#endif
1385/* JSON_HEDLEY_IS_CONSTEXPR_ is for
1386 HEDLEY INTERNAL USE ONLY. API subject to change without notice. */
1387#if defined(JSON_HEDLEY_IS_CONSTEXPR_)
1388 #undef JSON_HEDLEY_IS_CONSTEXPR_
1389#endif
1390#if \
1391 JSON_HEDLEY_HAS_BUILTIN(__builtin_constant_p) || \
1392 JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
1393 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1394 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,19) || \
1395 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1396 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
1397 JSON_HEDLEY_TI_VERSION_CHECK(6,1,0) || \
1398 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0) && !defined(__cplusplus)) || \
1399 JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0)
1400 #define JSON_HEDLEY_IS_CONSTANT(expr) __builtin_constant_p(expr)
1401#endif
1402#if !defined(__cplusplus)
1403# if \
1404 JSON_HEDLEY_HAS_BUILTIN(__builtin_types_compatible_p) || \
1405 JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
1406 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1407 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
1408 JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0) || \
1409 JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0) || \
1410 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,24)
1411#if defined(__INTPTR_TYPE__)
1412 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0)), int*)
1413#else
1414 #include <stdint.h>
1415 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((intptr_t) ((expr) * 0)) : (int*) 0)), int*)
1416#endif
1417# elif \
1418 (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && !defined(JSON_HEDLEY_SUNPRO_VERSION) && !defined(JSON_HEDLEY_PGI_VERSION)) || \
1419 JSON_HEDLEY_HAS_EXTENSION(c_generic_selections) || \
1420 JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0) || \
1421 JSON_HEDLEY_INTEL_VERSION_CHECK(17,0,0) || \
1422 JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
1423 JSON_HEDLEY_ARM_VERSION_CHECK(5,3,0)
1424#if defined(__INTPTR_TYPE__)
1425 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) _Generic((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0), int*: 1, void*: 0)
1426#else
1427 #include <stdint.h>
1428 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) _Generic((1 ? (void*) ((intptr_t) * 0) : (int*) 0), int*: 1, void*: 0)
1429#endif
1430# elif \
1431 defined(JSON_HEDLEY_GCC_VERSION) || \
1432 defined(JSON_HEDLEY_INTEL_VERSION) || \
1433 defined(JSON_HEDLEY_TINYC_VERSION) || \
1434 defined(JSON_HEDLEY_TI_VERSION) || \
1435 defined(__clang__)
1436# define JSON_HEDLEY_IS_CONSTEXPR_(expr) ( \
1437 sizeof(void) != \
1438 sizeof(*( \
1439 1 ? \
1440 ((void*) ((expr) * 0L) ) : \
1441((struct { char v[sizeof(void) * 2]; } *) 1) \
1442 ) \
1443 ) \
1444 )
1445# endif
1446#endif
1447#if defined(JSON_HEDLEY_IS_CONSTEXPR_)
1448 #if !defined(JSON_HEDLEY_IS_CONSTANT)
1449 #define JSON_HEDLEY_IS_CONSTANT(expr) JSON_HEDLEY_IS_CONSTEXPR_(expr)
1450 #endif
1451 #define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (JSON_HEDLEY_IS_CONSTEXPR_(expr) ? (expr) : (-1))
1452#else
1453 #if !defined(JSON_HEDLEY_IS_CONSTANT)
1454 #define JSON_HEDLEY_IS_CONSTANT(expr) (0)
1455 #endif
1456 #define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (expr)
1457#endif
1458
1459#if defined(JSON_HEDLEY_BEGIN_C_DECLS)
1460 #undef JSON_HEDLEY_BEGIN_C_DECLS
1461#endif
1462#if defined(JSON_HEDLEY_END_C_DECLS)
1463 #undef JSON_HEDLEY_END_C_DECLS
1464#endif
1465#if defined(JSON_HEDLEY_C_DECL)
1466 #undef JSON_HEDLEY_C_DECL
1467#endif
1468#if defined(__cplusplus)
1469 #define JSON_HEDLEY_BEGIN_C_DECLS extern "C" {
1470 #define JSON_HEDLEY_END_C_DECLS }
1471 #define JSON_HEDLEY_C_DECL extern "C"
1472#else
1473 #define JSON_HEDLEY_BEGIN_C_DECLS
1474 #define JSON_HEDLEY_END_C_DECLS
1475 #define JSON_HEDLEY_C_DECL
1476#endif
1477
1478#if defined(JSON_HEDLEY_STATIC_ASSERT)
1479 #undef JSON_HEDLEY_STATIC_ASSERT
1480#endif
1481#if \
1482 !defined(__cplusplus) && ( \
1483 (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) || \
1484 JSON_HEDLEY_HAS_FEATURE(c_static_assert) || \
1485 JSON_HEDLEY_GCC_VERSION_CHECK(6,0,0) || \
1486 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1487 defined(_Static_assert) \
1488 )
1489# define JSON_HEDLEY_STATIC_ASSERT(expr, message) _Static_assert(expr, message)
1490#elif \
1491 (defined(__cplusplus) && (__cplusplus >= 201103L)) || \
1492 JSON_HEDLEY_MSVC_VERSION_CHECK(16,0,0) || \
1493 (defined(__cplusplus) && JSON_HEDLEY_TI_VERSION_CHECK(8,3,0))
1494# define JSON_HEDLEY_STATIC_ASSERT(expr, message) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(static_assert(expr, message))
1495#else
1496# define JSON_HEDLEY_STATIC_ASSERT(expr, message)
1497#endif
1498
1499#if defined(JSON_HEDLEY_CONST_CAST)
1500 #undef JSON_HEDLEY_CONST_CAST
1501#endif
1502#if defined(__cplusplus)
1503# define JSON_HEDLEY_CONST_CAST(T, expr) (const_cast<T>(expr))
1504#elif \
1505 JSON_HEDLEY_HAS_WARNING("-Wcast-qual") || \
1506 JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0) || \
1507 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1508# define JSON_HEDLEY_CONST_CAST(T, expr) (__extension__ ({ \
1509 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1510 JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL \
1511 ((T) (expr)); \
1512 JSON_HEDLEY_DIAGNOSTIC_POP \
1513 }))
1514#else
1515# define JSON_HEDLEY_CONST_CAST(T, expr) ((T) (expr))
1516#endif
1517
1518#if defined(JSON_HEDLEY_REINTERPRET_CAST)
1519 #undef JSON_HEDLEY_REINTERPRET_CAST
1520#endif
1521#if defined(__cplusplus)
1522 #define JSON_HEDLEY_REINTERPRET_CAST(T, expr) (reinterpret_cast<T>(expr))
1523#else
1524 #define JSON_HEDLEY_REINTERPRET_CAST(T, expr) (*((T*) &(expr)))
1525#endif
1526
1527#if defined(JSON_HEDLEY_STATIC_CAST)
1528 #undef JSON_HEDLEY_STATIC_CAST
1529#endif
1530#if defined(__cplusplus)
1531 #define JSON_HEDLEY_STATIC_CAST(T, expr) (static_cast<T>(expr))
1532#else
1533 #define JSON_HEDLEY_STATIC_CAST(T, expr) ((T) (expr))
1534#endif
1535
1536#if defined(JSON_HEDLEY_CPP_CAST)
1537 #undef JSON_HEDLEY_CPP_CAST
1538#endif
1539#if defined(__cplusplus)
1540 #define JSON_HEDLEY_CPP_CAST(T, expr) static_cast<T>(expr)
1541#else
1542 #define JSON_HEDLEY_CPP_CAST(T, expr) (expr)
1543#endif
1544
1545#if defined(JSON_HEDLEY_NULL)
1546 #undef JSON_HEDLEY_NULL
1547#endif
1548#if defined(__cplusplus)
1549 #if __cplusplus >= 201103L
1550 #define JSON_HEDLEY_NULL JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(nullptr)
1551 #elif defined(NULL)
1552 #define JSON_HEDLEY_NULL NULL
1553 #else
1554 #define JSON_HEDLEY_NULL JSON_HEDLEY_STATIC_CAST(void*, 0)
1555 #endif
1556#elif defined(NULL)
1557 #define JSON_HEDLEY_NULL NULL
1558#else
1559 #define JSON_HEDLEY_NULL ((void*) 0)
1560#endif
1561
1562#if defined(JSON_HEDLEY_MESSAGE)
1563 #undef JSON_HEDLEY_MESSAGE
1564#endif
1565#if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
1566# define JSON_HEDLEY_MESSAGE(msg) \
1567 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1568 JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
1569 JSON_HEDLEY_PRAGMA(message msg) \
1570 JSON_HEDLEY_DIAGNOSTIC_POP
1571#elif \
1572 JSON_HEDLEY_GCC_VERSION_CHECK(4,4,0) || \
1573 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1574# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message msg)
1575#elif JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0)
1576# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(_CRI message msg)
1577#elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1578# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
1579#elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,0,0)
1580# define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
1581#else
1582# define JSON_HEDLEY_MESSAGE(msg)
1583#endif
1584
1585#if defined(JSON_HEDLEY_WARNING)
1586 #undef JSON_HEDLEY_WARNING
1587#endif
1588#if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
1589# define JSON_HEDLEY_WARNING(msg) \
1590 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1591 JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
1592 JSON_HEDLEY_PRAGMA(clang warning msg) \
1593 JSON_HEDLEY_DIAGNOSTIC_POP
1594#elif \
1595 JSON_HEDLEY_GCC_VERSION_CHECK(4,8,0) || \
1596 JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0)
1597# define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(GCC warning msg)
1598#elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
1599# define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(message(msg))
1600#else
1601# define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_MESSAGE(msg)
1602#endif
1603
1604#if defined(JSON_HEDLEY_REQUIRE)
1605 #undef JSON_HEDLEY_REQUIRE
1606#endif
1607#if defined(JSON_HEDLEY_REQUIRE_MSG)
1608 #undef JSON_HEDLEY_REQUIRE_MSG
1609#endif
1610#if JSON_HEDLEY_HAS_ATTRIBUTE(diagnose_if)
1611# if JSON_HEDLEY_HAS_WARNING("-Wgcc-compat")
1612# define JSON_HEDLEY_REQUIRE(expr) \
1613 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1614 _Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
1615 __attribute__((diagnose_if(!(expr), #expr, "error"))) \
1616 JSON_HEDLEY_DIAGNOSTIC_POP
1617# define JSON_HEDLEY_REQUIRE_MSG(expr,msg) \
1618 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1619 _Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
1620 __attribute__((diagnose_if(!(expr), msg, "error"))) \
1621 JSON_HEDLEY_DIAGNOSTIC_POP
1622# else
1623# define JSON_HEDLEY_REQUIRE(expr) __attribute__((diagnose_if(!(expr), #expr, "error")))
1624# define JSON_HEDLEY_REQUIRE_MSG(expr,msg) __attribute__((diagnose_if(!(expr), msg, "error")))
1625# endif
1626#else
1627# define JSON_HEDLEY_REQUIRE(expr)
1628# define JSON_HEDLEY_REQUIRE_MSG(expr,msg)
1629#endif
1630
1631#if defined(JSON_HEDLEY_FLAGS)
1632 #undef JSON_HEDLEY_FLAGS
1633#endif
1634#if JSON_HEDLEY_HAS_ATTRIBUTE(flag_enum)
1635 #define JSON_HEDLEY_FLAGS __attribute__((__flag_enum__))
1636#endif
1637
1638#if defined(JSON_HEDLEY_FLAGS_CAST)
1639 #undef JSON_HEDLEY_FLAGS_CAST
1640#endif
1641#if JSON_HEDLEY_INTEL_VERSION_CHECK(19,0,0)
1642# define JSON_HEDLEY_FLAGS_CAST(T, expr) (__extension__ ({ \
1643 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1644 _Pragma("warning(disable:188)") \
1645 ((T) (expr)); \
1646 JSON_HEDLEY_DIAGNOSTIC_POP \
1647 }))
1648#else
1649# define JSON_HEDLEY_FLAGS_CAST(T, expr) JSON_HEDLEY_STATIC_CAST(T, expr)
1650#endif
1651
1652#if defined(JSON_HEDLEY_EMPTY_BASES)
1653 #undef JSON_HEDLEY_EMPTY_BASES
1654#endif
1655#if JSON_HEDLEY_MSVC_VERSION_CHECK(19,0,23918) && !JSON_HEDLEY_MSVC_VERSION_CHECK(20,0,0)
1656 #define JSON_HEDLEY_EMPTY_BASES __declspec(empty_bases)
1657#else
1658 #define JSON_HEDLEY_EMPTY_BASES
1659#endif
1660
1661/* Remaining macros are deprecated. */
1662
1663#if defined(JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK)
1664 #undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
1665#endif
1666#if defined(__clang__)
1667 #define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) (0)
1668#else
1669 #define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
1670#endif
1671
1672#if defined(JSON_HEDLEY_CLANG_HAS_ATTRIBUTE)
1673 #undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
1674#endif
1675#define JSON_HEDLEY_CLANG_HAS_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_ATTRIBUTE(attribute)
1676
1677#if defined(JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE)
1678 #undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
1679#endif
1680#define JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute)
1681
1682#if defined(JSON_HEDLEY_CLANG_HAS_BUILTIN)
1683 #undef JSON_HEDLEY_CLANG_HAS_BUILTIN
1684#endif
1685#define JSON_HEDLEY_CLANG_HAS_BUILTIN(builtin) JSON_HEDLEY_HAS_BUILTIN(builtin)
1686
1687#if defined(JSON_HEDLEY_CLANG_HAS_FEATURE)
1688 #undef JSON_HEDLEY_CLANG_HAS_FEATURE
1689#endif
1690#define JSON_HEDLEY_CLANG_HAS_FEATURE(feature) JSON_HEDLEY_HAS_FEATURE(feature)
1691
1692#if defined(JSON_HEDLEY_CLANG_HAS_EXTENSION)
1693 #undef JSON_HEDLEY_CLANG_HAS_EXTENSION
1694#endif
1695#define JSON_HEDLEY_CLANG_HAS_EXTENSION(extension) JSON_HEDLEY_HAS_EXTENSION(extension)
1696
1697#if defined(JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE)
1698 #undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
1699#endif
1700#define JSON_HEDLEY_CLANG_HAS_DECLSPEC_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute)
1701
1702#if defined(JSON_HEDLEY_CLANG_HAS_WARNING)
1703 #undef JSON_HEDLEY_CLANG_HAS_WARNING
1704#endif
1705#define JSON_HEDLEY_CLANG_HAS_WARNING(warning) JSON_HEDLEY_HAS_WARNING(warning)
1706
1707#endif /* !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < X) */
1708
1709
1710// This file contains all internal macro definitions
1711// You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
1712
1713// exclude unsupported compilers
1714#if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
1715 #if defined(__clang__)
1716 #if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
1717 #error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
1718 #endif
1719 #elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
1720 #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
1721 #error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
1722 #endif
1723 #endif
1724#endif
1725
1726// C++ language standard detection
1727#if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
1728 #define JSON_HAS_CPP_17
1729 #define JSON_HAS_CPP_14
1730#elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
1731 #define JSON_HAS_CPP_14
1732#endif
1733
1734// disable float-equal warnings on GCC/clang
1735#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
1736 #pragma GCC diagnostic push
1737 #pragma GCC diagnostic ignored "-Wfloat-equal"
1738#endif
1739
1740// disable documentation warnings on clang
1741#if defined(__clang__)
1742 #pragma GCC diagnostic push
1743 #pragma GCC diagnostic ignored "-Wdocumentation"
1744#endif
1745
1746// allow to disable exceptions
1747#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
1748 #define JSON_THROW(exception) throw exception
1749 #define JSON_TRY try
1750 #define JSON_CATCH(exception) catch(exception)
1751 #define JSON_INTERNAL_CATCH(exception) catch(exception)
1752#else
1753 #include <cstdlib>
1754 #define JSON_THROW(exception) std::abort()
1755 #define JSON_TRY if(true)
1756 #define JSON_CATCH(exception) if(false)
1757 #define JSON_INTERNAL_CATCH(exception) if(false)
1758#endif
1759
1760// override exception macros
1761#if defined(JSON_THROW_USER)
1762 #undef JSON_THROW
1763 #define JSON_THROW JSON_THROW_USER
1764#endif
1765#if defined(JSON_TRY_USER)
1766 #undef JSON_TRY
1767 #define JSON_TRY JSON_TRY_USER
1768#endif
1769#if defined(JSON_CATCH_USER)
1770 #undef JSON_CATCH
1771 #define JSON_CATCH JSON_CATCH_USER
1772 #undef JSON_INTERNAL_CATCH
1773 #define JSON_INTERNAL_CATCH JSON_CATCH_USER
1774#endif
1775#if defined(JSON_INTERNAL_CATCH_USER)
1776 #undef JSON_INTERNAL_CATCH
1777 #define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
1778#endif
1779
1780/*!
1781@brief macro to briefly define a mapping between an enum and JSON
1782@def NLOHMANN_JSON_SERIALIZE_ENUM
1783@since version 3.4.0
1784*/
1785#define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
1786 template<typename BasicJsonType> \
1787 inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
1788 { \
1789 static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
1790 static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
1791 auto it = std::find_if(std::begin(m), std::end(m), \
1792 [e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
1793 { \
1794 return ej_pair.first == e; \
1795 }); \
1796 j = ((it != std::end(m)) ? it : std::begin(m))->second; \
1797 } \
1798 template<typename BasicJsonType> \
1799 inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
1800 { \
1801 static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
1802 static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
1803 auto it = std::find_if(std::begin(m), std::end(m), \
1804 [&j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
1805 { \
1806 return ej_pair.second == j; \
1807 }); \
1808 e = ((it != std::end(m)) ? it : std::begin(m))->first; \
1809 }
1810
1811// Ugly macros to avoid uglier copy-paste when specializing basic_json. They
1812// may be removed in the future once the class is split.
1813
1814#define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
1815 template<template<typename, typename, typename...> class ObjectType, \
1816 template<typename, typename...> class ArrayType, \
1817 class StringType, class BooleanType, class NumberIntegerType, \
1818 class NumberUnsignedType, class NumberFloatType, \
1819 template<typename> class AllocatorType, \
1820 template<typename, typename = void> class JSONSerializer>
1821
1822#define NLOHMANN_BASIC_JSON_TPL \
1823 basic_json<ObjectType, ArrayType, StringType, BooleanType, \
1824 NumberIntegerType, NumberUnsignedType, NumberFloatType, \
1825 AllocatorType, JSONSerializer>
1826
1827
1828namespace nlohmann
1829{
1830namespace detail
1831{
1832////////////////
1833// exceptions //
1834////////////////
1835
1836/*!
1837@brief general exception of the @ref basic_json class
1838
1839This class is an extension of `std::exception` objects with a member @a id for
1840exception ids. It is used as the base class for all exceptions thrown by the
1841@ref basic_json class. This class can hence be used as "wildcard" to catch
1842exceptions.
1843
1844Subclasses:
1845- @ref parse_error for exceptions indicating a parse error
1846- @ref invalid_iterator for exceptions indicating errors with iterators
1847- @ref type_error for exceptions indicating executing a member function with
1848 a wrong type
1849- @ref out_of_range for exceptions indicating access out of the defined range
1850- @ref other_error for exceptions indicating other library errors
1851
1852@internal
1853@note To have nothrow-copy-constructible exceptions, we internally use
1854 `std::runtime_error` which can cope with arbitrary-length error messages.
1855 Intermediate strings are built with static functions and then passed to
1856 the actual constructor.
1857@endinternal
1858
1859@liveexample{The following code shows how arbitrary library exceptions can be
1860caught.,exception}
1861
1862@since version 3.0.0
1863*/
1864class exception : public std::exception
1865{
1866 public:
1867 /// returns the explanatory string
1868 JSON_HEDLEY_RETURNS_NON_NULL
1869 const char* what() const noexcept override
1870 {
1871 return m.what();
1872 }
1873
1874 /// the id of the exception
1875 const int id;
1876
1877 protected:
1878 JSON_HEDLEY_NON_NULL(3)
1879 exception(int id_, const char* what_arg) : id(id_), m(what_arg) {}
1880
1881 static std::string name(const std::string& ename, int id_)
1882 {
1883 return "[json.exception." + ename + "." + std::to_string(id_) + "] ";
1884 }
1885
1886 private:
1887 /// an exception object as storage for error messages
1888 std::runtime_error m;
1889};
1890
1891/*!
1892@brief exception indicating a parse error
1893
1894This exception is thrown by the library when a parse error occurs. Parse errors
1895can occur during the deserialization of JSON text, CBOR, MessagePack, as well
1896as when using JSON Patch.
1897
1898Member @a byte holds the byte index of the last read character in the input
1899file.
1900
1901Exceptions have ids 1xx.
1902
1903name / id | example message | description
1904------------------------------ | --------------- | -------------------------
1905json.exception.parse_error.101 | parse error at 2: unexpected end of input; expected string literal | This error indicates a syntax error while deserializing a JSON text. The error message describes that an unexpected token (character) was encountered, and the member @a byte indicates the error position.
1906json.exception.parse_error.102 | parse error at 14: missing or wrong low surrogate | JSON uses the `\uxxxx` format to describe Unicode characters. Code points above above 0xFFFF are split into two `\uxxxx` entries ("surrogate pairs"). This error indicates that the surrogate pair is incomplete or contains an invalid code point.
1907json.exception.parse_error.103 | parse error: code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF. Code points above 0x10FFFF are invalid.
1908json.exception.parse_error.104 | parse error: JSON patch must be an array of objects | [RFC 6902](https://tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects.
1909json.exception.parse_error.105 | parse error: operation must have string member 'op' | An operation of a JSON Patch document must contain exactly one "op" member, whose value indicates the operation to perform. Its value must be one of "add", "remove", "replace", "move", "copy", or "test"; other values are errors.
1910json.exception.parse_error.106 | parse error: array index '01' must not begin with '0' | An array index in a JSON Pointer ([RFC 6901](https://tools.ietf.org/html/rfc6901)) may be `0` or any number without a leading `0`.
1911json.exception.parse_error.107 | parse error: JSON pointer must be empty or begin with '/' - was: 'foo' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens, each prefixed by a `/` character.
1912json.exception.parse_error.108 | parse error: escape character '~' must be followed with '0' or '1' | In a JSON Pointer, only `~0` and `~1` are valid escape sequences.
1913json.exception.parse_error.109 | parse error: array index 'one' is not a number | A JSON Pointer array index must be a number.
1914json.exception.parse_error.110 | parse error at 1: cannot read 2 bytes from vector | When parsing CBOR or MessagePack, the byte vector ends before the complete value has been read.
1915json.exception.parse_error.112 | parse error at 1: error reading CBOR; last byte: 0xF8 | Not all types of CBOR or MessagePack are supported. This exception occurs if an unsupported byte was read.
1916json.exception.parse_error.113 | parse error at 2: expected a CBOR string; last byte: 0x98 | While parsing a map key, a value that is not a string has been read.
1917json.exception.parse_error.114 | parse error: Unsupported BSON record type 0x0F | The parsing of the corresponding BSON record type is not implemented (yet).
1918
1919@note For an input with n bytes, 1 is the index of the first character and n+1
1920 is the index of the terminating null byte or the end of file. This also
1921 holds true when reading a byte vector (CBOR or MessagePack).
1922
1923@liveexample{The following code shows how a `parse_error` exception can be
1924caught.,parse_error}
1925
1926@sa - @ref exception for the base class of the library exceptions
1927@sa - @ref invalid_iterator for exceptions indicating errors with iterators
1928@sa - @ref type_error for exceptions indicating executing a member function with
1929 a wrong type
1930@sa - @ref out_of_range for exceptions indicating access out of the defined range
1931@sa - @ref other_error for exceptions indicating other library errors
1932
1933@since version 3.0.0
1934*/
1935class parse_error : public exception
1936{
1937 public:
1938 /*!
1939 @brief create a parse error exception
1940 @param[in] id_ the id of the exception
1941 @param[in] pos the position where the error occurred (or with
1942 chars_read_total=0 if the position cannot be
1943 determined)
1944 @param[in] what_arg the explanatory string
1945 @return parse_error object
1946 */
1947 static parse_error create(int id_, const position_t& pos, const std::string& what_arg)
1948 {
1949 std::string w = exception::name("parse_error", id_) + "parse error" +
1950 position_string(pos) + ": " + what_arg;
1951 return parse_error(id_, pos.chars_read_total, w.c_str());
1952 }
1953
1954 static parse_error create(int id_, std::size_t byte_, const std::string& what_arg)
1955 {
1956 std::string w = exception::name("parse_error", id_) + "parse error" +
1957 (byte_ != 0 ? (" at byte " + std::to_string(byte_)) : "") +
1958 ": " + what_arg;
1959 return parse_error(id_, byte_, w.c_str());
1960 }
1961
1962 /*!
1963 @brief byte index of the parse error
1964
1965 The byte index of the last read character in the input file.
1966
1967 @note For an input with n bytes, 1 is the index of the first character and
1968 n+1 is the index of the terminating null byte or the end of file.
1969 This also holds true when reading a byte vector (CBOR or MessagePack).
1970 */
1971 const std::size_t byte;
1972
1973 private:
1974 parse_error(int id_, std::size_t byte_, const char* what_arg)
1975 : exception(id_, what_arg), byte(byte_) {}
1976
1977 static std::string position_string(const position_t& pos)
1978 {
1979 return " at line " + std::to_string(pos.lines_read + 1) +
1980 ", column " + std::to_string(pos.chars_read_current_line);
1981 }
1982};
1983
1984/*!
1985@brief exception indicating errors with iterators
1986
1987This exception is thrown if iterators passed to a library function do not match
1988the expected semantics.
1989
1990Exceptions have ids 2xx.
1991
1992name / id | example message | description
1993----------------------------------- | --------------- | -------------------------
1994json.exception.invalid_iterator.201 | iterators are not compatible | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
1995json.exception.invalid_iterator.202 | iterator does not fit current value | In an erase or insert function, the passed iterator @a pos does not belong to the JSON value for which the function was called. It hence does not define a valid position for the deletion/insertion.
1996json.exception.invalid_iterator.203 | iterators do not fit current value | Either iterator passed to function @ref erase(IteratorType first, IteratorType last) does not belong to the JSON value from which values shall be erased. It hence does not define a valid range to delete values from.
1997json.exception.invalid_iterator.204 | iterators out of range | When an iterator range for a primitive type (number, boolean, or string) is passed to a constructor or an erase function, this range has to be exactly (@ref begin(), @ref end()), because this is the only way the single stored value is expressed. All other ranges are invalid.
1998json.exception.invalid_iterator.205 | iterator out of range | When an iterator for a primitive type (number, boolean, or string) is passed to an erase function, the iterator has to be the @ref begin() iterator, because it is the only way to address the stored value. All other iterators are invalid.
1999json.exception.invalid_iterator.206 | cannot construct with iterators from null | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) belong to a JSON null value and hence to not define a valid range.
2000json.exception.invalid_iterator.207 | cannot use key() for non-object iterators | The key() member function can only be used on iterators belonging to a JSON object, because other types do not have a concept of a key.
2001json.exception.invalid_iterator.208 | cannot use operator[] for object iterators | The operator[] to specify a concrete offset cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
2002json.exception.invalid_iterator.209 | cannot use offsets with object iterators | The offset operators (+, -, +=, -=) cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
2003json.exception.invalid_iterator.210 | iterators do not fit | The iterator range passed to the insert function are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
2004json.exception.invalid_iterator.211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to.
2005json.exception.invalid_iterator.212 | cannot compare iterators of different containers | When two iterators are compared, they must belong to the same container.
2006json.exception.invalid_iterator.213 | cannot compare order of object iterators | The order of object iterators cannot be compared, because JSON objects are unordered.
2007json.exception.invalid_iterator.214 | cannot get value | Cannot get value for iterator: Either the iterator belongs to a null value or it is an iterator to a primitive type (number, boolean, or string), but the iterator is different to @ref begin().
2008
2009@liveexample{The following code shows how an `invalid_iterator` exception can be
2010caught.,invalid_iterator}
2011
2012@sa - @ref exception for the base class of the library exceptions
2013@sa - @ref parse_error for exceptions indicating a parse error
2014@sa - @ref type_error for exceptions indicating executing a member function with
2015 a wrong type
2016@sa - @ref out_of_range for exceptions indicating access out of the defined range
2017@sa - @ref other_error for exceptions indicating other library errors
2018
2019@since version 3.0.0
2020*/
2021class invalid_iterator : public exception
2022{
2023 public:
2024 static invalid_iterator create(int id_, const std::string& what_arg)
2025 {
2026 std::string w = exception::name("invalid_iterator", id_) + what_arg;
2027 return invalid_iterator(id_, w.c_str());
2028 }
2029
2030 private:
2031 JSON_HEDLEY_NON_NULL(3)
2032 invalid_iterator(int id_, const char* what_arg)
2033 : exception(id_, what_arg) {}
2034};
2035
2036/*!
2037@brief exception indicating executing a member function with a wrong type
2038
2039This exception is thrown in case of a type error; that is, a library function is
2040executed on a JSON value whose type does not match the expected semantics.
2041
2042Exceptions have ids 3xx.
2043
2044name / id | example message | description
2045----------------------------- | --------------- | -------------------------
2046json.exception.type_error.301 | cannot create object from initializer list | To create an object from an initializer list, the initializer list must consist only of a list of pairs whose first element is a string. When this constraint is violated, an array is created instead.
2047json.exception.type_error.302 | type must be object, but is array | During implicit or explicit value conversion, the JSON type must be compatible to the target type. For instance, a JSON string can only be converted into string types, but not into numbers or boolean types.
2048json.exception.type_error.303 | incompatible ReferenceType for get_ref, actual type is object | To retrieve a reference to a value stored in a @ref basic_json object with @ref get_ref, the type of the reference must match the value type. For instance, for a JSON array, the @a ReferenceType must be @ref array_t &.
2049json.exception.type_error.304 | cannot use at() with string | The @ref at() member functions can only be executed for certain JSON types.
2050json.exception.type_error.305 | cannot use operator[] with string | The @ref operator[] member functions can only be executed for certain JSON types.
2051json.exception.type_error.306 | cannot use value() with string | The @ref value() member functions can only be executed for certain JSON types.
2052json.exception.type_error.307 | cannot use erase() with string | The @ref erase() member functions can only be executed for certain JSON types.
2053json.exception.type_error.308 | cannot use push_back() with string | The @ref push_back() and @ref operator+= member functions can only be executed for certain JSON types.
2054json.exception.type_error.309 | cannot use insert() with | The @ref insert() member functions can only be executed for certain JSON types.
2055json.exception.type_error.310 | cannot use swap() with number | The @ref swap() member functions can only be executed for certain JSON types.
2056json.exception.type_error.311 | cannot use emplace_back() with string | The @ref emplace_back() member function can only be executed for certain JSON types.
2057json.exception.type_error.312 | cannot use update() with string | The @ref update() member functions can only be executed for certain JSON types.
2058json.exception.type_error.313 | invalid value to unflatten | The @ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value. The JSON Pointers must not overlap, because then the resulting value would not be well defined.
2059json.exception.type_error.314 | only objects can be unflattened | The @ref unflatten function only works for an object whose keys are JSON Pointers.
2060json.exception.type_error.315 | values in object must be primitive | The @ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive.
2061json.exception.type_error.316 | invalid UTF-8 byte at index 10: 0x7E | The @ref dump function only works with UTF-8 encoded strings; that is, if you assign a `std::string` to a JSON value, make sure it is UTF-8 encoded. |
2062json.exception.type_error.317 | JSON value cannot be serialized to requested format | The dynamic type of the object cannot be represented in the requested serialization format (e.g. a raw `true` or `null` JSON object cannot be serialized to BSON) |
2063
2064@liveexample{The following code shows how a `type_error` exception can be
2065caught.,type_error}
2066
2067@sa - @ref exception for the base class of the library exceptions
2068@sa - @ref parse_error for exceptions indicating a parse error
2069@sa - @ref invalid_iterator for exceptions indicating errors with iterators
2070@sa - @ref out_of_range for exceptions indicating access out of the defined range
2071@sa - @ref other_error for exceptions indicating other library errors
2072
2073@since version 3.0.0
2074*/
2075class type_error : public exception
2076{
2077 public:
2078 static type_error create(int id_, const std::string& what_arg)
2079 {
2080 std::string w = exception::name("type_error", id_) + what_arg;
2081 return type_error(id_, w.c_str());
2082 }
2083
2084 private:
2085 JSON_HEDLEY_NON_NULL(3)
2086 type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
2087};
2088
2089/*!
2090@brief exception indicating access out of the defined range
2091
2092This exception is thrown in case a library function is called on an input
2093parameter that exceeds the expected range, for instance in case of array
2094indices or nonexisting object keys.
2095
2096Exceptions have ids 4xx.
2097
2098name / id | example message | description
2099------------------------------- | --------------- | -------------------------
2100json.exception.out_of_range.401 | array index 3 is out of range | The provided array index @a i is larger than @a size-1.
2101json.exception.out_of_range.402 | array index '-' (3) is out of range | The special array index `-` in a JSON Pointer never describes a valid element of the array, but the index past the end. That is, it can only be used to add elements at this position, but not to read it.
2102json.exception.out_of_range.403 | key 'foo' not found | The provided key was not found in the JSON object.
2103json.exception.out_of_range.404 | unresolved reference token 'foo' | A reference token in a JSON Pointer could not be resolved.
2104json.exception.out_of_range.405 | JSON pointer has no parent | The JSON Patch operations 'remove' and 'add' can not be applied to the root element of the JSON value.
2105json.exception.out_of_range.406 | number overflow parsing '10E1000' | A parsed number could not be stored as without changing it to NaN or INF.
2106json.exception.out_of_range.407 | number overflow serializing '9223372036854775808' | UBJSON and BSON only support integer numbers up to 9223372036854775807. |
2107json.exception.out_of_range.408 | excessive array size: 8658170730974374167 | The size (following `#`) of an UBJSON array or object exceeds the maximal capacity. |
2108json.exception.out_of_range.409 | BSON key cannot contain code point U+0000 (at byte 2) | Key identifiers to be serialized to BSON cannot contain code point U+0000, since the key is stored as zero-terminated c-string |
2109
2110@liveexample{The following code shows how an `out_of_range` exception can be
2111caught.,out_of_range}
2112
2113@sa - @ref exception for the base class of the library exceptions
2114@sa - @ref parse_error for exceptions indicating a parse error
2115@sa - @ref invalid_iterator for exceptions indicating errors with iterators
2116@sa - @ref type_error for exceptions indicating executing a member function with
2117 a wrong type
2118@sa - @ref other_error for exceptions indicating other library errors
2119
2120@since version 3.0.0
2121*/
2122class out_of_range : public exception
2123{
2124 public:
2125 static out_of_range create(int id_, const std::string& what_arg)
2126 {
2127 std::string w = exception::name("out_of_range", id_) + what_arg;
2128 return out_of_range(id_, w.c_str());
2129 }
2130
2131 private:
2132 JSON_HEDLEY_NON_NULL(3)
2133 out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
2134};
2135
2136/*!
2137@brief exception indicating other library errors
2138
2139This exception is thrown in case of errors that cannot be classified with the
2140other exception types.
2141
2142Exceptions have ids 5xx.
2143
2144name / id | example message | description
2145------------------------------ | --------------- | -------------------------
2146json.exception.other_error.501 | unsuccessful: {"op":"test","path":"/baz", "value":"bar"} | A JSON Patch operation 'test' failed. The unsuccessful operation is also printed.
2147
2148@sa - @ref exception for the base class of the library exceptions
2149@sa - @ref parse_error for exceptions indicating a parse error
2150@sa - @ref invalid_iterator for exceptions indicating errors with iterators
2151@sa - @ref type_error for exceptions indicating executing a member function with
2152 a wrong type
2153@sa - @ref out_of_range for exceptions indicating access out of the defined range
2154
2155@liveexample{The following code shows how an `other_error` exception can be
2156caught.,other_error}
2157
2158@since version 3.0.0
2159*/
2160class other_error : public exception
2161{
2162 public:
2163 static other_error create(int id_, const std::string& what_arg)
2164 {
2165 std::string w = exception::name("other_error", id_) + what_arg;
2166 return other_error(id_, w.c_str());
2167 }
2168
2169 private:
2170 JSON_HEDLEY_NON_NULL(3)
2171 other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
2172};
2173} // namespace detail
2174} // namespace nlohmann
2175
2176// #include <nlohmann/detail/macro_scope.hpp>
2177
2178// #include <nlohmann/detail/meta/cpp_future.hpp>
2179
2180
2181#include <ciso646> // not
2182#include <cstddef> // size_t
2183#include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type
2184
2185namespace nlohmann
2186{
2187namespace detail
2188{
2189// alias templates to reduce boilerplate
2190template<bool B, typename T = void>
2191using enable_if_t = typename std::enable_if<B, T>::type;
2192
2193template<typename T>
2194using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
2195
2196// implementation of C++14 index_sequence and affiliates
2197// source: https://stackoverflow.com/a/32223343
2198template<std::size_t... Ints>
2199struct index_sequence
2200{
2201 using type = index_sequence;
2202 using value_type = std::size_t;
2203 static constexpr std::size_t size() noexcept
2204 {
2205 return sizeof...(Ints);
2206 }
2207};
2208
2209template<class Sequence1, class Sequence2>
2210struct merge_and_renumber;
2211
2212template<std::size_t... I1, std::size_t... I2>
2213struct merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
2214 : index_sequence < I1..., (sizeof...(I1) + I2)... > {};
2215
2216template<std::size_t N>
2217struct make_index_sequence
2218 : merge_and_renumber < typename make_index_sequence < N / 2 >::type,
2219 typename make_index_sequence < N - N / 2 >::type > {};
2220
2221template<> struct make_index_sequence<0> : index_sequence<> {};
2222template<> struct make_index_sequence<1> : index_sequence<0> {};
2223
2224template<typename... Ts>
2225using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
2226
2227// dispatch utility (taken from ranges-v3)
2228template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
2229template<> struct priority_tag<0> {};
2230
2231// taken from ranges-v3
2232template<typename T>
2233struct static_const
2234{
2235 static constexpr T value{};
2236};
2237
2238template<typename T>
2239constexpr T static_const<T>::value;
2240} // namespace detail
2241} // namespace nlohmann
2242
2243// #include <nlohmann/detail/meta/type_traits.hpp>
2244
2245
2246#include <ciso646> // not
2247#include <limits> // numeric_limits
2248#include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type
2249#include <utility> // declval
2250
2251// #include <nlohmann/detail/iterators/iterator_traits.hpp>
2252
2253
2254#include <iterator> // random_access_iterator_tag
2255
2256// #include <nlohmann/detail/meta/void_t.hpp>
2257
2258
2259namespace nlohmann
2260{
2261namespace detail
2262{
2263template <typename ...Ts> struct make_void
2264{
2265 using type = void;
2266};
2267template <typename ...Ts> using void_t = typename make_void<Ts...>::type;
2268} // namespace detail
2269} // namespace nlohmann
2270
2271// #include <nlohmann/detail/meta/cpp_future.hpp>
2272
2273
2274namespace nlohmann
2275{
2276namespace detail
2277{
2278template <typename It, typename = void>
2279struct iterator_types {};
2280
2281template <typename It>
2282struct iterator_types <
2283 It,
2284 void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
2285 typename It::reference, typename It::iterator_category >>
2286{
2287 using difference_type = typename It::difference_type;
2288 using value_type = typename It::value_type;
2289 using pointer = typename It::pointer;
2290 using reference = typename It::reference;
2291 using iterator_category = typename It::iterator_category;
2292};
2293
2294// This is required as some compilers implement std::iterator_traits in a way that
2295// doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
2296template <typename T, typename = void>
2297struct iterator_traits
2298{
2299};
2300
2301template <typename T>
2302struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
2303 : iterator_types<T>
2304{
2305};
2306
2307template <typename T>
2308struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
2309{
2310 using iterator_category = std::random_access_iterator_tag;
2311 using value_type = T;
2312 using difference_type = ptrdiff_t;
2313 using pointer = T*;
2314 using reference = T&;
2315};
2316} // namespace detail
2317} // namespace nlohmann
2318
2319// #include <nlohmann/detail/macro_scope.hpp>
2320
2321// #include <nlohmann/detail/meta/cpp_future.hpp>
2322
2323// #include <nlohmann/detail/meta/detected.hpp>
2324
2325
2326#include <type_traits>
2327
2328// #include <nlohmann/detail/meta/void_t.hpp>
2329
2330
2331// http://en.cppreference.com/w/cpp/experimental/is_detected
2332namespace nlohmann
2333{
2334namespace detail
2335{
2336struct nonesuch
2337{
2338 nonesuch() = delete;
2339 ~nonesuch() = delete;
2340 nonesuch(nonesuch const&) = delete;
2341 nonesuch(nonesuch const&&) = delete;
2342 void operator=(nonesuch const&) = delete;
2343 void operator=(nonesuch&&) = delete;
2344};
2345
2346template <class Default,
2347 class AlwaysVoid,
2348 template <class...> class Op,
2349 class... Args>
2350struct detector
2351{
2352 using value_t = std::false_type;
2353 using type = Default;
2354};
2355
2356template <class Default, template <class...> class Op, class... Args>
2357struct detector<Default, void_t<Op<Args...>>, Op, Args...>
2358{
2359 using value_t = std::true_type;
2360 using type = Op<Args...>;
2361};
2362
2363template <template <class...> class Op, class... Args>
2364using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;
2365
2366template <template <class...> class Op, class... Args>
2367using detected_t = typename detector<nonesuch, void, Op, Args...>::type;
2368
2369template <class Default, template <class...> class Op, class... Args>
2370using detected_or = detector<Default, void, Op, Args...>;
2371
2372template <class Default, template <class...> class Op, class... Args>
2373using detected_or_t = typename detected_or<Default, Op, Args...>::type;
2374
2375template <class Expected, template <class...> class Op, class... Args>
2376using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>;
2377
2378template <class To, template <class...> class Op, class... Args>
2379using is_detected_convertible =
2380 std::is_convertible<detected_t<Op, Args...>, To>;
2381} // namespace detail
2382} // namespace nlohmann
2383
2384// #include <nlohmann/json_fwd.hpp>
2385#ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_
2386#define INCLUDE_NLOHMANN_JSON_FWD_HPP_
2387
2388#include <cstdint> // int64_t, uint64_t
2389#include <map> // map
2390#include <memory> // allocator
2391#include <string> // string
2392#include <vector> // vector
2393
2394/*!
2395@brief namespace for Niels Lohmann
2396@see https://github.com/nlohmann
2397@since version 1.0.0
2398*/
2399namespace nlohmann
2400{
2401/*!
2402@brief default JSONSerializer template argument
2403
2404This serializer ignores the template arguments and uses ADL
2405([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl))
2406for serialization.
2407*/
2408template<typename T = void, typename SFINAE = void>
2409struct adl_serializer;
2410
2411template<template<typename U, typename V, typename... Args> class ObjectType =
2412 std::map,
2413 template<typename U, typename... Args> class ArrayType = std::vector,
2414 class StringType = std::string, class BooleanType = bool,
2415 class NumberIntegerType = std::int64_t,
2416 class NumberUnsignedType = std::uint64_t,
2417 class NumberFloatType = double,
2418 template<typename U> class AllocatorType = std::allocator,
2419 template<typename T, typename SFINAE = void> class JSONSerializer =
2420 adl_serializer>
2421class basic_json;
2422
2423/*!
2424@brief JSON Pointer
2425
2426A JSON pointer defines a string syntax for identifying a specific value
2427within a JSON document. It can be used with functions `at` and
2428`operator[]`. Furthermore, JSON pointers are the base for JSON patches.
2429
2430@sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
2431
2432@since version 2.0.0
2433*/
2434template<typename BasicJsonType>
2435class json_pointer;
2436
2437/*!
2438@brief default JSON class
2439
2440This type is the default specialization of the @ref basic_json class which
2441uses the standard template types.
2442
2443@since version 1.0.0
2444*/
2445using json = basic_json<>;
2446} // namespace nlohmann
2447
2448#endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_
2449
2450
2451namespace nlohmann
2452{
2453/*!
2454@brief detail namespace with internal helper functions
2455
2456This namespace collects functions that should not be exposed,
2457implementations of some @ref basic_json methods, and meta-programming helpers.
2458
2459@since version 2.1.0
2460*/
2461namespace detail
2462{
2463/////////////
2464// helpers //
2465/////////////
2466
2467// Note to maintainers:
2468//
2469// Every trait in this file expects a non CV-qualified type.
2470// The only exceptions are in the 'aliases for detected' section
2471// (i.e. those of the form: decltype(T::member_function(std::declval<T>())))
2472//
2473// In this case, T has to be properly CV-qualified to constraint the function arguments
2474// (e.g. to_json(BasicJsonType&, const T&))
2475
2476template<typename> struct is_basic_json : std::false_type {};
2477
2478NLOHMANN_BASIC_JSON_TPL_DECLARATION
2479struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
2480
2481//////////////////////////
2482// aliases for detected //
2483//////////////////////////
2484
2485template <typename T>
2486using mapped_type_t = typename T::mapped_type;
2487
2488template <typename T>
2489using key_type_t = typename T::key_type;
2490
2491template <typename T>
2492using value_type_t = typename T::value_type;
2493
2494template <typename T>
2495using difference_type_t = typename T::difference_type;
2496
2497template <typename T>
2498using pointer_t = typename T::pointer;
2499
2500template <typename T>
2501using reference_t = typename T::reference;
2502
2503template <typename T>
2504using iterator_category_t = typename T::iterator_category;
2505
2506template <typename T>
2507using iterator_t = typename T::iterator;
2508
2509template <typename T, typename... Args>
2510using to_json_function = decltype(T::to_json(std::declval<Args>()...));
2511
2512template <typename T, typename... Args>
2513using from_json_function = decltype(T::from_json(std::declval<Args>()...));
2514
2515template <typename T, typename U>
2516using get_template_function = decltype(std::declval<T>().template get<U>());
2517
2518// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
2519template <typename BasicJsonType, typename T, typename = void>
2520struct has_from_json : std::false_type {};
2521
2522template <typename BasicJsonType, typename T>
2523struct has_from_json<BasicJsonType, T,
2524 enable_if_t<not is_basic_json<T>::value>>
2525{
2526 using serializer = typename BasicJsonType::template json_serializer<T, void>;
2527
2528 static constexpr bool value =
2529 is_detected_exact<void, from_json_function, serializer,
2530 const BasicJsonType&, T&>::value;
2531};
2532
2533// This trait checks if JSONSerializer<T>::from_json(json const&) exists
2534// this overload is used for non-default-constructible user-defined-types
2535template <typename BasicJsonType, typename T, typename = void>
2536struct has_non_default_from_json : std::false_type {};
2537
2538template<typename BasicJsonType, typename T>
2539struct has_non_default_from_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
2540{
2541 using serializer = typename BasicJsonType::template json_serializer<T, void>;
2542
2543 static constexpr bool value =
2544 is_detected_exact<T, from_json_function, serializer,
2545 const BasicJsonType&>::value;
2546};
2547
2548// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
2549// Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion.
2550template <typename BasicJsonType, typename T, typename = void>
2551struct has_to_json : std::false_type {};
2552
2553template <typename BasicJsonType, typename T>
2554struct has_to_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
2555{
2556 using serializer = typename BasicJsonType::template json_serializer<T, void>;
2557
2558 static constexpr bool value =
2559 is_detected_exact<void, to_json_function, serializer, BasicJsonType&,
2560 T>::value;
2561};
2562
2563
2564///////////////////
2565// is_ functions //
2566///////////////////
2567
2568template <typename T, typename = void>
2569struct is_iterator_traits : std::false_type {};
2570
2571template <typename T>
2572struct is_iterator_traits<iterator_traits<T>>
2573{
2574 private:
2575 using traits = iterator_traits<T>;
2576
2577 public:
2578 static constexpr auto value =
2579 is_detected<value_type_t, traits>::value &&
2580 is_detected<difference_type_t, traits>::value &&
2581 is_detected<pointer_t, traits>::value &&
2582 is_detected<iterator_category_t, traits>::value &&
2583 is_detected<reference_t, traits>::value;
2584};
2585
2586// source: https://stackoverflow.com/a/37193089/4116453
2587
2588template <typename T, typename = void>
2589struct is_complete_type : std::false_type {};
2590
2591template <typename T>
2592struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
2593
2594template <typename BasicJsonType, typename CompatibleObjectType,
2595 typename = void>
2596struct is_compatible_object_type_impl : std::false_type {};
2597
2598template <typename BasicJsonType, typename CompatibleObjectType>
2599struct is_compatible_object_type_impl <
2600 BasicJsonType, CompatibleObjectType,
2601 enable_if_t<is_detected<mapped_type_t, CompatibleObjectType>::value and
2602 is_detected<key_type_t, CompatibleObjectType>::value >>
2603{
2604
2605 using object_t = typename BasicJsonType::object_t;
2606
2607 // macOS's is_constructible does not play well with nonesuch...
2608 static constexpr bool value =
2609 std::is_constructible<typename object_t::key_type,
2610 typename CompatibleObjectType::key_type>::value and
2611 std::is_constructible<typename object_t::mapped_type,
2612 typename CompatibleObjectType::mapped_type>::value;
2613};
2614
2615template <typename BasicJsonType, typename CompatibleObjectType>
2616struct is_compatible_object_type
2617 : is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {};
2618
2619template <typename BasicJsonType, typename ConstructibleObjectType,
2620 typename = void>
2621struct is_constructible_object_type_impl : std::false_type {};
2622
2623template <typename BasicJsonType, typename ConstructibleObjectType>
2624struct is_constructible_object_type_impl <
2625 BasicJsonType, ConstructibleObjectType,
2626 enable_if_t<is_detected<mapped_type_t, ConstructibleObjectType>::value and
2627 is_detected<key_type_t, ConstructibleObjectType>::value >>
2628{
2629 using object_t = typename BasicJsonType::object_t;
2630
2631 static constexpr bool value =
2632 (std::is_default_constructible<ConstructibleObjectType>::value and
2633 (std::is_move_assignable<ConstructibleObjectType>::value or
2634 std::is_copy_assignable<ConstructibleObjectType>::value) and
2635 (std::is_constructible<typename ConstructibleObjectType::key_type,
2636 typename object_t::key_type>::value and
2637 std::is_same <
2638 typename object_t::mapped_type,
2639 typename ConstructibleObjectType::mapped_type >::value)) or
2640 (has_from_json<BasicJsonType,
2641 typename ConstructibleObjectType::mapped_type>::value or
2642 has_non_default_from_json <
2643 BasicJsonType,
2644 typename ConstructibleObjectType::mapped_type >::value);
2645};
2646
2647template <typename BasicJsonType, typename ConstructibleObjectType>
2648struct is_constructible_object_type
2649 : is_constructible_object_type_impl<BasicJsonType,
2650 ConstructibleObjectType> {};
2651
2652template <typename BasicJsonType, typename CompatibleStringType,
2653 typename = void>
2654struct is_compatible_string_type_impl : std::false_type {};
2655
2656template <typename BasicJsonType, typename CompatibleStringType>
2657struct is_compatible_string_type_impl <
2658 BasicJsonType, CompatibleStringType,
2659 enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
2660 value_type_t, CompatibleStringType>::value >>
2661{
2662 static constexpr auto value =
2663 std::is_constructible<typename BasicJsonType::string_t, CompatibleStringType>::value;
2664};
2665
2666template <typename BasicJsonType, typename ConstructibleStringType>
2667struct is_compatible_string_type
2668 : is_compatible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
2669
2670template <typename BasicJsonType, typename ConstructibleStringType,
2671 typename = void>
2672struct is_constructible_string_type_impl : std::false_type {};
2673
2674template <typename BasicJsonType, typename ConstructibleStringType>
2675struct is_constructible_string_type_impl <
2676 BasicJsonType, ConstructibleStringType,
2677 enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
2678 value_type_t, ConstructibleStringType>::value >>
2679{
2680 static constexpr auto value =
2681 std::is_constructible<ConstructibleStringType,
2682 typename BasicJsonType::string_t>::value;
2683};
2684
2685template <typename BasicJsonType, typename ConstructibleStringType>
2686struct is_constructible_string_type
2687 : is_constructible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
2688
2689template <typename BasicJsonType, typename CompatibleArrayType, typename = void>
2690struct is_compatible_array_type_impl : std::false_type {};
2691
2692template <typename BasicJsonType, typename CompatibleArrayType>
2693struct is_compatible_array_type_impl <
2694 BasicJsonType, CompatibleArrayType,
2695 enable_if_t<is_detected<value_type_t, CompatibleArrayType>::value and
2696 is_detected<iterator_t, CompatibleArrayType>::value and
2697// This is needed because json_reverse_iterator has a ::iterator type...
2698// Therefore it is detected as a CompatibleArrayType.
2699// The real fix would be to have an Iterable concept.
2700 not is_iterator_traits<
2701 iterator_traits<CompatibleArrayType>>::value >>
2702{
2703 static constexpr bool value =
2704 std::is_constructible<BasicJsonType,
2705 typename CompatibleArrayType::value_type>::value;
2706};
2707
2708template <typename BasicJsonType, typename CompatibleArrayType>
2709struct is_compatible_array_type
2710 : is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {};
2711
2712template <typename BasicJsonType, typename ConstructibleArrayType, typename = void>
2713struct is_constructible_array_type_impl : std::false_type {};
2714
2715template <typename BasicJsonType, typename ConstructibleArrayType>
2716struct is_constructible_array_type_impl <
2717 BasicJsonType, ConstructibleArrayType,
2718 enable_if_t<std::is_same<ConstructibleArrayType,
2719 typename BasicJsonType::value_type>::value >>
2720 : std::true_type {};
2721
2722template <typename BasicJsonType, typename ConstructibleArrayType>
2723struct is_constructible_array_type_impl <
2724 BasicJsonType, ConstructibleArrayType,
2725 enable_if_t<not std::is_same<ConstructibleArrayType,
2726 typename BasicJsonType::value_type>::value and
2727 std::is_default_constructible<ConstructibleArrayType>::value and
2728(std::is_move_assignable<ConstructibleArrayType>::value or
2729 std::is_copy_assignable<ConstructibleArrayType>::value) and
2730is_detected<value_type_t, ConstructibleArrayType>::value and
2731is_detected<iterator_t, ConstructibleArrayType>::value and
2732is_complete_type<
2733detected_t<value_type_t, ConstructibleArrayType>>::value >>
2734{
2735 static constexpr bool value =
2736 // This is needed because json_reverse_iterator has a ::iterator type,
2737 // furthermore, std::back_insert_iterator (and other iterators) have a
2738 // base class `iterator`... Therefore it is detected as a
2739 // ConstructibleArrayType. The real fix would be to have an Iterable
2740 // concept.
2741 not is_iterator_traits<iterator_traits<ConstructibleArrayType>>::value and
2742
2743 (std::is_same<typename ConstructibleArrayType::value_type,
2744 typename BasicJsonType::array_t::value_type>::value or
2745 has_from_json<BasicJsonType,
2746 typename ConstructibleArrayType::value_type>::value or
2747 has_non_default_from_json <
2748 BasicJsonType, typename ConstructibleArrayType::value_type >::value);
2749};
2750
2751template <typename BasicJsonType, typename ConstructibleArrayType>
2752struct is_constructible_array_type
2753 : is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {};
2754
2755template <typename RealIntegerType, typename CompatibleNumberIntegerType,
2756 typename = void>
2757struct is_compatible_integer_type_impl : std::false_type {};
2758
2759template <typename RealIntegerType, typename CompatibleNumberIntegerType>
2760struct is_compatible_integer_type_impl <
2761 RealIntegerType, CompatibleNumberIntegerType,
2762 enable_if_t<std::is_integral<RealIntegerType>::value and
2763 std::is_integral<CompatibleNumberIntegerType>::value and
2764 not std::is_same<bool, CompatibleNumberIntegerType>::value >>
2765{
2766 // is there an assert somewhere on overflows?
2767 using RealLimits = std::numeric_limits<RealIntegerType>;
2768 using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
2769
2770 static constexpr auto value =
2771 std::is_constructible<RealIntegerType,
2772 CompatibleNumberIntegerType>::value and
2773 CompatibleLimits::is_integer and
2774 RealLimits::is_signed == CompatibleLimits::is_signed;
2775};
2776
2777template <typename RealIntegerType, typename CompatibleNumberIntegerType>
2778struct is_compatible_integer_type
2779 : is_compatible_integer_type_impl<RealIntegerType,
2780 CompatibleNumberIntegerType> {};
2781
2782template <typename BasicJsonType, typename CompatibleType, typename = void>
2783struct is_compatible_type_impl: std::false_type {};
2784
2785template <typename BasicJsonType, typename CompatibleType>
2786struct is_compatible_type_impl <
2787 BasicJsonType, CompatibleType,
2788 enable_if_t<is_complete_type<CompatibleType>::value >>
2789{
2790 static constexpr bool value =
2791 has_to_json<BasicJsonType, CompatibleType>::value;
2792};
2793
2794template <typename BasicJsonType, typename CompatibleType>
2795struct is_compatible_type
2796 : is_compatible_type_impl<BasicJsonType, CompatibleType> {};
2797
2798// https://en.cppreference.com/w/cpp/types/conjunction
2799template<class...> struct conjunction : std::true_type { };
2800template<class B1> struct conjunction<B1> : B1 { };
2801template<class B1, class... Bn>
2802struct conjunction<B1, Bn...>
2803: std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
2804
2805template <typename T1, typename T2>
2806struct is_constructible_tuple : std::false_type {};
2807
2808template <typename T1, typename... Args>
2809struct is_constructible_tuple<T1, std::tuple<Args...>> : conjunction<std::is_constructible<T1, Args>...> {};
2810} // namespace detail
2811} // namespace nlohmann
2812
2813// #include <nlohmann/detail/value_t.hpp>
2814
2815
2816#include <array> // array
2817#include <ciso646> // and
2818#include <cstddef> // size_t
2819#include <cstdint> // uint8_t
2820#include <string> // string
2821
2822namespace nlohmann
2823{
2824namespace detail
2825{
2826///////////////////////////
2827// JSON type enumeration //
2828///////////////////////////
2829
2830/*!
2831@brief the JSON type enumeration
2832
2833This enumeration collects the different JSON types. It is internally used to
2834distinguish the stored values, and the functions @ref basic_json::is_null(),
2835@ref basic_json::is_object(), @ref basic_json::is_array(),
2836@ref basic_json::is_string(), @ref basic_json::is_boolean(),
2837@ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
2838@ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
2839@ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
2840@ref basic_json::is_structured() rely on it.
2841
2842@note There are three enumeration entries (number_integer, number_unsigned, and
2843number_float), because the library distinguishes these three types for numbers:
2844@ref basic_json::number_unsigned_t is used for unsigned integers,
2845@ref basic_json::number_integer_t is used for signed integers, and
2846@ref basic_json::number_float_t is used for floating-point numbers or to
2847approximate integers which do not fit in the limits of their respective type.
2848
2849@sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
2850value with the default value for a given type
2851
2852@since version 1.0.0
2853*/
2854enum class value_t : std::uint8_t
2855{
2856 null, ///< null value
2857 object, ///< object (unordered set of name/value pairs)
2858 array, ///< array (ordered collection of values)
2859 string, ///< string value
2860 boolean, ///< boolean value
2861 number_integer, ///< number value (signed integer)
2862 number_unsigned, ///< number value (unsigned integer)
2863 number_float, ///< number value (floating-point)
2864 discarded ///< discarded by the the parser callback function
2865};
2866
2867/*!
2868@brief comparison operator for JSON types
2869
2870Returns an ordering that is similar to Python:
2871- order: null < boolean < number < object < array < string
2872- furthermore, each type is not smaller than itself
2873- discarded values are not comparable
2874
2875@since version 1.0.0
2876*/
2877inline bool operator<(const value_t lhs, const value_t rhs) noexcept
2878{
2879 static constexpr std::array<std::uint8_t, 8> order = {{
2880 0 /* null */, 3 /* object */, 4 /* array */, 5 /* string */,
2881 1 /* boolean */, 2 /* integer */, 2 /* unsigned */, 2 /* float */
2882 }
2883 };
2884
2885 const auto l_index = static_cast<std::size_t>(lhs);
2886 const auto r_index = static_cast<std::size_t>(rhs);
2887 return l_index < order.size() and r_index < order.size() and order[l_index] < order[r_index];
2888}
2889} // namespace detail
2890} // namespace nlohmann
2891
2892
2893namespace nlohmann
2894{
2895namespace detail
2896{
2897template<typename BasicJsonType>
2898void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
2899{
2900 if (JSON_HEDLEY_UNLIKELY(not j.is_null()))
2901 {
2902 JSON_THROW(type_error::create(302, "type must be null, but is " + std::string(j.type_name())));
2903 }
2904 n = nullptr;
2905}
2906
2907// overloads for basic_json template parameters
2908template<typename BasicJsonType, typename ArithmeticType,
2909 enable_if_t<std::is_arithmetic<ArithmeticType>::value and
2910 not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
2911 int> = 0>
2912void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
2913{
2914 switch (static_cast<value_t>(j))
2915 {
2916 case value_t::number_unsigned:
2917 {
2918 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
2919 break;
2920 }
2921 case value_t::number_integer:
2922 {
2923 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
2924 break;
2925 }
2926 case value_t::number_float:
2927 {
2928 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
2929 break;
2930 }
2931
2932 default:
2933 JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
2934 }
2935}
2936
2937template<typename BasicJsonType>
2938void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
2939{
2940 if (JSON_HEDLEY_UNLIKELY(not j.is_boolean()))
2941 {
2942 JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name())));
2943 }
2944 b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
2945}
2946
2947template<typename BasicJsonType>
2948void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
2949{
2950 if (JSON_HEDLEY_UNLIKELY(not j.is_string()))
2951 {
2952 JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
2953 }
2954 s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
2955}
2956
2957template <
2958 typename BasicJsonType, typename ConstructibleStringType,
2959 enable_if_t <
2960 is_constructible_string_type<BasicJsonType, ConstructibleStringType>::value and
2961 not std::is_same<typename BasicJsonType::string_t,
2962 ConstructibleStringType>::value,
2963 int > = 0 >
2964void from_json(const BasicJsonType& j, ConstructibleStringType& s)
2965{
2966 if (JSON_HEDLEY_UNLIKELY(not j.is_string()))
2967 {
2968 JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
2969 }
2970
2971 s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
2972}
2973
2974template<typename BasicJsonType>
2975void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
2976{
2977 get_arithmetic_value(j, val);
2978}
2979
2980template<typename BasicJsonType>
2981void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
2982{
2983 get_arithmetic_value(j, val);
2984}
2985
2986template<typename BasicJsonType>
2987void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
2988{
2989 get_arithmetic_value(j, val);
2990}
2991
2992template<typename BasicJsonType, typename EnumType,
2993 enable_if_t<std::is_enum<EnumType>::value, int> = 0>
2994void from_json(const BasicJsonType& j, EnumType& e)
2995{
2996 typename std::underlying_type<EnumType>::type val;
2997 get_arithmetic_value(j, val);
2998 e = static_cast<EnumType>(val);
2999}
3000
3001// forward_list doesn't have an insert method
3002template<typename BasicJsonType, typename T, typename Allocator,
3003 enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
3004void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
3005{
3006 if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3007 {
3008 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3009 }
3010 l.clear();
3011 std::transform(j.rbegin(), j.rend(),
3012 std::front_inserter(l), [](const BasicJsonType & i)
3013 {
3014 return i.template get<T>();
3015 });
3016}
3017
3018// valarray doesn't have an insert method
3019template<typename BasicJsonType, typename T,
3020 enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
3021void from_json(const BasicJsonType& j, std::valarray<T>& l)
3022{
3023 if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3024 {
3025 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3026 }
3027 l.resize(j.size());
3028 std::copy(j.begin(), j.end(), std::begin(l));
3029}
3030
3031template <typename BasicJsonType, typename T, std::size_t N>
3032auto from_json(const BasicJsonType& j, T (&arr)[N])
3033-> decltype(j.template get<T>(), void())
3034{
3035 for (std::size_t i = 0; i < N; ++i)
3036 {
3037 arr[i] = j.at(i).template get<T>();
3038 }
3039}
3040
3041template<typename BasicJsonType>
3042void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
3043{
3044 arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
3045}
3046
3047template <typename BasicJsonType, typename T, std::size_t N>
3048auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
3049 priority_tag<2> /*unused*/)
3050-> decltype(j.template get<T>(), void())
3051{
3052 for (std::size_t i = 0; i < N; ++i)
3053 {
3054 arr[i] = j.at(i).template get<T>();
3055 }
3056}
3057
3058template<typename BasicJsonType, typename ConstructibleArrayType>
3059auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
3060-> decltype(
3061 arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
3062 j.template get<typename ConstructibleArrayType::value_type>(),
3063 void())
3064{
3065 using std::end;
3066
3067 ConstructibleArrayType ret;
3068 ret.reserve(j.size());
3069 std::transform(j.begin(), j.end(),
3070 std::inserter(ret, end(ret)), [](const BasicJsonType & i)
3071 {
3072 // get<BasicJsonType>() returns *this, this won't call a from_json
3073 // method when value_type is BasicJsonType
3074 return i.template get<typename ConstructibleArrayType::value_type>();
3075 });
3076 arr = std::move(ret);
3077}
3078
3079template <typename BasicJsonType, typename ConstructibleArrayType>
3080void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
3081 priority_tag<0> /*unused*/)
3082{
3083 using std::end;
3084
3085 ConstructibleArrayType ret;
3086 std::transform(
3087 j.begin(), j.end(), std::inserter(ret, end(ret)),
3088 [](const BasicJsonType & i)
3089 {
3090 // get<BasicJsonType>() returns *this, this won't call a from_json
3091 // method when value_type is BasicJsonType
3092 return i.template get<typename ConstructibleArrayType::value_type>();
3093 });
3094 arr = std::move(ret);
3095}
3096
3097template <typename BasicJsonType, typename ConstructibleArrayType,
3098 enable_if_t <
3099 is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value and
3100 not is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value and
3101 not is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value and
3102 not is_basic_json<ConstructibleArrayType>::value,
3103 int > = 0 >
3104
3105auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
3106-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
3107j.template get<typename ConstructibleArrayType::value_type>(),
3108void())
3109{
3110 if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3111 {
3112 JSON_THROW(type_error::create(302, "type must be array, but is " +
3113 std::string(j.type_name())));
3114 }
3115
3116 from_json_array_impl(j, arr, priority_tag<3> {});
3117}
3118
3119template<typename BasicJsonType, typename ConstructibleObjectType,
3120 enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
3121void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
3122{
3123 if (JSON_HEDLEY_UNLIKELY(not j.is_object()))
3124 {
3125 JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name())));
3126 }
3127
3128 ConstructibleObjectType ret;
3129 auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
3130 using value_type = typename ConstructibleObjectType::value_type;
3131 std::transform(
3132 inner_object->begin(), inner_object->end(),
3133 std::inserter(ret, ret.begin()),
3134 [](typename BasicJsonType::object_t::value_type const & p)
3135 {
3136 return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
3137 });
3138 obj = std::move(ret);
3139}
3140
3141// overload for arithmetic types, not chosen for basic_json template arguments
3142// (BooleanType, etc..); note: Is it really necessary to provide explicit
3143// overloads for boolean_t etc. in case of a custom BooleanType which is not
3144// an arithmetic type?
3145template<typename BasicJsonType, typename ArithmeticType,
3146 enable_if_t <
3147 std::is_arithmetic<ArithmeticType>::value and
3148 not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
3149 not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
3150 not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
3151 not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
3152 int> = 0>
3153void from_json(const BasicJsonType& j, ArithmeticType& val)
3154{
3155 switch (static_cast<value_t>(j))
3156 {
3157 case value_t::number_unsigned:
3158 {
3159 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
3160 break;
3161 }
3162 case value_t::number_integer:
3163 {
3164 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
3165 break;
3166 }
3167 case value_t::number_float:
3168 {
3169 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
3170 break;
3171 }
3172 case value_t::boolean:
3173 {
3174 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
3175 break;
3176 }
3177
3178 default:
3179 JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
3180 }
3181}
3182
3183template<typename BasicJsonType, typename A1, typename A2>
3184void from_json(const BasicJsonType& j, std::pair<A1, A2>& p)
3185{
3186 p = {j.at(0).template get<A1>(), j.at(1).template get<A2>()};
3187}
3188
3189template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
3190void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence<Idx...> /*unused*/)
3191{
3192 t = std::make_tuple(j.at(Idx).template get<typename std::tuple_element<Idx, Tuple>::type>()...);
3193}
3194
3195template<typename BasicJsonType, typename... Args>
3196void from_json(const BasicJsonType& j, std::tuple<Args...>& t)
3197{
3198 from_json_tuple_impl(j, t, index_sequence_for<Args...> {});
3199}
3200
3201template <typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
3202 typename = enable_if_t<not std::is_constructible<
3203 typename BasicJsonType::string_t, Key>::value>>
3204void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
3205{
3206 if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3207 {
3208 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3209 }
3210 m.clear();
3211 for (const auto& p : j)
3212 {
3213 if (JSON_HEDLEY_UNLIKELY(not p.is_array()))
3214 {
3215 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
3216 }
3217 m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
3218 }
3219}
3220
3221template <typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
3222 typename = enable_if_t<not std::is_constructible<
3223 typename BasicJsonType::string_t, Key>::value>>
3224void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
3225{
3226 if (JSON_HEDLEY_UNLIKELY(not j.is_array()))
3227 {
3228 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
3229 }
3230 m.clear();
3231 for (const auto& p : j)
3232 {
3233 if (JSON_HEDLEY_UNLIKELY(not p.is_array()))
3234 {
3235 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
3236 }
3237 m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
3238 }
3239}
3240
3241struct from_json_fn
3242{
3243 template<typename BasicJsonType, typename T>
3244 auto operator()(const BasicJsonType& j, T& val) const
3245 noexcept(noexcept(from_json(j, val)))
3246 -> decltype(from_json(j, val), void())
3247 {
3248 return from_json(j, val);
3249 }
3250};
3251} // namespace detail
3252
3253/// namespace to hold default `from_json` function
3254/// to see why this is required:
3255/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
3256namespace
3257{
3258constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value;
3259} // namespace
3260} // namespace nlohmann
3261
3262// #include <nlohmann/detail/conversions/to_json.hpp>
3263
3264
3265#include <algorithm> // copy
3266#include <ciso646> // or, and, not
3267#include <iterator> // begin, end
3268#include <string> // string
3269#include <tuple> // tuple, get
3270#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
3271#include <utility> // move, forward, declval, pair
3272#include <valarray> // valarray
3273#include <vector> // vector
3274
3275// #include <nlohmann/detail/iterators/iteration_proxy.hpp>
3276
3277
3278#include <cstddef> // size_t
3279#include <iterator> // input_iterator_tag
3280#include <string> // string, to_string
3281#include <tuple> // tuple_size, get, tuple_element
3282
3283// #include <nlohmann/detail/meta/type_traits.hpp>
3284
3285// #include <nlohmann/detail/value_t.hpp>
3286
3287
3288namespace nlohmann
3289{
3290namespace detail
3291{
3292template<typename string_type>
3293void int_to_string( string_type& target, std::size_t value )
3294{
3295 target = std::to_string(value);
3296}
3297template <typename IteratorType> class iteration_proxy_value
3298{
3299 public:
3300 using difference_type = std::ptrdiff_t;
3301 using value_type = iteration_proxy_value;
3302 using pointer = value_type * ;
3303 using reference = value_type & ;
3304 using iterator_category = std::input_iterator_tag;
3305 using string_type = typename std::remove_cv< typename std::remove_reference<decltype( std::declval<IteratorType>().key() ) >::type >::type;
3306
3307 private:
3308 /// the iterator
3309 IteratorType anchor;
3310 /// an index for arrays (used to create key names)
3311 std::size_t array_index = 0;
3312 /// last stringified array index
3313 mutable std::size_t array_index_last = 0;
3314 /// a string representation of the array index
3315 mutable string_type array_index_str = "0";
3316 /// an empty string (to return a reference for primitive values)
3317 const string_type empty_str = "";
3318
3319 public:
3320 explicit iteration_proxy_value(IteratorType it) noexcept : anchor(it) {}
3321
3322 /// dereference operator (needed for range-based for)
3323 iteration_proxy_value& operator*()
3324 {
3325 return *this;
3326 }
3327
3328 /// increment operator (needed for range-based for)
3329 iteration_proxy_value& operator++()
3330 {
3331 ++anchor;
3332 ++array_index;
3333
3334 return *this;
3335 }
3336
3337 /// equality operator (needed for InputIterator)
3338 bool operator==(const iteration_proxy_value& o) const
3339 {
3340 return anchor == o.anchor;
3341 }
3342
3343 /// inequality operator (needed for range-based for)
3344 bool operator!=(const iteration_proxy_value& o) const
3345 {
3346 return anchor != o.anchor;
3347 }
3348
3349 /// return key of the iterator
3350 const string_type& key() const
3351 {
3352 assert(anchor.m_object != nullptr);
3353
3354 switch (anchor.m_object->type())
3355 {
3356 // use integer array index as key
3357 case value_t::array:
3358 {
3359 if (array_index != array_index_last)
3360 {
3361 int_to_string( array_index_str, array_index );
3362 array_index_last = array_index;
3363 }
3364 return array_index_str;
3365 }
3366
3367 // use key from the object
3368 case value_t::object:
3369 return anchor.key();
3370
3371 // use an empty key for all primitive types
3372 default:
3373 return empty_str;
3374 }
3375 }
3376
3377 /// return value of the iterator
3378 typename IteratorType::reference value() const
3379 {
3380 return anchor.value();
3381 }
3382};
3383
3384/// proxy class for the items() function
3385template<typename IteratorType> class iteration_proxy
3386{
3387 private:
3388 /// the container to iterate
3389 typename IteratorType::reference container;
3390
3391 public:
3392 /// construct iteration proxy from a container
3393 explicit iteration_proxy(typename IteratorType::reference cont) noexcept
3394 : container(cont) {}
3395
3396 /// return iterator begin (needed for range-based for)
3397 iteration_proxy_value<IteratorType> begin() noexcept
3398 {
3399 return iteration_proxy_value<IteratorType>(container.begin());
3400 }
3401
3402 /// return iterator end (needed for range-based for)
3403 iteration_proxy_value<IteratorType> end() noexcept
3404 {
3405 return iteration_proxy_value<IteratorType>(container.end());
3406 }
3407};
3408// Structured Bindings Support
3409// For further reference see https://blog.tartanllama.xyz/structured-bindings/
3410// And see https://github.com/nlohmann/json/pull/1391
3411template <std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
3412auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
3413{
3414 return i.key();
3415}
3416// Structured Bindings Support
3417// For further reference see https://blog.tartanllama.xyz/structured-bindings/
3418// And see https://github.com/nlohmann/json/pull/1391
3419template <std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
3420auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
3421{
3422 return i.value();
3423}
3424} // namespace detail
3425} // namespace nlohmann
3426
3427// The Addition to the STD Namespace is required to add
3428// Structured Bindings Support to the iteration_proxy_value class
3429// For further reference see https://blog.tartanllama.xyz/structured-bindings/
3430// And see https://github.com/nlohmann/json/pull/1391
3431namespace std
3432{
3433#if defined(__clang__)
3434 // Fix: https://github.com/nlohmann/json/issues/1401
3435 #pragma clang diagnostic push
3436 #pragma clang diagnostic ignored "-Wmismatched-tags"
3437#endif
3438template <typename IteratorType>
3439class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>>
3440 : public std::integral_constant<std::size_t, 2> {};
3441
3442template <std::size_t N, typename IteratorType>
3443class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >>
3444{
3445 public:
3446 using type = decltype(
3447 get<N>(std::declval <
3448 ::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
3449};
3450#if defined(__clang__)
3451 #pragma clang diagnostic pop
3452#endif
3453} // namespace std
3454
3455// #include <nlohmann/detail/meta/cpp_future.hpp>
3456
3457// #include <nlohmann/detail/meta/type_traits.hpp>
3458
3459// #include <nlohmann/detail/value_t.hpp>
3460
3461
3462namespace nlohmann
3463{
3464namespace detail
3465{
3466//////////////////
3467// constructors //
3468//////////////////
3469
3470template<value_t> struct external_constructor;
3471
3472template<>
3473struct external_constructor<value_t::boolean>
3474{
3475 template<typename BasicJsonType>
3476 static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
3477 {
3478 j.m_type = value_t::boolean;
3479 j.m_value = b;
3480 j.assert_invariant();
3481 }
3482};
3483
3484template<>
3485struct external_constructor<value_t::string>
3486{
3487 template<typename BasicJsonType>
3488 static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
3489 {
3490 j.m_type = value_t::string;
3491 j.m_value = s;
3492 j.assert_invariant();
3493 }
3494
3495 template<typename BasicJsonType>
3496 static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
3497 {
3498 j.m_type = value_t::string;
3499 j.m_value = std::move(s);
3500 j.assert_invariant();
3501 }
3502
3503 template<typename BasicJsonType, typename CompatibleStringType,
3504 enable_if_t<not std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
3505 int> = 0>
3506 static void construct(BasicJsonType& j, const CompatibleStringType& str)
3507 {
3508 j.m_type = value_t::string;
3509 j.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
3510 j.assert_invariant();
3511 }
3512};
3513
3514template<>
3515struct external_constructor<value_t::number_float>
3516{
3517 template<typename BasicJsonType>
3518 static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
3519 {
3520 j.m_type = value_t::number_float;
3521 j.m_value = val;
3522 j.assert_invariant();
3523 }
3524};
3525
3526template<>
3527struct external_constructor<value_t::number_unsigned>
3528{
3529 template<typename BasicJsonType>
3530 static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
3531 {
3532 j.m_type = value_t::number_unsigned;
3533 j.m_value = val;
3534 j.assert_invariant();
3535 }
3536};
3537
3538template<>
3539struct external_constructor<value_t::number_integer>
3540{
3541 template<typename BasicJsonType>
3542 static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
3543 {
3544 j.m_type = value_t::number_integer;
3545 j.m_value = val;
3546 j.assert_invariant();
3547 }
3548};
3549
3550template<>
3551struct external_constructor<value_t::array>
3552{
3553 template<typename BasicJsonType>
3554 static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
3555 {
3556 j.m_type = value_t::array;
3557 j.m_value = arr;
3558 j.assert_invariant();
3559 }
3560
3561 template<typename BasicJsonType>
3562 static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
3563 {
3564 j.m_type = value_t::array;
3565 j.m_value = std::move(arr);
3566 j.assert_invariant();
3567 }
3568
3569 template<typename BasicJsonType, typename CompatibleArrayType,
3570 enable_if_t<not std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
3571 int> = 0>
3572 static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
3573 {
3574 using std::begin;
3575 using std::end;
3576 j.m_type = value_t::array;
3577 j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
3578 j.assert_invariant();
3579 }
3580
3581 template<typename BasicJsonType>
3582 static void construct(BasicJsonType& j, const std::vector<bool>& arr)
3583 {
3584 j.m_type = value_t::array;
3585 j.m_value = value_t::array;
3586 j.m_value.array->reserve(arr.size());
3587 for (const bool x : arr)
3588 {
3589 j.m_value.array->push_back(x);
3590 }
3591 j.assert_invariant();
3592 }
3593
3594 template<typename BasicJsonType, typename T,
3595 enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
3596 static void construct(BasicJsonType& j, const std::valarray<T>& arr)
3597 {
3598 j.m_type = value_t::array;
3599 j.m_value = value_t::array;
3600 j.m_value.array->resize(arr.size());
3601 if (arr.size() > 0)
3602 {
3603 std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin());
3604 }
3605 j.assert_invariant();
3606 }
3607};
3608
3609template<>
3610struct external_constructor<value_t::object>
3611{
3612 template<typename BasicJsonType>
3613 static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
3614 {
3615 j.m_type = value_t::object;
3616 j.m_value = obj;
3617 j.assert_invariant();
3618 }
3619
3620 template<typename BasicJsonType>
3621 static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
3622 {
3623 j.m_type = value_t::object;
3624 j.m_value = std::move(obj);
3625 j.assert_invariant();
3626 }
3627
3628 template<typename BasicJsonType, typename CompatibleObjectType,
3629 enable_if_t<not std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int> = 0>
3630 static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
3631 {
3632 using std::begin;
3633 using std::end;
3634
3635 j.m_type = value_t::object;
3636 j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
3637 j.assert_invariant();
3638 }
3639};
3640
3641/////////////
3642// to_json //
3643/////////////
3644
3645template<typename BasicJsonType, typename T,
3646 enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
3647void to_json(BasicJsonType& j, T b) noexcept
3648{
3649 external_constructor<value_t::boolean>::construct(j, b);
3650}
3651
3652template<typename BasicJsonType, typename CompatibleString,
3653 enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
3654void to_json(BasicJsonType& j, const CompatibleString& s)
3655{
3656 external_constructor<value_t::string>::construct(j, s);
3657}
3658
3659template<typename BasicJsonType>
3660void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
3661{
3662 external_constructor<value_t::string>::construct(j, std::move(s));
3663}
3664
3665template<typename BasicJsonType, typename FloatType,
3666 enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
3667void to_json(BasicJsonType& j, FloatType val) noexcept
3668{
3669 external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
3670}
3671
3672template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
3673 enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
3674void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
3675{
3676 external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
3677}
3678
3679template<typename BasicJsonType, typename CompatibleNumberIntegerType,
3680 enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
3681void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
3682{
3683 external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
3684}
3685
3686template<typename BasicJsonType, typename EnumType,
3687 enable_if_t<std::is_enum<EnumType>::value, int> = 0>
3688void to_json(BasicJsonType& j, EnumType e) noexcept
3689{
3690 using underlying_type = typename std::underlying_type<EnumType>::type;
3691 external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e));
3692}
3693
3694template<typename BasicJsonType>
3695void to_json(BasicJsonType& j, const std::vector<bool>& e)
3696{
3697 external_constructor<value_t::array>::construct(j, e);
3698}
3699
3700template <typename BasicJsonType, typename CompatibleArrayType,
3701 enable_if_t<is_compatible_array_type<BasicJsonType,
3702 CompatibleArrayType>::value and
3703 not is_compatible_object_type<
3704 BasicJsonType, CompatibleArrayType>::value and
3705 not is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value and
3706 not is_basic_json<CompatibleArrayType>::value,
3707 int> = 0>
3708void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
3709{
3710 external_constructor<value_t::array>::construct(j, arr);
3711}
3712
3713template<typename BasicJsonType, typename T,
3714 enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
3715void to_json(BasicJsonType& j, const std::valarray<T>& arr)
3716{
3717 external_constructor<value_t::array>::construct(j, std::move(arr));
3718}
3719
3720template<typename BasicJsonType>
3721void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
3722{
3723 external_constructor<value_t::array>::construct(j, std::move(arr));
3724}
3725
3726template<typename BasicJsonType, typename CompatibleObjectType,
3727 enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value and not is_basic_json<CompatibleObjectType>::value, int> = 0>
3728void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
3729{
3730 external_constructor<value_t::object>::construct(j, obj);
3731}
3732
3733template<typename BasicJsonType>
3734void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
3735{
3736 external_constructor<value_t::object>::construct(j, std::move(obj));
3737}
3738
3739template <
3740 typename BasicJsonType, typename T, std::size_t N,
3741 enable_if_t<not std::is_constructible<typename BasicJsonType::string_t,
3742 const T(&)[N]>::value,
3743 int> = 0 >
3744void to_json(BasicJsonType& j, const T(&arr)[N])
3745{
3746 external_constructor<value_t::array>::construct(j, arr);
3747}
3748
3749template < typename BasicJsonType, typename T1, typename T2, enable_if_t < std::is_constructible<BasicJsonType, T1>::value&& std::is_constructible<BasicJsonType, T2>::value, int > = 0 >
3750void to_json(BasicJsonType& j, const std::pair<T1, T2>& p)
3751{
3752 j = { p.first, p.second };
3753}
3754
3755// for https://github.com/nlohmann/json/pull/1134
3756template < typename BasicJsonType, typename T,
3757 enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
3758void to_json(BasicJsonType& j, const T& b)
3759{
3760 j = { {b.key(), b.value()} };
3761}
3762
3763template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
3764void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
3765{
3766 j = { std::get<Idx>(t)... };
3767}
3768
3769template<typename BasicJsonType, typename T, enable_if_t<is_constructible_tuple<BasicJsonType, T>::value, int > = 0>
3770void to_json(BasicJsonType& j, const T& t)
3771{
3772 to_json_tuple_impl(j, t, make_index_sequence<std::tuple_size<T>::value> {});
3773}
3774
3775struct to_json_fn
3776{
3777 template<typename BasicJsonType, typename T>
3778 auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
3779 -> decltype(to_json(j, std::forward<T>(val)), void())
3780 {
3781 return to_json(j, std::forward<T>(val));
3782 }
3783};
3784} // namespace detail
3785
3786/// namespace to hold default `to_json` function
3787namespace
3788{
3789constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value;
3790} // namespace
3791} // namespace nlohmann
3792
3793
3794namespace nlohmann
3795{
3796
3797template<typename, typename>
3798struct adl_serializer
3799{
3800 /*!
3801 @brief convert a JSON value to any value type
3802
3803 This function is usually called by the `get()` function of the
3804 @ref basic_json class (either explicit or via conversion operators).
3805
3806 @param[in] j JSON value to read from
3807 @param[in,out] val value to write to
3808 */
3809 template<typename BasicJsonType, typename ValueType>
3810 static auto from_json(BasicJsonType&& j, ValueType& val) noexcept(
3811 noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
3812 -> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
3813 {
3814 ::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
3815 }
3816
3817 /*!
3818 @brief convert any value type to a JSON value
3819
3820 This function is usually called by the constructors of the @ref basic_json
3821 class.
3822
3823 @param[in,out] j JSON value to write to
3824 @param[in] val value to read from
3825 */
3826 template <typename BasicJsonType, typename ValueType>
3827 static auto to_json(BasicJsonType& j, ValueType&& val) noexcept(
3828 noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
3829 -> decltype(::nlohmann::to_json(j, std::forward<ValueType>(val)), void())
3830 {
3831 ::nlohmann::to_json(j, std::forward<ValueType>(val));
3832 }
3833};
3834
3835} // namespace nlohmann
3836
3837// #include <nlohmann/detail/conversions/from_json.hpp>
3838
3839// #include <nlohmann/detail/conversions/to_json.hpp>
3840
3841// #include <nlohmann/detail/exceptions.hpp>
3842
3843// #include <nlohmann/detail/input/binary_reader.hpp>
3844
3845
3846#include <algorithm> // generate_n
3847#include <array> // array
3848#include <cassert> // assert
3849#include <cmath> // ldexp
3850#include <cstddef> // size_t
3851#include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
3852#include <cstdio> // snprintf
3853#include <cstring> // memcpy
3854#include <iterator> // back_inserter
3855#include <limits> // numeric_limits
3856#include <string> // char_traits, string
3857#include <utility> // make_pair, move
3858
3859// #include <nlohmann/detail/exceptions.hpp>
3860
3861// #include <nlohmann/detail/input/input_adapters.hpp>
3862
3863
3864#include <array> // array
3865#include <cassert> // assert
3866#include <cstddef> // size_t
3867#include <cstdio> //FILE *
3868#include <cstring> // strlen
3869#include <istream> // istream
3870#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
3871#include <memory> // shared_ptr, make_shared, addressof
3872#include <numeric> // accumulate
3873#include <string> // string, char_traits
3874#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
3875#include <utility> // pair, declval
3876
3877// #include <nlohmann/detail/iterators/iterator_traits.hpp>
3878
3879// #include <nlohmann/detail/macro_scope.hpp>
3880
3881
3882namespace nlohmann
3883{
3884namespace detail
3885{
3886/// the supported input formats
3887enum class input_format_t { json, cbor, msgpack, ubjson, bson };
3888
3889////////////////////
3890// input adapters //
3891////////////////////
3892
3893/*!
3894@brief abstract input adapter interface
3895
3896Produces a stream of std::char_traits<char>::int_type characters from a
3897std::istream, a buffer, or some other input type. Accepts the return of
3898exactly one non-EOF character for future input. The int_type characters
3899returned consist of all valid char values as positive values (typically
3900unsigned char), plus an EOF value outside that range, specified by the value
3901of the function std::char_traits<char>::eof(). This value is typically -1, but
3902could be any arbitrary value which is not a valid char value.
3903*/
3904struct input_adapter_protocol
3905{
3906 /// get a character [0,255] or std::char_traits<char>::eof().
3907 virtual std::char_traits<char>::int_type get_character() = 0;
3908 virtual ~input_adapter_protocol() = default;
3909};
3910
3911/// a type to simplify interfaces
3912using input_adapter_t = std::shared_ptr<input_adapter_protocol>;
3913
3914/*!
3915Input adapter for stdio file access. This adapter read only 1 byte and do not use any
3916 buffer. This adapter is a very low level adapter.
3917*/
3918class file_input_adapter : public input_adapter_protocol
3919{
3920 public:
3921 JSON_HEDLEY_NON_NULL(2)
3922 explicit file_input_adapter(std::FILE* f) noexcept
3923 : m_file(f)
3924 {}
3925
3926 // make class move-only
3927 file_input_adapter(const file_input_adapter&) = delete;
3928 file_input_adapter(file_input_adapter&&) = default;
3929 file_input_adapter& operator=(const file_input_adapter&) = delete;
3930 file_input_adapter& operator=(file_input_adapter&&) = default;
3931 ~file_input_adapter() override = default;
3932
3933 std::char_traits<char>::int_type get_character() noexcept override
3934 {
3935 return std::fgetc(m_file);
3936 }
3937
3938 private:
3939 /// the file pointer to read from
3940 std::FILE* m_file;
3941};
3942
3943
3944/*!
3945Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
3946beginning of input. Does not support changing the underlying std::streambuf
3947in mid-input. Maintains underlying std::istream and std::streambuf to support
3948subsequent use of standard std::istream operations to process any input
3949characters following those used in parsing the JSON input. Clears the
3950std::istream flags; any input errors (e.g., EOF) will be detected by the first
3951subsequent call for input from the std::istream.
3952*/
3953class input_stream_adapter : public input_adapter_protocol
3954{
3955 public:
3956 ~input_stream_adapter() override
3957 {
3958 // clear stream flags; we use underlying streambuf I/O, do not
3959 // maintain ifstream flags, except eof
3960 is.clear(is.rdstate() & std::ios::eofbit);
3961 }
3962
3963 explicit input_stream_adapter(std::istream& i)
3964 : is(i), sb(*i.rdbuf())
3965 {}
3966
3967 // delete because of pointer members
3968 input_stream_adapter(const input_stream_adapter&) = delete;
3969 input_stream_adapter& operator=(input_stream_adapter&) = delete;
3970 input_stream_adapter(input_stream_adapter&&) = delete;
3971 input_stream_adapter& operator=(input_stream_adapter&&) = delete;
3972
3973 // std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
3974 // ensure that std::char_traits<char>::eof() and the character 0xFF do not
3975 // end up as the same value, eg. 0xFFFFFFFF.
3976 std::char_traits<char>::int_type get_character() override
3977 {
3978 auto res = sb.sbumpc();
3979 // set eof manually, as we don't use the istream interface.
3980 if (res == EOF)
3981 {
3982 is.clear(is.rdstate() | std::ios::eofbit);
3983 }
3984 return res;
3985 }
3986
3987 private:
3988 /// the associated input stream
3989 std::istream& is;
3990 std::streambuf& sb;
3991};
3992
3993/// input adapter for buffer input
3994class input_buffer_adapter : public input_adapter_protocol
3995{
3996 public:
3997 input_buffer_adapter(const char* b, const std::size_t l) noexcept
3998 : cursor(b), limit(b == nullptr ? nullptr : (b + l))
3999 {}
4000
4001 // delete because of pointer members
4002 input_buffer_adapter(const input_buffer_adapter&) = delete;
4003 input_buffer_adapter& operator=(input_buffer_adapter&) = delete;
4004 input_buffer_adapter(input_buffer_adapter&&) = delete;
4005 input_buffer_adapter& operator=(input_buffer_adapter&&) = delete;
4006 ~input_buffer_adapter() override = default;
4007
4008 std::char_traits<char>::int_type get_character() noexcept override
4009 {
4010 if (JSON_HEDLEY_LIKELY(cursor < limit))
4011 {
4012 assert(cursor != nullptr and limit != nullptr);
4013 return std::char_traits<char>::to_int_type(*(cursor++));
4014 }
4015
4016 return std::char_traits<char>::eof();
4017 }
4018
4019 private:
4020 /// pointer to the current character
4021 const char* cursor;
4022 /// pointer past the last character
4023 const char* const limit;
4024};
4025
4026template<typename WideStringType, size_t T>
4027struct wide_string_input_helper
4028{
4029 // UTF-32
4030 static void fill_buffer(const WideStringType& str,
4031 size_t& current_wchar,
4032 std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
4033 size_t& utf8_bytes_index,
4034 size_t& utf8_bytes_filled)
4035 {
4036 utf8_bytes_index = 0;
4037
4038 if (current_wchar == str.size())
4039 {
4040 utf8_bytes[0] = std::char_traits<char>::eof();
4041 utf8_bytes_filled = 1;
4042 }
4043 else
4044 {
4045 // get the current character
4046 const auto wc = static_cast<unsigned int>(str[current_wchar++]);
4047
4048 // UTF-32 to UTF-8 encoding
4049 if (wc < 0x80)
4050 {
4051 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4052 utf8_bytes_filled = 1;
4053 }
4054 else if (wc <= 0x7FF)
4055 {
4056 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u) & 0x1Fu));
4057 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4058 utf8_bytes_filled = 2;
4059 }
4060 else if (wc <= 0xFFFF)
4061 {
4062 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u) & 0x0Fu));
4063 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
4064 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4065 utf8_bytes_filled = 3;
4066 }
4067 else if (wc <= 0x10FFFF)
4068 {
4069 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((wc >> 18u) & 0x07u));
4070 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 12u) & 0x3Fu));
4071 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
4072 utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4073 utf8_bytes_filled = 4;
4074 }
4075 else
4076 {
4077 // unknown character
4078 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4079 utf8_bytes_filled = 1;
4080 }
4081 }
4082 }
4083};
4084
4085template<typename WideStringType>
4086struct wide_string_input_helper<WideStringType, 2>
4087{
4088 // UTF-16
4089 static void fill_buffer(const WideStringType& str,
4090 size_t& current_wchar,
4091 std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
4092 size_t& utf8_bytes_index,
4093 size_t& utf8_bytes_filled)
4094 {
4095 utf8_bytes_index = 0;
4096
4097 if (current_wchar == str.size())
4098 {
4099 utf8_bytes[0] = std::char_traits<char>::eof();
4100 utf8_bytes_filled = 1;
4101 }
4102 else
4103 {
4104 // get the current character
4105 const auto wc = static_cast<unsigned int>(str[current_wchar++]);
4106
4107 // UTF-16 to UTF-8 encoding
4108 if (wc < 0x80)
4109 {
4110 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4111 utf8_bytes_filled = 1;
4112 }
4113 else if (wc <= 0x7FF)
4114 {
4115 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u)));
4116 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4117 utf8_bytes_filled = 2;
4118 }
4119 else if (0xD800 > wc or wc >= 0xE000)
4120 {
4121 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u)));
4122 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu));
4123 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu));
4124 utf8_bytes_filled = 3;
4125 }
4126 else
4127 {
4128 if (current_wchar < str.size())
4129 {
4130 const auto wc2 = static_cast<unsigned int>(str[current_wchar++]);
4131 const auto charcode = 0x10000u + (((wc & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
4132 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
4133 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
4134 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
4135 utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
4136 utf8_bytes_filled = 4;
4137 }
4138 else
4139 {
4140 // unknown character
4141 ++current_wchar;
4142 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
4143 utf8_bytes_filled = 1;
4144 }
4145 }
4146 }
4147 }
4148};
4149
4150template<typename WideStringType>
4151class wide_string_input_adapter : public input_adapter_protocol
4152{
4153 public:
4154 explicit wide_string_input_adapter(const WideStringType& w) noexcept
4155 : str(w)
4156 {}
4157
4158 std::char_traits<char>::int_type get_character() noexcept override
4159 {
4160 // check if buffer needs to be filled
4161 if (utf8_bytes_index == utf8_bytes_filled)
4162 {
4163 fill_buffer<sizeof(typename WideStringType::value_type)>();
4164
4165 assert(utf8_bytes_filled > 0);
4166 assert(utf8_bytes_index == 0);
4167 }
4168
4169 // use buffer
4170 assert(utf8_bytes_filled > 0);
4171 assert(utf8_bytes_index < utf8_bytes_filled);
4172 return utf8_bytes[utf8_bytes_index++];
4173 }
4174
4175 private:
4176 template<size_t T>
4177 void fill_buffer()
4178 {
4179 wide_string_input_helper<WideStringType, T>::fill_buffer(str, current_wchar, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
4180 }
4181
4182 /// the wstring to process
4183 const WideStringType& str;
4184
4185 /// index of the current wchar in str
4186 std::size_t current_wchar = 0;
4187
4188 /// a buffer for UTF-8 bytes
4189 std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
4190
4191 /// index to the utf8_codes array for the next valid byte
4192 std::size_t utf8_bytes_index = 0;
4193 /// number of valid bytes in the utf8_codes array
4194 std::size_t utf8_bytes_filled = 0;
4195};
4196
4197class input_adapter
4198{
4199 public:
4200 // native support
4201 JSON_HEDLEY_NON_NULL(2)
4202 input_adapter(std::FILE* file)
4203 : ia(std::make_shared<file_input_adapter>(file)) {}
4204 /// input adapter for input stream
4205 input_adapter(std::istream& i)
4206 : ia(std::make_shared<input_stream_adapter>(i)) {}
4207
4208 /// input adapter for input stream
4209 input_adapter(std::istream&& i)
4210 : ia(std::make_shared<input_stream_adapter>(i)) {}
4211
4212 input_adapter(const std::wstring& ws)
4213 : ia(std::make_shared<wide_string_input_adapter<std::wstring>>(ws)) {}
4214
4215 input_adapter(const std::u16string& ws)
4216 : ia(std::make_shared<wide_string_input_adapter<std::u16string>>(ws)) {}
4217
4218 input_adapter(const std::u32string& ws)
4219 : ia(std::make_shared<wide_string_input_adapter<std::u32string>>(ws)) {}
4220
4221 /// input adapter for buffer
4222 template<typename CharT,
4223 typename std::enable_if<
4224 std::is_pointer<CharT>::value and
4225 std::is_integral<typename std::remove_pointer<CharT>::type>::value and
4226 sizeof(typename std::remove_pointer<CharT>::type) == 1,
4227 int>::type = 0>
4228 input_adapter(CharT b, std::size_t l)
4229 : ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {}
4230
4231 // derived support
4232
4233 /// input adapter for string literal
4234 template<typename CharT,
4235 typename std::enable_if<
4236 std::is_pointer<CharT>::value and
4237 std::is_integral<typename std::remove_pointer<CharT>::type>::value and
4238 sizeof(typename std::remove_pointer<CharT>::type) == 1,
4239 int>::type = 0>
4240 input_adapter(CharT b)
4241 : input_adapter(reinterpret_cast<const char*>(b),
4242 std::strlen(reinterpret_cast<const char*>(b))) {}
4243
4244 /// input adapter for iterator range with contiguous storage
4245 template<class IteratorType,
4246 typename std::enable_if<
4247 std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
4248 int>::type = 0>
4249 input_adapter(IteratorType first, IteratorType last)
4250 {
4251#ifndef NDEBUG
4252 // assertion to check that the iterator range is indeed contiguous,
4253 // see http://stackoverflow.com/a/35008842/266378 for more discussion
4254 const auto is_contiguous = std::accumulate(
4255 first, last, std::pair<bool, int>(true, 0),
4256 [&first](std::pair<bool, int> res, decltype(*first) val)
4257 {
4258 res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
4259 return res;
4260 }).first;
4261 assert(is_contiguous);
4262#endif
4263
4264 // assertion to check that each element is 1 byte long
4265 static_assert(
4266 sizeof(typename iterator_traits<IteratorType>::value_type) == 1,
4267 "each element in the iterator range must have the size of 1 byte");
4268
4269 const auto len = static_cast<size_t>(std::distance(first, last));
4270 if (JSON_HEDLEY_LIKELY(len > 0))
4271 {
4272 // there is at least one element: use the address of first
4273 ia = std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(&(*first)), len);
4274 }
4275 else
4276 {
4277 // the address of first cannot be used: use nullptr
4278 ia = std::make_shared<input_buffer_adapter>(nullptr, len);
4279 }
4280 }
4281
4282 /// input adapter for array
4283 template<class T, std::size_t N>
4284 input_adapter(T (&array)[N])
4285 : input_adapter(std::begin(array), std::end(array)) {}
4286
4287 /// input adapter for contiguous container
4288 template<class ContiguousContainer, typename
4289 std::enable_if<not std::is_pointer<ContiguousContainer>::value and
4290 std::is_base_of<std::random_access_iterator_tag, typename iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value,
4291 int>::type = 0>
4292 input_adapter(const ContiguousContainer& c)
4293 : input_adapter(std::begin(c), std::end(c)) {}
4294
4295 operator input_adapter_t()
4296 {
4297 return ia;
4298 }
4299
4300 private:
4301 /// the actual adapter
4302 input_adapter_t ia = nullptr;
4303};
4304} // namespace detail
4305} // namespace nlohmann
4306
4307// #include <nlohmann/detail/input/json_sax.hpp>
4308
4309
4310#include <cassert> // assert
4311#include <cstddef>
4312#include <string> // string
4313#include <utility> // move
4314#include <vector> // vector
4315
4316// #include <nlohmann/detail/exceptions.hpp>
4317
4318// #include <nlohmann/detail/macro_scope.hpp>
4319
4320
4321namespace nlohmann
4322{
4323
4324/*!
4325@brief SAX interface
4326
4327This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
4328Each function is called in different situations while the input is parsed. The
4329boolean return value informs the parser whether to continue processing the
4330input.
4331*/
4332template<typename BasicJsonType>
4333struct json_sax
4334{
4335 /// type for (signed) integers
4336 using number_integer_t = typename BasicJsonType::number_integer_t;
4337 /// type for unsigned integers
4338 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4339 /// type for floating-point numbers
4340 using number_float_t = typename BasicJsonType::number_float_t;
4341 /// type for strings
4342 using string_t = typename BasicJsonType::string_t;
4343
4344 /*!
4345 @brief a null value was read
4346 @return whether parsing should proceed
4347 */
4348 virtual bool null() = 0;
4349
4350 /*!
4351 @brief a boolean value was read
4352 @param[in] val boolean value
4353 @return whether parsing should proceed
4354 */
4355 virtual bool boolean(bool val) = 0;
4356
4357 /*!
4358 @brief an integer number was read
4359 @param[in] val integer value
4360 @return whether parsing should proceed
4361 */
4362 virtual bool number_integer(number_integer_t val) = 0;
4363
4364 /*!
4365 @brief an unsigned integer number was read
4366 @param[in] val unsigned integer value
4367 @return whether parsing should proceed
4368 */
4369 virtual bool number_unsigned(number_unsigned_t val) = 0;
4370
4371 /*!
4372 @brief an floating-point number was read
4373 @param[in] val floating-point value
4374 @param[in] s raw token value
4375 @return whether parsing should proceed
4376 */
4377 virtual bool number_float(number_float_t val, const string_t& s) = 0;
4378
4379 /*!
4380 @brief a string was read
4381 @param[in] val string value
4382 @return whether parsing should proceed
4383 @note It is safe to move the passed string.
4384 */
4385 virtual bool string(string_t& val) = 0;
4386
4387 /*!
4388 @brief the beginning of an object was read
4389 @param[in] elements number of object elements or -1 if unknown
4390 @return whether parsing should proceed
4391 @note binary formats may report the number of elements
4392 */
4393 virtual bool start_object(std::size_t elements) = 0;
4394
4395 /*!
4396 @brief an object key was read
4397 @param[in] val object key
4398 @return whether parsing should proceed
4399 @note It is safe to move the passed string.
4400 */
4401 virtual bool key(string_t& val) = 0;
4402
4403 /*!
4404 @brief the end of an object was read
4405 @return whether parsing should proceed
4406 */
4407 virtual bool end_object() = 0;
4408
4409 /*!
4410 @brief the beginning of an array was read
4411 @param[in] elements number of array elements or -1 if unknown
4412 @return whether parsing should proceed
4413 @note binary formats may report the number of elements
4414 */
4415 virtual bool start_array(std::size_t elements) = 0;
4416
4417 /*!
4418 @brief the end of an array was read
4419 @return whether parsing should proceed
4420 */
4421 virtual bool end_array() = 0;
4422
4423 /*!
4424 @brief a parse error occurred
4425 @param[in] position the position in the input where the error occurs
4426 @param[in] last_token the last read token
4427 @param[in] ex an exception object describing the error
4428 @return whether parsing should proceed (must return false)
4429 */
4430 virtual bool parse_error(std::size_t position,
4431 const std::string& last_token,
4432 const detail::exception& ex) = 0;
4433
4434 virtual ~json_sax() = default;
4435};
4436
4437
4438namespace detail
4439{
4440/*!
4441@brief SAX implementation to create a JSON value from SAX events
4442
4443This class implements the @ref json_sax interface and processes the SAX events
4444to create a JSON value which makes it basically a DOM parser. The structure or
4445hierarchy of the JSON value is managed by the stack `ref_stack` which contains
4446a pointer to the respective array or object for each recursion depth.
4447
4448After successful parsing, the value that is passed by reference to the
4449constructor contains the parsed value.
4450
4451@tparam BasicJsonType the JSON type
4452*/
4453template<typename BasicJsonType>
4454class json_sax_dom_parser
4455{
4456 public:
4457 using number_integer_t = typename BasicJsonType::number_integer_t;
4458 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4459 using number_float_t = typename BasicJsonType::number_float_t;
4460 using string_t = typename BasicJsonType::string_t;
4461
4462 /*!
4463 @param[in, out] r reference to a JSON value that is manipulated while
4464 parsing
4465 @param[in] allow_exceptions_ whether parse errors yield exceptions
4466 */
4467 explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
4468 : root(r), allow_exceptions(allow_exceptions_)
4469 {}
4470
4471 // make class move-only
4472 json_sax_dom_parser(const json_sax_dom_parser&) = delete;
4473 json_sax_dom_parser(json_sax_dom_parser&&) = default;
4474 json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
4475 json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default;
4476 ~json_sax_dom_parser() = default;
4477
4478 bool null()
4479 {
4480 handle_value(nullptr);
4481 return true;
4482 }
4483
4484 bool boolean(bool val)
4485 {
4486 handle_value(val);
4487 return true;
4488 }
4489
4490 bool number_integer(number_integer_t val)
4491 {
4492 handle_value(val);
4493 return true;
4494 }
4495
4496 bool number_unsigned(number_unsigned_t val)
4497 {
4498 handle_value(val);
4499 return true;
4500 }
4501
4502 bool number_float(number_float_t val, const string_t& /*unused*/)
4503 {
4504 handle_value(val);
4505 return true;
4506 }
4507
4508 bool string(string_t& val)
4509 {
4510 handle_value(val);
4511 return true;
4512 }
4513
4514 bool start_object(std::size_t len)
4515 {
4516 ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
4517
4518 if (JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4519 {
4520 JSON_THROW(out_of_range::create(408,
4521 "excessive object size: " + std::to_string(len)));
4522 }
4523
4524 return true;
4525 }
4526
4527 bool key(string_t& val)
4528 {
4529 // add null at given key and store the reference for later
4530 object_element = &(ref_stack.back()->m_value.object->operator[](val));
4531 return true;
4532 }
4533
4534 bool end_object()
4535 {
4536 ref_stack.pop_back();
4537 return true;
4538 }
4539
4540 bool start_array(std::size_t len)
4541 {
4542 ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
4543
4544 if (JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4545 {
4546 JSON_THROW(out_of_range::create(408,
4547 "excessive array size: " + std::to_string(len)));
4548 }
4549
4550 return true;
4551 }
4552
4553 bool end_array()
4554 {
4555 ref_stack.pop_back();
4556 return true;
4557 }
4558
4559 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
4560 const detail::exception& ex)
4561 {
4562 errored = true;
4563 if (allow_exceptions)
4564 {
4565 // determine the proper exception type from the id
4566 switch ((ex.id / 100) % 100)
4567 {
4568 case 1:
4569 JSON_THROW(*static_cast<const detail::parse_error*>(&ex));
4570 case 4:
4571 JSON_THROW(*static_cast<const detail::out_of_range*>(&ex));
4572 // LCOV_EXCL_START
4573 case 2:
4574 JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex));
4575 case 3:
4576 JSON_THROW(*static_cast<const detail::type_error*>(&ex));
4577 case 5:
4578 JSON_THROW(*static_cast<const detail::other_error*>(&ex));
4579 default:
4580 assert(false);
4581 // LCOV_EXCL_STOP
4582 }
4583 }
4584 return false;
4585 }
4586
4587 constexpr bool is_errored() const
4588 {
4589 return errored;
4590 }
4591
4592 private:
4593 /*!
4594 @invariant If the ref stack is empty, then the passed value will be the new
4595 root.
4596 @invariant If the ref stack contains a value, then it is an array or an
4597 object to which we can add elements
4598 */
4599 template<typename Value>
4600 JSON_HEDLEY_RETURNS_NON_NULL
4601 BasicJsonType* handle_value(Value&& v)
4602 {
4603 if (ref_stack.empty())
4604 {
4605 root = BasicJsonType(std::forward<Value>(v));
4606 return &root;
4607 }
4608
4609 assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
4610
4611 if (ref_stack.back()->is_array())
4612 {
4613 ref_stack.back()->m_value.array->emplace_back(std::forward<Value>(v));
4614 return &(ref_stack.back()->m_value.array->back());
4615 }
4616
4617 assert(ref_stack.back()->is_object());
4618 assert(object_element);
4619 *object_element = BasicJsonType(std::forward<Value>(v));
4620 return object_element;
4621 }
4622
4623 /// the parsed JSON value
4624 BasicJsonType& root;
4625 /// stack to model hierarchy of values
4626 std::vector<BasicJsonType*> ref_stack {};
4627 /// helper to hold the reference for the next object element
4628 BasicJsonType* object_element = nullptr;
4629 /// whether a syntax error occurred
4630 bool errored = false;
4631 /// whether to throw exceptions in case of errors
4632 const bool allow_exceptions = true;
4633};
4634
4635template<typename BasicJsonType>
4636class json_sax_dom_callback_parser
4637{
4638 public:
4639 using number_integer_t = typename BasicJsonType::number_integer_t;
4640 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4641 using number_float_t = typename BasicJsonType::number_float_t;
4642 using string_t = typename BasicJsonType::string_t;
4643 using parser_callback_t = typename BasicJsonType::parser_callback_t;
4644 using parse_event_t = typename BasicJsonType::parse_event_t;
4645
4646 json_sax_dom_callback_parser(BasicJsonType& r,
4647 const parser_callback_t cb,
4648 const bool allow_exceptions_ = true)
4649 : root(r), callback(cb), allow_exceptions(allow_exceptions_)
4650 {
4651 keep_stack.push_back(true);
4652 }
4653
4654 // make class move-only
4655 json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete;
4656 json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default;
4657 json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
4658 json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default;
4659 ~json_sax_dom_callback_parser() = default;
4660
4661 bool null()
4662 {
4663 handle_value(nullptr);
4664 return true;
4665 }
4666
4667 bool boolean(bool val)
4668 {
4669 handle_value(val);
4670 return true;
4671 }
4672
4673 bool number_integer(number_integer_t val)
4674 {
4675 handle_value(val);
4676 return true;
4677 }
4678
4679 bool number_unsigned(number_unsigned_t val)
4680 {
4681 handle_value(val);
4682 return true;
4683 }
4684
4685 bool number_float(number_float_t val, const string_t& /*unused*/)
4686 {
4687 handle_value(val);
4688 return true;
4689 }
4690
4691 bool string(string_t& val)
4692 {
4693 handle_value(val);
4694 return true;
4695 }
4696
4697 bool start_object(std::size_t len)
4698 {
4699 // check callback for object start
4700 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
4701 keep_stack.push_back(keep);
4702
4703 auto val = handle_value(BasicJsonType::value_t::object, true);
4704 ref_stack.push_back(val.second);
4705
4706 // check object limit
4707 if (ref_stack.back() and JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4708 {
4709 JSON_THROW(out_of_range::create(408, "excessive object size: " + std::to_string(len)));
4710 }
4711
4712 return true;
4713 }
4714
4715 bool key(string_t& val)
4716 {
4717 BasicJsonType k = BasicJsonType(val);
4718
4719 // check callback for key
4720 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
4721 key_keep_stack.push_back(keep);
4722
4723 // add discarded value at given key and store the reference for later
4724 if (keep and ref_stack.back())
4725 {
4726 object_element = &(ref_stack.back()->m_value.object->operator[](val) = discarded);
4727 }
4728
4729 return true;
4730 }
4731
4732 bool end_object()
4733 {
4734 if (ref_stack.back() and not callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
4735 {
4736 // discard object
4737 *ref_stack.back() = discarded;
4738 }
4739
4740 assert(not ref_stack.empty());
4741 assert(not keep_stack.empty());
4742 ref_stack.pop_back();
4743 keep_stack.pop_back();
4744
4745 if (not ref_stack.empty() and ref_stack.back() and ref_stack.back()->is_object())
4746 {
4747 // remove discarded value
4748 for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
4749 {
4750 if (it->is_discarded())
4751 {
4752 ref_stack.back()->erase(it);
4753 break;
4754 }
4755 }
4756 }
4757
4758 return true;
4759 }
4760
4761 bool start_array(std::size_t len)
4762 {
4763 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
4764 keep_stack.push_back(keep);
4765
4766 auto val = handle_value(BasicJsonType::value_t::array, true);
4767 ref_stack.push_back(val.second);
4768
4769 // check array limit
4770 if (ref_stack.back() and JSON_HEDLEY_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4771 {
4772 JSON_THROW(out_of_range::create(408, "excessive array size: " + std::to_string(len)));
4773 }
4774
4775 return true;
4776 }
4777
4778 bool end_array()
4779 {
4780 bool keep = true;
4781
4782 if (ref_stack.back())
4783 {
4784 keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
4785 if (not keep)
4786 {
4787 // discard array
4788 *ref_stack.back() = discarded;
4789 }
4790 }
4791
4792 assert(not ref_stack.empty());
4793 assert(not keep_stack.empty());
4794 ref_stack.pop_back();
4795 keep_stack.pop_back();
4796
4797 // remove discarded value
4798 if (not keep and not ref_stack.empty() and ref_stack.back()->is_array())
4799 {
4800 ref_stack.back()->m_value.array->pop_back();
4801 }
4802
4803 return true;
4804 }
4805
4806 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
4807 const detail::exception& ex)
4808 {
4809 errored = true;
4810 if (allow_exceptions)
4811 {
4812 // determine the proper exception type from the id
4813 switch ((ex.id / 100) % 100)
4814 {
4815 case 1:
4816 JSON_THROW(*static_cast<const detail::parse_error*>(&ex));
4817 case 4:
4818 JSON_THROW(*static_cast<const detail::out_of_range*>(&ex));
4819 // LCOV_EXCL_START
4820 case 2:
4821 JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex));
4822 case 3:
4823 JSON_THROW(*static_cast<const detail::type_error*>(&ex));
4824 case 5:
4825 JSON_THROW(*static_cast<const detail::other_error*>(&ex));
4826 default:
4827 assert(false);
4828 // LCOV_EXCL_STOP
4829 }
4830 }
4831 return false;
4832 }
4833
4834 constexpr bool is_errored() const
4835 {
4836 return errored;
4837 }
4838
4839 private:
4840 /*!
4841 @param[in] v value to add to the JSON value we build during parsing
4842 @param[in] skip_callback whether we should skip calling the callback
4843 function; this is required after start_array() and
4844 start_object() SAX events, because otherwise we would call the
4845 callback function with an empty array or object, respectively.
4846
4847 @invariant If the ref stack is empty, then the passed value will be the new
4848 root.
4849 @invariant If the ref stack contains a value, then it is an array or an
4850 object to which we can add elements
4851
4852 @return pair of boolean (whether value should be kept) and pointer (to the
4853 passed value in the ref_stack hierarchy; nullptr if not kept)
4854 */
4855 template<typename Value>
4856 std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
4857 {
4858 assert(not keep_stack.empty());
4859
4860 // do not handle this value if we know it would be added to a discarded
4861 // container
4862 if (not keep_stack.back())
4863 {
4864 return {false, nullptr};
4865 }
4866
4867 // create value
4868 auto value = BasicJsonType(std::forward<Value>(v));
4869
4870 // check callback
4871 const bool keep = skip_callback or callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
4872
4873 // do not handle this value if we just learnt it shall be discarded
4874 if (not keep)
4875 {
4876 return {false, nullptr};
4877 }
4878
4879 if (ref_stack.empty())
4880 {
4881 root = std::move(value);
4882 return {true, &root};
4883 }
4884
4885 // skip this value if we already decided to skip the parent
4886 // (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
4887 if (not ref_stack.back())
4888 {
4889 return {false, nullptr};
4890 }
4891
4892 // we now only expect arrays and objects
4893 assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
4894
4895 // array
4896 if (ref_stack.back()->is_array())
4897 {
4898 ref_stack.back()->m_value.array->push_back(std::move(value));
4899 return {true, &(ref_stack.back()->m_value.array->back())};
4900 }
4901
4902 // object
4903 assert(ref_stack.back()->is_object());
4904 // check if we should store an element for the current key
4905 assert(not key_keep_stack.empty());
4906 const bool store_element = key_keep_stack.back();
4907 key_keep_stack.pop_back();
4908
4909 if (not store_element)
4910 {
4911 return {false, nullptr};
4912 }
4913
4914 assert(object_element);
4915 *object_element = std::move(value);
4916 return {true, object_element};
4917 }
4918
4919 /// the parsed JSON value
4920 BasicJsonType& root;
4921 /// stack to model hierarchy of values
4922 std::vector<BasicJsonType*> ref_stack {};
4923 /// stack to manage which values to keep
4924 std::vector<bool> keep_stack {};
4925 /// stack to manage which object keys to keep
4926 std::vector<bool> key_keep_stack {};
4927 /// helper to hold the reference for the next object element
4928 BasicJsonType* object_element = nullptr;
4929 /// whether a syntax error occurred
4930 bool errored = false;
4931 /// callback function
4932 const parser_callback_t callback = nullptr;
4933 /// whether to throw exceptions in case of errors
4934 const bool allow_exceptions = true;
4935 /// a discarded value for the callback
4936 BasicJsonType discarded = BasicJsonType::value_t::discarded;
4937};
4938
4939template<typename BasicJsonType>
4940class json_sax_acceptor
4941{
4942 public:
4943 using number_integer_t = typename BasicJsonType::number_integer_t;
4944 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4945 using number_float_t = typename BasicJsonType::number_float_t;
4946 using string_t = typename BasicJsonType::string_t;
4947
4948 bool null()
4949 {
4950 return true;
4951 }
4952
4953 bool boolean(bool /*unused*/)
4954 {
4955 return true;
4956 }
4957
4958 bool number_integer(number_integer_t /*unused*/)
4959 {
4960 return true;
4961 }
4962
4963 bool number_unsigned(number_unsigned_t /*unused*/)
4964 {
4965 return true;
4966 }
4967
4968 bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
4969 {
4970 return true;
4971 }
4972
4973 bool string(string_t& /*unused*/)
4974 {
4975 return true;
4976 }
4977
4978 bool start_object(std::size_t /*unused*/ = std::size_t(-1))
4979 {
4980 return true;
4981 }
4982
4983 bool key(string_t& /*unused*/)
4984 {
4985 return true;
4986 }
4987
4988 bool end_object()
4989 {
4990 return true;
4991 }
4992
4993 bool start_array(std::size_t /*unused*/ = std::size_t(-1))
4994 {
4995 return true;
4996 }
4997
4998 bool end_array()
4999 {
5000 return true;
5001 }
5002
5003 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
5004 {
5005 return false;
5006 }
5007};
5008} // namespace detail
5009
5010} // namespace nlohmann
5011
5012// #include <nlohmann/detail/macro_scope.hpp>
5013
5014// #include <nlohmann/detail/meta/is_sax.hpp>
5015
5016
5017#include <cstdint> // size_t
5018#include <utility> // declval
5019#include <string> // string
5020
5021// #include <nlohmann/detail/meta/detected.hpp>
5022
5023// #include <nlohmann/detail/meta/type_traits.hpp>
5024
5025
5026namespace nlohmann
5027{
5028namespace detail
5029{
5030template <typename T>
5031using null_function_t = decltype(std::declval<T&>().null());
5032
5033template <typename T>
5034using boolean_function_t =
5035 decltype(std::declval<T&>().boolean(std::declval<bool>()));
5036
5037template <typename T, typename Integer>
5038using number_integer_function_t =
5039 decltype(std::declval<T&>().number_integer(std::declval<Integer>()));
5040
5041template <typename T, typename Unsigned>
5042using number_unsigned_function_t =
5043 decltype(std::declval<T&>().number_unsigned(std::declval<Unsigned>()));
5044
5045template <typename T, typename Float, typename String>
5046using number_float_function_t = decltype(std::declval<T&>().number_float(
5047 std::declval<Float>(), std::declval<const String&>()));
5048
5049template <typename T, typename String>
5050using string_function_t =
5051 decltype(std::declval<T&>().string(std::declval<String&>()));
5052
5053template <typename T>
5054using start_object_function_t =
5055 decltype(std::declval<T&>().start_object(std::declval<std::size_t>()));
5056
5057template <typename T, typename String>
5058using key_function_t =
5059 decltype(std::declval<T&>().key(std::declval<String&>()));
5060
5061template <typename T>
5062using end_object_function_t = decltype(std::declval<T&>().end_object());
5063
5064template <typename T>
5065using start_array_function_t =
5066 decltype(std::declval<T&>().start_array(std::declval<std::size_t>()));
5067
5068template <typename T>
5069using end_array_function_t = decltype(std::declval<T&>().end_array());
5070
5071template <typename T, typename Exception>
5072using parse_error_function_t = decltype(std::declval<T&>().parse_error(
5073 std::declval<std::size_t>(), std::declval<const std::string&>(),
5074 std::declval<const Exception&>()));
5075
5076template <typename SAX, typename BasicJsonType>
5077struct is_sax
5078{
5079 private:
5080 static_assert(is_basic_json<BasicJsonType>::value,
5081 "BasicJsonType must be of type basic_json<...>");
5082
5083 using number_integer_t = typename BasicJsonType::number_integer_t;
5084 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
5085 using number_float_t = typename BasicJsonType::number_float_t;
5086 using string_t = typename BasicJsonType::string_t;
5087 using exception_t = typename BasicJsonType::exception;
5088
5089 public:
5090 static constexpr bool value =
5091 is_detected_exact<bool, null_function_t, SAX>::value &&
5092 is_detected_exact<bool, boolean_function_t, SAX>::value &&
5093 is_detected_exact<bool, number_integer_function_t, SAX,
5094 number_integer_t>::value &&
5095 is_detected_exact<bool, number_unsigned_function_t, SAX,
5096 number_unsigned_t>::value &&
5097 is_detected_exact<bool, number_float_function_t, SAX, number_float_t,
5098 string_t>::value &&
5099 is_detected_exact<bool, string_function_t, SAX, string_t>::value &&
5100 is_detected_exact<bool, start_object_function_t, SAX>::value &&
5101 is_detected_exact<bool, key_function_t, SAX, string_t>::value &&
5102 is_detected_exact<bool, end_object_function_t, SAX>::value &&
5103 is_detected_exact<bool, start_array_function_t, SAX>::value &&
5104 is_detected_exact<bool, end_array_function_t, SAX>::value &&
5105 is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value;
5106};
5107
5108template <typename SAX, typename BasicJsonType>
5109struct is_sax_static_asserts
5110{
5111 private:
5112 static_assert(is_basic_json<BasicJsonType>::value,
5113 "BasicJsonType must be of type basic_json<...>");
5114
5115 using number_integer_t = typename BasicJsonType::number_integer_t;
5116 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
5117 using number_float_t = typename BasicJsonType::number_float_t;
5118 using string_t = typename BasicJsonType::string_t;
5119 using exception_t = typename BasicJsonType::exception;
5120
5121 public:
5122 static_assert(is_detected_exact<bool, null_function_t, SAX>::value,
5123 "Missing/invalid function: bool null()");
5124 static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
5125 "Missing/invalid function: bool boolean(bool)");
5126 static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
5127 "Missing/invalid function: bool boolean(bool)");
5128 static_assert(
5129 is_detected_exact<bool, number_integer_function_t, SAX,
5130 number_integer_t>::value,
5131 "Missing/invalid function: bool number_integer(number_integer_t)");
5132 static_assert(
5133 is_detected_exact<bool, number_unsigned_function_t, SAX,
5134 number_unsigned_t>::value,
5135 "Missing/invalid function: bool number_unsigned(number_unsigned_t)");
5136 static_assert(is_detected_exact<bool, number_float_function_t, SAX,
5137 number_float_t, string_t>::value,
5138 "Missing/invalid function: bool number_float(number_float_t, const string_t&)");
5139 static_assert(
5140 is_detected_exact<bool, string_function_t, SAX, string_t>::value,
5141 "Missing/invalid function: bool string(string_t&)");
5142 static_assert(is_detected_exact<bool, start_object_function_t, SAX>::value,
5143 "Missing/invalid function: bool start_object(std::size_t)");
5144 static_assert(is_detected_exact<bool, key_function_t, SAX, string_t>::value,
5145 "Missing/invalid function: bool key(string_t&)");
5146 static_assert(is_detected_exact<bool, end_object_function_t, SAX>::value,
5147 "Missing/invalid function: bool end_object()");
5148 static_assert(is_detected_exact<bool, start_array_function_t, SAX>::value,
5149 "Missing/invalid function: bool start_array(std::size_t)");
5150 static_assert(is_detected_exact<bool, end_array_function_t, SAX>::value,
5151 "Missing/invalid function: bool end_array()");
5152 static_assert(
5153 is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value,
5154 "Missing/invalid function: bool parse_error(std::size_t, const "
5155 "std::string&, const exception&)");
5156};
5157} // namespace detail
5158} // namespace nlohmann
5159
5160// #include <nlohmann/detail/value_t.hpp>
5161
5162
5163namespace nlohmann
5164{
5165namespace detail
5166{
5167///////////////////
5168// binary reader //
5169///////////////////
5170
5171/*!
5172@brief deserialization of CBOR, MessagePack, and UBJSON values
5173*/
5174template<typename BasicJsonType, typename SAX = json_sax_dom_parser<BasicJsonType>>
5175class binary_reader
5176{
5177 using number_integer_t = typename BasicJsonType::number_integer_t;
5178 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
5179 using number_float_t = typename BasicJsonType::number_float_t;
5180 using string_t = typename BasicJsonType::string_t;
5181 using json_sax_t = SAX;
5182
5183 public:
5184 /*!
5185 @brief create a binary reader
5186
5187 @param[in] adapter input adapter to read from
5188 */
5189 explicit binary_reader(input_adapter_t adapter) : ia(std::move(adapter))
5190 {
5191 (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
5192 assert(ia);
5193 }
5194
5195 // make class move-only
5196 binary_reader(const binary_reader&) = delete;
5197 binary_reader(binary_reader&&) = default;
5198 binary_reader& operator=(const binary_reader&) = delete;
5199 binary_reader& operator=(binary_reader&&) = default;
5200 ~binary_reader() = default;
5201
5202 /*!
5203 @param[in] format the binary format to parse
5204 @param[in] sax_ a SAX event processor
5205 @param[in] strict whether to expect the input to be consumed completed
5206
5207 @return
5208 */
5209 JSON_HEDLEY_NON_NULL(3)
5210 bool sax_parse(const input_format_t format,
5211 json_sax_t* sax_,
5212 const bool strict = true)
5213 {
5214 sax = sax_;
5215 bool result = false;
5216
5217 switch (format)
5218 {
5219 case input_format_t::bson:
5220 result = parse_bson_internal();
5221 break;
5222
5223 case input_format_t::cbor:
5224 result = parse_cbor_internal();
5225 break;
5226
5227 case input_format_t::msgpack:
5228 result = parse_msgpack_internal();
5229 break;
5230
5231 case input_format_t::ubjson:
5232 result = parse_ubjson_internal();
5233 break;
5234
5235 default: // LCOV_EXCL_LINE
5236 assert(false); // LCOV_EXCL_LINE
5237 }
5238
5239 // strict mode: next byte must be EOF
5240 if (result and strict)
5241 {
5242 if (format == input_format_t::ubjson)
5243 {
5244 get_ignore_noop();
5245 }
5246 else
5247 {
5248 get();
5249 }
5250
5251 if (JSON_HEDLEY_UNLIKELY(current != std::char_traits<char>::eof()))
5252 {
5253 return sax->parse_error(chars_read, get_token_string(),
5254 parse_error::create(110, chars_read, exception_message(format, "expected end of input; last byte: 0x" + get_token_string(), "value")));
5255 }
5256 }
5257
5258 return result;
5259 }
5260
5261 /*!
5262 @brief determine system byte order
5263
5264 @return true if and only if system's byte order is little endian
5265
5266 @note from http://stackoverflow.com/a/1001328/266378
5267 */
5268 static constexpr bool little_endianess(int num = 1) noexcept
5269 {
5270 return *reinterpret_cast<char*>(&num) == 1;
5271 }
5272
5273 private:
5274 //////////
5275 // BSON //
5276 //////////
5277
5278 /*!
5279 @brief Reads in a BSON-object and passes it to the SAX-parser.
5280 @return whether a valid BSON-value was passed to the SAX parser
5281 */
5282 bool parse_bson_internal()
5283 {
5284 std::int32_t document_size;
5285 get_number<std::int32_t, true>(input_format_t::bson, document_size);
5286
5287 if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
5288 {
5289 return false;
5290 }
5291
5292 if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_list(/*is_array*/false)))
5293 {
5294 return false;
5295 }
5296
5297 return sax->end_object();
5298 }
5299
5300 /*!
5301 @brief Parses a C-style string from the BSON input.
5302 @param[in, out] result A reference to the string variable where the read
5303 string is to be stored.
5304 @return `true` if the \x00-byte indicating the end of the string was
5305 encountered before the EOF; false` indicates an unexpected EOF.
5306 */
5307 bool get_bson_cstr(string_t& result)
5308 {
5309 auto out = std::back_inserter(result);
5310 while (true)
5311 {
5312 get();
5313 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::bson, "cstring")))
5314 {
5315 return false;
5316 }
5317 if (current == 0x00)
5318 {
5319 return true;
5320 }
5321 *out++ = static_cast<char>(current);
5322 }
5323
5324 return true;
5325 }
5326
5327 /*!
5328 @brief Parses a zero-terminated string of length @a len from the BSON
5329 input.
5330 @param[in] len The length (including the zero-byte at the end) of the
5331 string to be read.
5332 @param[in, out] result A reference to the string variable where the read
5333 string is to be stored.
5334 @tparam NumberType The type of the length @a len
5335 @pre len >= 1
5336 @return `true` if the string was successfully parsed
5337 */
5338 template<typename NumberType>
5339 bool get_bson_string(const NumberType len, string_t& result)
5340 {
5341 if (JSON_HEDLEY_UNLIKELY(len < 1))
5342 {
5343 auto last_token = get_token_string();
5344 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::bson, "string length must be at least 1, is " + std::to_string(len), "string")));
5345 }
5346
5347 return get_string(input_format_t::bson, len - static_cast<NumberType>(1), result) and get() != std::char_traits<char>::eof();
5348 }
5349
5350 /*!
5351 @brief Read a BSON document element of the given @a element_type.
5352 @param[in] element_type The BSON element type, c.f. http://bsonspec.org/spec.html
5353 @param[in] element_type_parse_position The position in the input stream,
5354 where the `element_type` was read.
5355 @warning Not all BSON element types are supported yet. An unsupported
5356 @a element_type will give rise to a parse_error.114:
5357 Unsupported BSON record type 0x...
5358 @return whether a valid BSON-object/array was passed to the SAX parser
5359 */
5360 bool parse_bson_element_internal(const int element_type,
5361 const std::size_t element_type_parse_position)
5362 {
5363 switch (element_type)
5364 {
5365 case 0x01: // double
5366 {
5367 double number;
5368 return get_number<double, true>(input_format_t::bson, number) and sax->number_float(static_cast<number_float_t>(number), "");
5369 }
5370
5371 case 0x02: // string
5372 {
5373 std::int32_t len;
5374 string_t value;
5375 return get_number<std::int32_t, true>(input_format_t::bson, len) and get_bson_string(len, value) and sax->string(value);
5376 }
5377
5378 case 0x03: // object
5379 {
5380 return parse_bson_internal();
5381 }
5382
5383 case 0x04: // array
5384 {
5385 return parse_bson_array();
5386 }
5387
5388 case 0x08: // boolean
5389 {
5390 return sax->boolean(get() != 0);
5391 }
5392
5393 case 0x0A: // null
5394 {
5395 return sax->null();
5396 }
5397
5398 case 0x10: // int32
5399 {
5400 std::int32_t value;
5401 return get_number<std::int32_t, true>(input_format_t::bson, value) and sax->number_integer(value);
5402 }
5403
5404 case 0x12: // int64
5405 {
5406 std::int64_t value;
5407 return get_number<std::int64_t, true>(input_format_t::bson, value) and sax->number_integer(value);
5408 }
5409
5410 default: // anything else not supported (yet)
5411 {
5412 std::array<char, 3> cr{{}};
5413 (std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(element_type));
5414 return sax->parse_error(element_type_parse_position, std::string(cr.data()), parse_error::create(114, element_type_parse_position, "Unsupported BSON record type 0x" + std::string(cr.data())));
5415 }
5416 }
5417 }
5418
5419 /*!
5420 @brief Read a BSON element list (as specified in the BSON-spec)
5421
5422 The same binary layout is used for objects and arrays, hence it must be
5423 indicated with the argument @a is_array which one is expected
5424 (true --> array, false --> object).
5425
5426 @param[in] is_array Determines if the element list being read is to be
5427 treated as an object (@a is_array == false), or as an
5428 array (@a is_array == true).
5429 @return whether a valid BSON-object/array was passed to the SAX parser
5430 */
5431 bool parse_bson_element_list(const bool is_array)
5432 {
5433 string_t key;
5434 while (int element_type = get())
5435 {
5436 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::bson, "element list")))
5437 {
5438 return false;
5439 }
5440
5441 const std::size_t element_type_parse_position = chars_read;
5442 if (JSON_HEDLEY_UNLIKELY(not get_bson_cstr(key)))
5443 {
5444 return false;
5445 }
5446
5447 if (not is_array and not sax->key(key))
5448 {
5449 return false;
5450 }
5451
5452 if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_internal(element_type, element_type_parse_position)))
5453 {
5454 return false;
5455 }
5456
5457 // get_bson_cstr only appends
5458 key.clear();
5459 }
5460
5461 return true;
5462 }
5463
5464 /*!
5465 @brief Reads an array from the BSON input and passes it to the SAX-parser.
5466 @return whether a valid BSON-array was passed to the SAX parser
5467 */
5468 bool parse_bson_array()
5469 {
5470 std::int32_t document_size;
5471 get_number<std::int32_t, true>(input_format_t::bson, document_size);
5472
5473 if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
5474 {
5475 return false;
5476 }
5477
5478 if (JSON_HEDLEY_UNLIKELY(not parse_bson_element_list(/*is_array*/true)))
5479 {
5480 return false;
5481 }
5482
5483 return sax->end_array();
5484 }
5485
5486 //////////
5487 // CBOR //
5488 //////////
5489
5490 /*!
5491 @param[in] get_char whether a new character should be retrieved from the
5492 input (true, default) or whether the last read
5493 character should be considered instead
5494
5495 @return whether a valid CBOR value was passed to the SAX parser
5496 */
5497 bool parse_cbor_internal(const bool get_char = true)
5498 {
5499 switch (get_char ? get() : current)
5500 {
5501 // EOF
5502 case std::char_traits<char>::eof():
5503 return unexpect_eof(input_format_t::cbor, "value");
5504
5505 // Integer 0x00..0x17 (0..23)
5506 case 0x00:
5507 case 0x01:
5508 case 0x02:
5509 case 0x03:
5510 case 0x04:
5511 case 0x05:
5512 case 0x06:
5513 case 0x07:
5514 case 0x08:
5515 case 0x09:
5516 case 0x0A:
5517 case 0x0B:
5518 case 0x0C:
5519 case 0x0D:
5520 case 0x0E:
5521 case 0x0F:
5522 case 0x10:
5523 case 0x11:
5524 case 0x12:
5525 case 0x13:
5526 case 0x14:
5527 case 0x15:
5528 case 0x16:
5529 case 0x17:
5530 return sax->number_unsigned(static_cast<number_unsigned_t>(current));
5531
5532 case 0x18: // Unsigned integer (one-byte uint8_t follows)
5533 {
5534 std::uint8_t number;
5535 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5536 }
5537
5538 case 0x19: // Unsigned integer (two-byte uint16_t follows)
5539 {
5540 std::uint16_t number;
5541 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5542 }
5543
5544 case 0x1A: // Unsigned integer (four-byte uint32_t follows)
5545 {
5546 std::uint32_t number;
5547 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5548 }
5549
5550 case 0x1B: // Unsigned integer (eight-byte uint64_t follows)
5551 {
5552 std::uint64_t number;
5553 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
5554 }
5555
5556 // Negative integer -1-0x00..-1-0x17 (-1..-24)
5557 case 0x20:
5558 case 0x21:
5559 case 0x22:
5560 case 0x23:
5561 case 0x24:
5562 case 0x25:
5563 case 0x26:
5564 case 0x27:
5565 case 0x28:
5566 case 0x29:
5567 case 0x2A:
5568 case 0x2B:
5569 case 0x2C:
5570 case 0x2D:
5571 case 0x2E:
5572 case 0x2F:
5573 case 0x30:
5574 case 0x31:
5575 case 0x32:
5576 case 0x33:
5577 case 0x34:
5578 case 0x35:
5579 case 0x36:
5580 case 0x37:
5581 return sax->number_integer(static_cast<std::int8_t>(0x20 - 1 - current));
5582
5583 case 0x38: // Negative integer (one-byte uint8_t follows)
5584 {
5585 std::uint8_t number;
5586 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
5587 }
5588
5589 case 0x39: // Negative integer -1-n (two-byte uint16_t follows)
5590 {
5591 std::uint16_t number;
5592 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
5593 }
5594
5595 case 0x3A: // Negative integer -1-n (four-byte uint32_t follows)
5596 {
5597 std::uint32_t number;
5598 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
5599 }
5600
5601 case 0x3B: // Negative integer -1-n (eight-byte uint64_t follows)
5602 {
5603 std::uint64_t number;
5604 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1)
5605 - static_cast<number_integer_t>(number));
5606 }
5607
5608 // UTF-8 string (0x00..0x17 bytes follow)
5609 case 0x60:
5610 case 0x61:
5611 case 0x62:
5612 case 0x63:
5613 case 0x64:
5614 case 0x65:
5615 case 0x66:
5616 case 0x67:
5617 case 0x68:
5618 case 0x69:
5619 case 0x6A:
5620 case 0x6B:
5621 case 0x6C:
5622 case 0x6D:
5623 case 0x6E:
5624 case 0x6F:
5625 case 0x70:
5626 case 0x71:
5627 case 0x72:
5628 case 0x73:
5629 case 0x74:
5630 case 0x75:
5631 case 0x76:
5632 case 0x77:
5633 case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
5634 case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
5635 case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
5636 case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
5637 case 0x7F: // UTF-8 string (indefinite length)
5638 {
5639 string_t s;
5640 return get_cbor_string(s) and sax->string(s);
5641 }
5642
5643 // array (0x00..0x17 data items follow)
5644 case 0x80:
5645 case 0x81:
5646 case 0x82:
5647 case 0x83:
5648 case 0x84:
5649 case 0x85:
5650 case 0x86:
5651 case 0x87:
5652 case 0x88:
5653 case 0x89:
5654 case 0x8A:
5655 case 0x8B:
5656 case 0x8C:
5657 case 0x8D:
5658 case 0x8E:
5659 case 0x8F:
5660 case 0x90:
5661 case 0x91:
5662 case 0x92:
5663 case 0x93:
5664 case 0x94:
5665 case 0x95:
5666 case 0x96:
5667 case 0x97:
5668 return get_cbor_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu));
5669
5670 case 0x98: // array (one-byte uint8_t for n follows)
5671 {
5672 std::uint8_t len;
5673 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5674 }
5675
5676 case 0x99: // array (two-byte uint16_t for n follow)
5677 {
5678 std::uint16_t len;
5679 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5680 }
5681
5682 case 0x9A: // array (four-byte uint32_t for n follow)
5683 {
5684 std::uint32_t len;
5685 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5686 }
5687
5688 case 0x9B: // array (eight-byte uint64_t for n follow)
5689 {
5690 std::uint64_t len;
5691 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
5692 }
5693
5694 case 0x9F: // array (indefinite length)
5695 return get_cbor_array(std::size_t(-1));
5696
5697 // map (0x00..0x17 pairs of data items follow)
5698 case 0xA0:
5699 case 0xA1:
5700 case 0xA2:
5701 case 0xA3:
5702 case 0xA4:
5703 case 0xA5:
5704 case 0xA6:
5705 case 0xA7:
5706 case 0xA8:
5707 case 0xA9:
5708 case 0xAA:
5709 case 0xAB:
5710 case 0xAC:
5711 case 0xAD:
5712 case 0xAE:
5713 case 0xAF:
5714 case 0xB0:
5715 case 0xB1:
5716 case 0xB2:
5717 case 0xB3:
5718 case 0xB4:
5719 case 0xB5:
5720 case 0xB6:
5721 case 0xB7:
5722 return get_cbor_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu));
5723
5724 case 0xB8: // map (one-byte uint8_t for n follows)
5725 {
5726 std::uint8_t len;
5727 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5728 }
5729
5730 case 0xB9: // map (two-byte uint16_t for n follow)
5731 {
5732 std::uint16_t len;
5733 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5734 }
5735
5736 case 0xBA: // map (four-byte uint32_t for n follow)
5737 {
5738 std::uint32_t len;
5739 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5740 }
5741
5742 case 0xBB: // map (eight-byte uint64_t for n follow)
5743 {
5744 std::uint64_t len;
5745 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
5746 }
5747
5748 case 0xBF: // map (indefinite length)
5749 return get_cbor_object(std::size_t(-1));
5750
5751 case 0xF4: // false
5752 return sax->boolean(false);
5753
5754 case 0xF5: // true
5755 return sax->boolean(true);
5756
5757 case 0xF6: // null
5758 return sax->null();
5759
5760 case 0xF9: // Half-Precision Float (two-byte IEEE 754)
5761 {
5762 const int byte1_raw = get();
5763 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
5764 {
5765 return false;
5766 }
5767 const int byte2_raw = get();
5768 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
5769 {
5770 return false;
5771 }
5772
5773 const auto byte1 = static_cast<unsigned char>(byte1_raw);
5774 const auto byte2 = static_cast<unsigned char>(byte2_raw);
5775
5776 // code from RFC 7049, Appendix D, Figure 3:
5777 // As half-precision floating-point numbers were only added
5778 // to IEEE 754 in 2008, today's programming platforms often
5779 // still only have limited support for them. It is very
5780 // easy to include at least decoding support for them even
5781 // without such support. An example of a small decoder for
5782 // half-precision floating-point numbers in the C language
5783 // is shown in Fig. 3.
5784 const auto half = static_cast<unsigned int>((byte1 << 8u) + byte2);
5785 const double val = [&half]
5786 {
5787 const int exp = (half >> 10u) & 0x1Fu;
5788 const unsigned int mant = half & 0x3FFu;
5789 assert(0 <= exp and exp <= 32);
5790 assert(mant <= 1024);
5791 switch (exp)
5792 {
5793 case 0:
5794 return std::ldexp(mant, -24);
5795 case 31:
5796 return (mant == 0)
5797 ? std::numeric_limits<double>::infinity()
5798 : std::numeric_limits<double>::quiet_NaN();
5799 default:
5800 return std::ldexp(mant + 1024, exp - 25);
5801 }
5802 }();
5803 return sax->number_float((half & 0x8000u) != 0
5804 ? static_cast<number_float_t>(-val)
5805 : static_cast<number_float_t>(val), "");
5806 }
5807
5808 case 0xFA: // Single-Precision Float (four-byte IEEE 754)
5809 {
5810 float number;
5811 return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
5812 }
5813
5814 case 0xFB: // Double-Precision Float (eight-byte IEEE 754)
5815 {
5816 double number;
5817 return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
5818 }
5819
5820 default: // anything else (0xFF is handled inside the other types)
5821 {
5822 auto last_token = get_token_string();
5823 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::cbor, "invalid byte: 0x" + last_token, "value")));
5824 }
5825 }
5826 }
5827
5828 /*!
5829 @brief reads a CBOR string
5830
5831 This function first reads starting bytes to determine the expected
5832 string length and then copies this number of bytes into a string.
5833 Additionally, CBOR's strings with indefinite lengths are supported.
5834
5835 @param[out] result created string
5836
5837 @return whether string creation completed
5838 */
5839 bool get_cbor_string(string_t& result)
5840 {
5841 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::cbor, "string")))
5842 {
5843 return false;
5844 }
5845
5846 switch (current)
5847 {
5848 // UTF-8 string (0x00..0x17 bytes follow)
5849 case 0x60:
5850 case 0x61:
5851 case 0x62:
5852 case 0x63:
5853 case 0x64:
5854 case 0x65:
5855 case 0x66:
5856 case 0x67:
5857 case 0x68:
5858 case 0x69:
5859 case 0x6A:
5860 case 0x6B:
5861 case 0x6C:
5862 case 0x6D:
5863 case 0x6E:
5864 case 0x6F:
5865 case 0x70:
5866 case 0x71:
5867 case 0x72:
5868 case 0x73:
5869 case 0x74:
5870 case 0x75:
5871 case 0x76:
5872 case 0x77:
5873 {
5874 return get_string(input_format_t::cbor, static_cast<unsigned int>(current) & 0x1Fu, result);
5875 }
5876
5877 case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
5878 {
5879 std::uint8_t len;
5880 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5881 }
5882
5883 case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
5884 {
5885 std::uint16_t len;
5886 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5887 }
5888
5889 case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
5890 {
5891 std::uint32_t len;
5892 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5893 }
5894
5895 case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
5896 {
5897 std::uint64_t len;
5898 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
5899 }
5900
5901 case 0x7F: // UTF-8 string (indefinite length)
5902 {
5903 while (get() != 0xFF)
5904 {
5905 string_t chunk;
5906 if (not get_cbor_string(chunk))
5907 {
5908 return false;
5909 }
5910 result.append(chunk);
5911 }
5912 return true;
5913 }
5914
5915 default:
5916 {
5917 auto last_token = get_token_string();
5918 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::cbor, "expected length specification (0x60-0x7B) or indefinite string type (0x7F); last byte: 0x" + last_token, "string")));
5919 }
5920 }
5921 }
5922
5923 /*!
5924 @param[in] len the length of the array or std::size_t(-1) for an
5925 array of indefinite size
5926 @return whether array creation completed
5927 */
5928 bool get_cbor_array(const std::size_t len)
5929 {
5930 if (JSON_HEDLEY_UNLIKELY(not sax->start_array(len)))
5931 {
5932 return false;
5933 }
5934
5935 if (len != std::size_t(-1))
5936 {
5937 for (std::size_t i = 0; i < len; ++i)
5938 {
5939 if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
5940 {
5941 return false;
5942 }
5943 }
5944 }
5945 else
5946 {
5947 while (get() != 0xFF)
5948 {
5949 if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal(false)))
5950 {
5951 return false;
5952 }
5953 }
5954 }
5955
5956 return sax->end_array();
5957 }
5958
5959 /*!
5960 @param[in] len the length of the object or std::size_t(-1) for an
5961 object of indefinite size
5962 @return whether object creation completed
5963 */
5964 bool get_cbor_object(const std::size_t len)
5965 {
5966 if (JSON_HEDLEY_UNLIKELY(not sax->start_object(len)))
5967 {
5968 return false;
5969 }
5970
5971 string_t key;
5972 if (len != std::size_t(-1))
5973 {
5974 for (std::size_t i = 0; i < len; ++i)
5975 {
5976 get();
5977 if (JSON_HEDLEY_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
5978 {
5979 return false;
5980 }
5981
5982 if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
5983 {
5984 return false;
5985 }
5986 key.clear();
5987 }
5988 }
5989 else
5990 {
5991 while (get() != 0xFF)
5992 {
5993 if (JSON_HEDLEY_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
5994 {
5995 return false;
5996 }
5997
5998 if (JSON_HEDLEY_UNLIKELY(not parse_cbor_internal()))
5999 {
6000 return false;
6001 }
6002 key.clear();
6003 }
6004 }
6005
6006 return sax->end_object();
6007 }
6008
6009 /////////////
6010 // MsgPack //
6011 /////////////
6012
6013 /*!
6014 @return whether a valid MessagePack value was passed to the SAX parser
6015 */
6016 bool parse_msgpack_internal()
6017 {
6018 switch (get())
6019 {
6020 // EOF
6021 case std::char_traits<char>::eof():
6022 return unexpect_eof(input_format_t::msgpack, "value");
6023
6024 // positive fixint
6025 case 0x00:
6026 case 0x01:
6027 case 0x02:
6028 case 0x03:
6029 case 0x04:
6030 case 0x05:
6031 case 0x06:
6032 case 0x07:
6033 case 0x08:
6034 case 0x09:
6035 case 0x0A:
6036 case 0x0B:
6037 case 0x0C:
6038 case 0x0D:
6039 case 0x0E:
6040 case 0x0F:
6041 case 0x10:
6042 case 0x11:
6043 case 0x12:
6044 case 0x13:
6045 case 0x14:
6046 case 0x15:
6047 case 0x16:
6048 case 0x17:
6049 case 0x18:
6050 case 0x19:
6051 case 0x1A:
6052 case 0x1B:
6053 case 0x1C:
6054 case 0x1D:
6055 case 0x1E:
6056 case 0x1F:
6057 case 0x20:
6058 case 0x21:
6059 case 0x22:
6060 case 0x23:
6061 case 0x24:
6062 case 0x25:
6063 case 0x26:
6064 case 0x27:
6065 case 0x28:
6066 case 0x29:
6067 case 0x2A:
6068 case 0x2B:
6069 case 0x2C:
6070 case 0x2D:
6071 case 0x2E:
6072 case 0x2F:
6073 case 0x30:
6074 case 0x31:
6075 case 0x32:
6076 case 0x33:
6077 case 0x34:
6078 case 0x35:
6079 case 0x36:
6080 case 0x37:
6081 case 0x38:
6082 case 0x39:
6083 case 0x3A:
6084 case 0x3B:
6085 case 0x3C:
6086 case 0x3D:
6087 case 0x3E:
6088 case 0x3F:
6089 case 0x40:
6090 case 0x41:
6091 case 0x42:
6092 case 0x43:
6093 case 0x44:
6094 case 0x45:
6095 case 0x46:
6096 case 0x47:
6097 case 0x48:
6098 case 0x49:
6099 case 0x4A:
6100 case 0x4B:
6101 case 0x4C:
6102 case 0x4D:
6103 case 0x4E:
6104 case 0x4F:
6105 case 0x50:
6106 case 0x51:
6107 case 0x52:
6108 case 0x53:
6109 case 0x54:
6110 case 0x55:
6111 case 0x56:
6112 case 0x57:
6113 case 0x58:
6114 case 0x59:
6115 case 0x5A:
6116 case 0x5B:
6117 case 0x5C:
6118 case 0x5D:
6119 case 0x5E:
6120 case 0x5F:
6121 case 0x60:
6122 case 0x61:
6123 case 0x62:
6124 case 0x63:
6125 case 0x64:
6126 case 0x65:
6127 case 0x66:
6128 case 0x67:
6129 case 0x68:
6130 case 0x69:
6131 case 0x6A:
6132 case 0x6B:
6133 case 0x6C:
6134 case 0x6D:
6135 case 0x6E:
6136 case 0x6F:
6137 case 0x70:
6138 case 0x71:
6139 case 0x72:
6140 case 0x73:
6141 case 0x74:
6142 case 0x75:
6143 case 0x76:
6144 case 0x77:
6145 case 0x78:
6146 case 0x79:
6147 case 0x7A:
6148 case 0x7B:
6149 case 0x7C:
6150 case 0x7D:
6151 case 0x7E:
6152 case 0x7F:
6153 return sax->number_unsigned(static_cast<number_unsigned_t>(current));
6154
6155 // fixmap
6156 case 0x80:
6157 case 0x81:
6158 case 0x82:
6159 case 0x83:
6160 case 0x84:
6161 case 0x85:
6162 case 0x86:
6163 case 0x87:
6164 case 0x88:
6165 case 0x89:
6166 case 0x8A:
6167 case 0x8B:
6168 case 0x8C:
6169 case 0x8D:
6170 case 0x8E:
6171 case 0x8F:
6172 return get_msgpack_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
6173
6174 // fixarray
6175 case 0x90:
6176 case 0x91:
6177 case 0x92:
6178 case 0x93:
6179 case 0x94:
6180 case 0x95:
6181 case 0x96:
6182 case 0x97:
6183 case 0x98:
6184 case 0x99:
6185 case 0x9A:
6186 case 0x9B:
6187 case 0x9C:
6188 case 0x9D:
6189 case 0x9E:
6190 case 0x9F:
6191 return get_msgpack_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
6192
6193 // fixstr
6194 case 0xA0:
6195 case 0xA1:
6196 case 0xA2:
6197 case 0xA3:
6198 case 0xA4:
6199 case 0xA5:
6200 case 0xA6:
6201 case 0xA7:
6202 case 0xA8:
6203 case 0xA9:
6204 case 0xAA:
6205 case 0xAB:
6206 case 0xAC:
6207 case 0xAD:
6208 case 0xAE:
6209 case 0xAF:
6210 case 0xB0:
6211 case 0xB1:
6212 case 0xB2:
6213 case 0xB3:
6214 case 0xB4:
6215 case 0xB5:
6216 case 0xB6:
6217 case 0xB7:
6218 case 0xB8:
6219 case 0xB9:
6220 case 0xBA:
6221 case 0xBB:
6222 case 0xBC:
6223 case 0xBD:
6224 case 0xBE:
6225 case 0xBF:
6226 case 0xD9: // str 8
6227 case 0xDA: // str 16
6228 case 0xDB: // str 32
6229 {
6230 string_t s;
6231 return get_msgpack_string(s) and sax->string(s);
6232 }
6233
6234 case 0xC0: // nil
6235 return sax->null();
6236
6237 case 0xC2: // false
6238 return sax->boolean(false);
6239
6240 case 0xC3: // true
6241 return sax->boolean(true);
6242
6243 case 0xCA: // float 32
6244 {
6245 float number;
6246 return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
6247 }
6248
6249 case 0xCB: // float 64
6250 {
6251 double number;
6252 return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
6253 }
6254
6255 case 0xCC: // uint 8
6256 {
6257 std::uint8_t number;
6258 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6259 }
6260
6261 case 0xCD: // uint 16
6262 {
6263 std::uint16_t number;
6264 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6265 }
6266
6267 case 0xCE: // uint 32
6268 {
6269 std::uint32_t number;
6270 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6271 }
6272
6273 case 0xCF: // uint 64
6274 {
6275 std::uint64_t number;
6276 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
6277 }
6278
6279 case 0xD0: // int 8
6280 {
6281 std::int8_t number;
6282 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6283 }
6284
6285 case 0xD1: // int 16
6286 {
6287 std::int16_t number;
6288 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6289 }
6290
6291 case 0xD2: // int 32
6292 {
6293 std::int32_t number;
6294 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6295 }
6296
6297 case 0xD3: // int 64
6298 {
6299 std::int64_t number;
6300 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
6301 }
6302
6303 case 0xDC: // array 16
6304 {
6305 std::uint16_t len;
6306 return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
6307 }
6308
6309 case 0xDD: // array 32
6310 {
6311 std::uint32_t len;
6312 return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
6313 }
6314
6315 case 0xDE: // map 16
6316 {
6317 std::uint16_t len;
6318 return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
6319 }
6320
6321 case 0xDF: // map 32
6322 {
6323 std::uint32_t len;
6324 return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
6325 }
6326
6327 // negative fixint
6328 case 0xE0:
6329 case 0xE1:
6330 case 0xE2:
6331 case 0xE3:
6332 case 0xE4:
6333 case 0xE5:
6334 case 0xE6:
6335 case 0xE7:
6336 case 0xE8:
6337 case 0xE9:
6338 case 0xEA:
6339 case 0xEB:
6340 case 0xEC:
6341 case 0xED:
6342 case 0xEE:
6343 case 0xEF:
6344 case 0xF0:
6345 case 0xF1:
6346 case 0xF2:
6347 case 0xF3:
6348 case 0xF4:
6349 case 0xF5:
6350 case 0xF6:
6351 case 0xF7:
6352 case 0xF8:
6353 case 0xF9:
6354 case 0xFA:
6355 case 0xFB:
6356 case 0xFC:
6357 case 0xFD:
6358 case 0xFE:
6359 case 0xFF:
6360 return sax->number_integer(static_cast<std::int8_t>(current));
6361
6362 default: // anything else
6363 {
6364 auto last_token = get_token_string();
6365 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::msgpack, "invalid byte: 0x" + last_token, "value")));
6366 }
6367 }
6368 }
6369
6370 /*!
6371 @brief reads a MessagePack string
6372
6373 This function first reads starting bytes to determine the expected
6374 string length and then copies this number of bytes into a string.
6375
6376 @param[out] result created string
6377
6378 @return whether string creation completed
6379 */
6380 bool get_msgpack_string(string_t& result)
6381 {
6382 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::msgpack, "string")))
6383 {
6384 return false;
6385 }
6386
6387 switch (current)
6388 {
6389 // fixstr
6390 case 0xA0:
6391 case 0xA1:
6392 case 0xA2:
6393 case 0xA3:
6394 case 0xA4:
6395 case 0xA5:
6396 case 0xA6:
6397 case 0xA7:
6398 case 0xA8:
6399 case 0xA9:
6400 case 0xAA:
6401 case 0xAB:
6402 case 0xAC:
6403 case 0xAD:
6404 case 0xAE:
6405 case 0xAF:
6406 case 0xB0:
6407 case 0xB1:
6408 case 0xB2:
6409 case 0xB3:
6410 case 0xB4:
6411 case 0xB5:
6412 case 0xB6:
6413 case 0xB7:
6414 case 0xB8:
6415 case 0xB9:
6416 case 0xBA:
6417 case 0xBB:
6418 case 0xBC:
6419 case 0xBD:
6420 case 0xBE:
6421 case 0xBF:
6422 {
6423 return get_string(input_format_t::msgpack, static_cast<unsigned int>(current) & 0x1Fu, result);
6424 }
6425
6426 case 0xD9: // str 8
6427 {
6428 std::uint8_t len;
6429 return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
6430 }
6431
6432 case 0xDA: // str 16
6433 {
6434 std::uint16_t len;
6435 return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
6436 }
6437
6438 case 0xDB: // str 32
6439 {
6440 std::uint32_t len;
6441 return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
6442 }
6443
6444 default:
6445 {
6446 auto last_token = get_token_string();
6447 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::msgpack, "expected length specification (0xA0-0xBF, 0xD9-0xDB); last byte: 0x" + last_token, "string")));
6448 }
6449 }
6450 }
6451
6452 /*!
6453 @param[in] len the length of the array
6454 @return whether array creation completed
6455 */
6456 bool get_msgpack_array(const std::size_t len)
6457 {
6458 if (JSON_HEDLEY_UNLIKELY(not sax->start_array(len)))
6459 {
6460 return false;
6461 }
6462
6463 for (std::size_t i = 0; i < len; ++i)
6464 {
6465 if (JSON_HEDLEY_UNLIKELY(not parse_msgpack_internal()))
6466 {
6467 return false;
6468 }
6469 }
6470
6471 return sax->end_array();
6472 }
6473
6474 /*!
6475 @param[in] len the length of the object
6476 @return whether object creation completed
6477 */
6478 bool get_msgpack_object(const std::size_t len)
6479 {
6480 if (JSON_HEDLEY_UNLIKELY(not sax->start_object(len)))
6481 {
6482 return false;
6483 }
6484
6485 string_t key;
6486 for (std::size_t i = 0; i < len; ++i)
6487 {
6488 get();
6489 if (JSON_HEDLEY_UNLIKELY(not get_msgpack_string(key) or not sax->key(key)))
6490 {
6491 return false;
6492 }
6493
6494 if (JSON_HEDLEY_UNLIKELY(not parse_msgpack_internal()))
6495 {
6496 return false;
6497 }
6498 key.clear();
6499 }
6500
6501 return sax->end_object();
6502 }
6503
6504 ////////////
6505 // UBJSON //
6506 ////////////
6507
6508 /*!
6509 @param[in] get_char whether a new character should be retrieved from the
6510 input (true, default) or whether the last read
6511 character should be considered instead
6512
6513 @return whether a valid UBJSON value was passed to the SAX parser
6514 */
6515 bool parse_ubjson_internal(const bool get_char = true)
6516 {
6517 return get_ubjson_value(get_char ? get_ignore_noop() : current);
6518 }
6519
6520 /*!
6521 @brief reads a UBJSON string
6522
6523 This function is either called after reading the 'S' byte explicitly
6524 indicating a string, or in case of an object key where the 'S' byte can be
6525 left out.
6526
6527 @param[out] result created string
6528 @param[in] get_char whether a new character should be retrieved from the
6529 input (true, default) or whether the last read
6530 character should be considered instead
6531
6532 @return whether string creation completed
6533 */
6534 bool get_ubjson_string(string_t& result, const bool get_char = true)
6535 {
6536 if (get_char)
6537 {
6538 get(); // TODO(niels): may we ignore N here?
6539 }
6540
6541 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
6542 {
6543 return false;
6544 }
6545
6546 switch (current)
6547 {
6548 case 'U':
6549 {
6550 std::uint8_t len;
6551 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6552 }
6553
6554 case 'i':
6555 {
6556 std::int8_t len;
6557 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6558 }
6559
6560 case 'I':
6561 {
6562 std::int16_t len;
6563 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6564 }
6565
6566 case 'l':
6567 {
6568 std::int32_t len;
6569 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6570 }
6571
6572 case 'L':
6573 {
6574 std::int64_t len;
6575 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
6576 }
6577
6578 default:
6579 auto last_token = get_token_string();
6580 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L); last byte: 0x" + last_token, "string")));
6581 }
6582 }
6583
6584 /*!
6585 @param[out] result determined size
6586 @return whether size determination completed
6587 */
6588 bool get_ubjson_size_value(std::size_t& result)
6589 {
6590 switch (get_ignore_noop())
6591 {
6592 case 'U':
6593 {
6594 std::uint8_t number;
6595 if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6596 {
6597 return false;
6598 }
6599 result = static_cast<std::size_t>(number);
6600 return true;
6601 }
6602
6603 case 'i':
6604 {
6605 std::int8_t number;
6606 if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6607 {
6608 return false;
6609 }
6610 result = static_cast<std::size_t>(number);
6611 return true;
6612 }
6613
6614 case 'I':
6615 {
6616 std::int16_t number;
6617 if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6618 {
6619 return false;
6620 }
6621 result = static_cast<std::size_t>(number);
6622 return true;
6623 }
6624
6625 case 'l':
6626 {
6627 std::int32_t number;
6628 if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6629 {
6630 return false;
6631 }
6632 result = static_cast<std::size_t>(number);
6633 return true;
6634 }
6635
6636 case 'L':
6637 {
6638 std::int64_t number;
6639 if (JSON_HEDLEY_UNLIKELY(not get_number(input_format_t::ubjson, number)))
6640 {
6641 return false;
6642 }
6643 result = static_cast<std::size_t>(number);
6644 return true;
6645 }
6646
6647 default:
6648 {
6649 auto last_token = get_token_string();
6650 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L) after '#'; last byte: 0x" + last_token, "size")));
6651 }
6652 }
6653 }
6654
6655 /*!
6656 @brief determine the type and size for a container
6657
6658 In the optimized UBJSON format, a type and a size can be provided to allow
6659 for a more compact representation.
6660
6661 @param[out] result pair of the size and the type
6662
6663 @return whether pair creation completed
6664 */
6665 bool get_ubjson_size_type(std::pair<std::size_t, int>& result)
6666 {
6667 result.first = string_t::npos; // size
6668 result.second = 0; // type
6669
6670 get_ignore_noop();
6671
6672 if (current == '$')
6673 {
6674 result.second = get(); // must not ignore 'N', because 'N' maybe the type
6675 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "type")))
6676 {
6677 return false;
6678 }
6679
6680 get_ignore_noop();
6681 if (JSON_HEDLEY_UNLIKELY(current != '#'))
6682 {
6683 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
6684 {
6685 return false;
6686 }
6687 auto last_token = get_token_string();
6688 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "expected '#' after type information; last byte: 0x" + last_token, "size")));
6689 }
6690
6691 return get_ubjson_size_value(result.first);
6692 }
6693
6694 if (current == '#')
6695 {
6696 return get_ubjson_size_value(result.first);
6697 }
6698
6699 return true;
6700 }
6701
6702 /*!
6703 @param prefix the previously read or set type prefix
6704 @return whether value creation completed
6705 */
6706 bool get_ubjson_value(const int prefix)
6707 {
6708 switch (prefix)
6709 {
6710 case std::char_traits<char>::eof(): // EOF
6711 return unexpect_eof(input_format_t::ubjson, "value");
6712
6713 case 'T': // true
6714 return sax->boolean(true);
6715 case 'F': // false
6716 return sax->boolean(false);
6717
6718 case 'Z': // null
6719 return sax->null();
6720
6721 case 'U':
6722 {
6723 std::uint8_t number;
6724 return get_number(input_format_t::ubjson, number) and sax->number_unsigned(number);
6725 }
6726
6727 case 'i':
6728 {
6729 std::int8_t number;
6730 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6731 }
6732
6733 case 'I':
6734 {
6735 std::int16_t number;
6736 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6737 }
6738
6739 case 'l':
6740 {
6741 std::int32_t number;
6742 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6743 }
6744
6745 case 'L':
6746 {
6747 std::int64_t number;
6748 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
6749 }
6750
6751 case 'd':
6752 {
6753 float number;
6754 return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
6755 }
6756
6757 case 'D':
6758 {
6759 double number;
6760 return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
6761 }
6762
6763 case 'C': // char
6764 {
6765 get();
6766 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "char")))
6767 {
6768 return false;
6769 }
6770 if (JSON_HEDLEY_UNLIKELY(current > 127))
6771 {
6772 auto last_token = get_token_string();
6773 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "byte after 'C' must be in range 0x00..0x7F; last byte: 0x" + last_token, "char")));
6774 }
6775 string_t s(1, static_cast<char>(current));
6776 return sax->string(s);
6777 }
6778
6779 case 'S': // string
6780 {
6781 string_t s;
6782 return get_ubjson_string(s) and sax->string(s);
6783 }
6784
6785 case '[': // array
6786 return get_ubjson_array();
6787
6788 case '{': // object
6789 return get_ubjson_object();
6790
6791 default: // anything else
6792 {
6793 auto last_token = get_token_string();
6794 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "invalid byte: 0x" + last_token, "value")));
6795 }
6796 }
6797 }
6798
6799 /*!
6800 @return whether array creation completed
6801 */
6802 bool get_ubjson_array()
6803 {
6804 std::pair<std::size_t, int> size_and_type;
6805 if (JSON_HEDLEY_UNLIKELY(not get_ubjson_size_type(size_and_type)))
6806 {
6807 return false;
6808 }
6809
6810 if (size_and_type.first != string_t::npos)
6811 {
6812 if (JSON_HEDLEY_UNLIKELY(not sax->start_array(size_and_type.first)))
6813 {
6814 return false;
6815 }
6816
6817 if (size_and_type.second != 0)
6818 {
6819 if (size_and_type.second != 'N')
6820 {
6821 for (std::size_t i = 0; i < size_and_type.first; ++i)
6822 {
6823 if (JSON_HEDLEY_UNLIKELY(not get_ubjson_value(size_and_type.second)))
6824 {
6825 return false;
6826 }
6827 }
6828 }
6829 }
6830 else
6831 {
6832 for (std::size_t i = 0; i < size_and_type.first; ++i)
6833 {
6834 if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
6835 {
6836 return false;
6837 }
6838 }
6839 }
6840 }
6841 else
6842 {
6843 if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
6844 {
6845 return false;
6846 }
6847
6848 while (current != ']')
6849 {
6850 if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal(false)))
6851 {
6852 return false;
6853 }
6854 get_ignore_noop();
6855 }
6856 }
6857
6858 return sax->end_array();
6859 }
6860
6861 /*!
6862 @return whether object creation completed
6863 */
6864 bool get_ubjson_object()
6865 {
6866 std::pair<std::size_t, int> size_and_type;
6867 if (JSON_HEDLEY_UNLIKELY(not get_ubjson_size_type(size_and_type)))
6868 {
6869 return false;
6870 }
6871
6872 string_t key;
6873 if (size_and_type.first != string_t::npos)
6874 {
6875 if (JSON_HEDLEY_UNLIKELY(not sax->start_object(size_and_type.first)))
6876 {
6877 return false;
6878 }
6879
6880 if (size_and_type.second != 0)
6881 {
6882 for (std::size_t i = 0; i < size_and_type.first; ++i)
6883 {
6884 if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
6885 {
6886 return false;
6887 }
6888 if (JSON_HEDLEY_UNLIKELY(not get_ubjson_value(size_and_type.second)))
6889 {
6890 return false;
6891 }
6892 key.clear();
6893 }
6894 }
6895 else
6896 {
6897 for (std::size_t i = 0; i < size_and_type.first; ++i)
6898 {
6899 if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
6900 {
6901 return false;
6902 }
6903 if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
6904 {
6905 return false;
6906 }
6907 key.clear();
6908 }
6909 }
6910 }
6911 else
6912 {
6913 if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
6914 {
6915 return false;
6916 }
6917
6918 while (current != '}')
6919 {
6920 if (JSON_HEDLEY_UNLIKELY(not get_ubjson_string(key, false) or not sax->key(key)))
6921 {
6922 return false;
6923 }
6924 if (JSON_HEDLEY_UNLIKELY(not parse_ubjson_internal()))
6925 {
6926 return false;
6927 }
6928 get_ignore_noop();
6929 key.clear();
6930 }
6931 }
6932
6933 return sax->end_object();
6934 }
6935
6936 ///////////////////////
6937 // Utility functions //
6938 ///////////////////////
6939
6940 /*!
6941 @brief get next character from the input
6942
6943 This function provides the interface to the used input adapter. It does
6944 not throw in case the input reached EOF, but returns a -'ve valued
6945 `std::char_traits<char>::eof()` in that case.
6946
6947 @return character read from the input
6948 */
6949 int get()
6950 {
6951 ++chars_read;
6952 return current = ia->get_character();
6953 }
6954
6955 /*!
6956 @return character read from the input after ignoring all 'N' entries
6957 */
6958 int get_ignore_noop()
6959 {
6960 do
6961 {
6962 get();
6963 }
6964 while (current == 'N');
6965
6966 return current;
6967 }
6968
6969 /*
6970 @brief read a number from the input
6971
6972 @tparam NumberType the type of the number
6973 @param[in] format the current format (for diagnostics)
6974 @param[out] result number of type @a NumberType
6975
6976 @return whether conversion completed
6977
6978 @note This function needs to respect the system's endianess, because
6979 bytes in CBOR, MessagePack, and UBJSON are stored in network order
6980 (big endian) and therefore need reordering on little endian systems.
6981 */
6982 template<typename NumberType, bool InputIsLittleEndian = false>
6983 bool get_number(const input_format_t format, NumberType& result)
6984 {
6985 // step 1: read input into array with system's byte order
6986 std::array<std::uint8_t, sizeof(NumberType)> vec;
6987 for (std::size_t i = 0; i < sizeof(NumberType); ++i)
6988 {
6989 get();
6990 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(format, "number")))
6991 {
6992 return false;
6993 }
6994
6995 // reverse byte order prior to conversion if necessary
6996 if (is_little_endian != InputIsLittleEndian)
6997 {
6998 vec[sizeof(NumberType) - i - 1] = static_cast<std::uint8_t>(current);
6999 }
7000 else
7001 {
7002 vec[i] = static_cast<std::uint8_t>(current); // LCOV_EXCL_LINE
7003 }
7004 }
7005
7006 // step 2: convert array into number of type T and return
7007 std::memcpy(&result, vec.data(), sizeof(NumberType));
7008 return true;
7009 }
7010
7011 /*!
7012 @brief create a string by reading characters from the input
7013
7014 @tparam NumberType the type of the number
7015 @param[in] format the current format (for diagnostics)
7016 @param[in] len number of characters to read
7017 @param[out] result string created by reading @a len bytes
7018
7019 @return whether string creation completed
7020
7021 @note We can not reserve @a len bytes for the result, because @a len
7022 may be too large. Usually, @ref unexpect_eof() detects the end of
7023 the input before we run out of string memory.
7024 */
7025 template<typename NumberType>
7026 bool get_string(const input_format_t format,
7027 const NumberType len,
7028 string_t& result)
7029 {
7030 bool success = true;
7031 std::generate_n(std::back_inserter(result), len, [this, &success, &format]()
7032 {
7033 get();
7034 if (JSON_HEDLEY_UNLIKELY(not unexpect_eof(format, "string")))
7035 {
7036 success = false;
7037 }
7038 return static_cast<char>(current);
7039 });
7040 return success;
7041 }
7042
7043 /*!
7044 @param[in] format the current format (for diagnostics)
7045 @param[in] context further context information (for diagnostics)
7046 @return whether the last read character is not EOF
7047 */
7048 JSON_HEDLEY_NON_NULL(3)
7049 bool unexpect_eof(const input_format_t format, const char* context) const
7050 {
7051 if (JSON_HEDLEY_UNLIKELY(current == std::char_traits<char>::eof()))
7052 {
7053 return sax->parse_error(chars_read, "<end of file>",
7054 parse_error::create(110, chars_read, exception_message(format, "unexpected end of input", context)));
7055 }
7056 return true;
7057 }
7058
7059 /*!
7060 @return a string representation of the last read byte
7061 */
7062 std::string get_token_string() const
7063 {
7064 std::array<char, 3> cr{{}};
7065 (std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(current));
7066 return std::string{cr.data()};
7067 }
7068
7069 /*!
7070 @param[in] format the current format
7071 @param[in] detail a detailed error message
7072 @param[in] context further context information
7073 @return a message string to use in the parse_error exceptions
7074 */
7075 std::string exception_message(const input_format_t format,
7076 const std::string& detail,
7077 const std::string& context) const
7078 {
7079 std::string error_msg = "syntax error while parsing ";
7080
7081 switch (format)
7082 {
7083 case input_format_t::cbor:
7084 error_msg += "CBOR";
7085 break;
7086
7087 case input_format_t::msgpack:
7088 error_msg += "MessagePack";
7089 break;
7090
7091 case input_format_t::ubjson:
7092 error_msg += "UBJSON";
7093 break;
7094
7095 case input_format_t::bson:
7096 error_msg += "BSON";
7097 break;
7098
7099 default: // LCOV_EXCL_LINE
7100 assert(false); // LCOV_EXCL_LINE
7101 }
7102
7103 return error_msg + " " + context + ": " + detail;
7104 }
7105
7106 private:
7107 /// input adapter
7108 input_adapter_t ia = nullptr;
7109
7110 /// the current character
7111 int current = std::char_traits<char>::eof();
7112
7113 /// the number of characters read
7114 std::size_t chars_read = 0;
7115
7116 /// whether we can assume little endianess
7117 const bool is_little_endian = little_endianess();
7118
7119 /// the SAX parser
7120 json_sax_t* sax = nullptr;
7121};
7122} // namespace detail
7123} // namespace nlohmann
7124
7125// #include <nlohmann/detail/input/input_adapters.hpp>
7126
7127// #include <nlohmann/detail/input/lexer.hpp>
7128
7129
7130#include <array> // array
7131#include <clocale> // localeconv
7132#include <cstddef> // size_t
7133#include <cstdio> // snprintf
7134#include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull
7135#include <initializer_list> // initializer_list
7136#include <string> // char_traits, string
7137#include <utility> // move
7138#include <vector> // vector
7139
7140// #include <nlohmann/detail/input/input_adapters.hpp>
7141
7142// #include <nlohmann/detail/input/position_t.hpp>
7143
7144// #include <nlohmann/detail/macro_scope.hpp>
7145
7146
7147namespace nlohmann
7148{
7149namespace detail
7150{
7151///////////
7152// lexer //
7153///////////
7154
7155/*!
7156@brief lexical analysis
7157
7158This class organizes the lexical analysis during JSON deserialization.
7159*/
7160template<typename BasicJsonType>
7161class lexer
7162{
7163 using number_integer_t = typename BasicJsonType::number_integer_t;
7164 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
7165 using number_float_t = typename BasicJsonType::number_float_t;
7166 using string_t = typename BasicJsonType::string_t;
7167
7168 public:
7169 /// token types for the parser
7170 enum class token_type
7171 {
7172 uninitialized, ///< indicating the scanner is uninitialized
7173 literal_true, ///< the `true` literal
7174 literal_false, ///< the `false` literal
7175 literal_null, ///< the `null` literal
7176 value_string, ///< a string -- use get_string() for actual value
7177 value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value
7178 value_integer, ///< a signed integer -- use get_number_integer() for actual value
7179 value_float, ///< an floating point number -- use get_number_float() for actual value
7180 begin_array, ///< the character for array begin `[`
7181 begin_object, ///< the character for object begin `{`
7182 end_array, ///< the character for array end `]`
7183 end_object, ///< the character for object end `}`
7184 name_separator, ///< the name separator `:`
7185 value_separator, ///< the value separator `,`
7186 parse_error, ///< indicating a parse error
7187 end_of_input, ///< indicating the end of the input buffer
7188 literal_or_value ///< a literal or the begin of a value (only for diagnostics)
7189 };
7190
7191 /// return name of values of type token_type (only used for errors)
7192 JSON_HEDLEY_RETURNS_NON_NULL
7193 JSON_HEDLEY_CONST
7194 static const char* token_type_name(const token_type t) noexcept
7195 {
7196 switch (t)
7197 {
7198 case token_type::uninitialized:
7199 return "<uninitialized>";
7200 case token_type::literal_true:
7201 return "true literal";
7202 case token_type::literal_false:
7203 return "false literal";
7204 case token_type::literal_null:
7205 return "null literal";
7206 case token_type::value_string:
7207 return "string literal";
7208 case lexer::token_type::value_unsigned:
7209 case lexer::token_type::value_integer:
7210 case lexer::token_type::value_float:
7211 return "number literal";
7212 case token_type::begin_array:
7213 return "'['";
7214 case token_type::begin_object:
7215 return "'{'";
7216 case token_type::end_array:
7217 return "']'";
7218 case token_type::end_object:
7219 return "'}'";
7220 case token_type::name_separator:
7221 return "':'";
7222 case token_type::value_separator:
7223 return "','";
7224 case token_type::parse_error:
7225 return "<parse error>";
7226 case token_type::end_of_input:
7227 return "end of input";
7228 case token_type::literal_or_value:
7229 return "'[', '{', or a literal";
7230 // LCOV_EXCL_START
7231 default: // catch non-enum values
7232 return "unknown token";
7233 // LCOV_EXCL_STOP
7234 }
7235 }
7236
7237 explicit lexer(detail::input_adapter_t&& adapter)
7238 : ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {}
7239
7240 // delete because of pointer members
7241 lexer(const lexer&) = delete;
7242 lexer(lexer&&) = delete;
7243 lexer& operator=(lexer&) = delete;
7244 lexer& operator=(lexer&&) = delete;
7245 ~lexer() = default;
7246
7247 private:
7248 /////////////////////
7249 // locales
7250 /////////////////////
7251
7252 /// return the locale-dependent decimal point
7253 JSON_HEDLEY_PURE
7254 static char get_decimal_point() noexcept
7255 {
7256 const auto loc = localeconv();
7257 assert(loc != nullptr);
7258 return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
7259 }
7260
7261 /////////////////////
7262 // scan functions
7263 /////////////////////
7264
7265 /*!
7266 @brief get codepoint from 4 hex characters following `\u`
7267
7268 For input "\u c1 c2 c3 c4" the codepoint is:
7269 (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
7270 = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
7271
7272 Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
7273 must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
7274 conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
7275 between the ASCII value of the character and the desired integer value.
7276
7277 @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
7278 non-hex character)
7279 */
7280 int get_codepoint()
7281 {
7282 // this function only makes sense after reading `\u`
7283 assert(current == 'u');
7284 int codepoint = 0;
7285
7286 const auto factors = { 12u, 8u, 4u, 0u };
7287 for (const auto factor : factors)
7288 {
7289 get();
7290
7291 if (current >= '0' and current <= '9')
7292 {
7293 codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x30u) << factor);
7294 }
7295 else if (current >= 'A' and current <= 'F')
7296 {
7297 codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x37u) << factor);
7298 }
7299 else if (current >= 'a' and current <= 'f')
7300 {
7301 codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x57u) << factor);
7302 }
7303 else
7304 {
7305 return -1;
7306 }
7307 }
7308
7309 assert(0x0000 <= codepoint and codepoint <= 0xFFFF);
7310 return codepoint;
7311 }
7312
7313 /*!
7314 @brief check if the next byte(s) are inside a given range
7315
7316 Adds the current byte and, for each passed range, reads a new byte and
7317 checks if it is inside the range. If a violation was detected, set up an
7318 error message and return false. Otherwise, return true.
7319
7320 @param[in] ranges list of integers; interpreted as list of pairs of
7321 inclusive lower and upper bound, respectively
7322
7323 @pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
7324 1, 2, or 3 pairs. This precondition is enforced by an assertion.
7325
7326 @return true if and only if no range violation was detected
7327 */
7328 bool next_byte_in_range(std::initializer_list<int> ranges)
7329 {
7330 assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6);
7331 add(current);
7332
7333 for (auto range = ranges.begin(); range != ranges.end(); ++range)
7334 {
7335 get();
7336 if (JSON_HEDLEY_LIKELY(*range <= current and current <= *(++range)))
7337 {
7338 add(current);
7339 }
7340 else
7341 {
7342 error_message = "invalid string: ill-formed UTF-8 byte";
7343 return false;
7344 }
7345 }
7346
7347 return true;
7348 }
7349
7350 /*!
7351 @brief scan a string literal
7352
7353 This function scans a string according to Sect. 7 of RFC 7159. While
7354 scanning, bytes are escaped and copied into buffer token_buffer. Then the
7355 function returns successfully, token_buffer is *not* null-terminated (as it
7356 may contain \0 bytes), and token_buffer.size() is the number of bytes in the
7357 string.
7358
7359 @return token_type::value_string if string could be successfully scanned,
7360 token_type::parse_error otherwise
7361
7362 @note In case of errors, variable error_message contains a textual
7363 description.
7364 */
7365 token_type scan_string()
7366 {
7367 // reset token_buffer (ignore opening quote)
7368 reset();
7369
7370 // we entered the function by reading an open quote
7371 assert(current == '\"');
7372
7373 while (true)
7374 {
7375 // get next character
7376 switch (get())
7377 {
7378 // end of file while parsing string
7379 case std::char_traits<char>::eof():
7380 {
7381 error_message = "invalid string: missing closing quote";
7382 return token_type::parse_error;
7383 }
7384
7385 // closing quote
7386 case '\"':
7387 {
7388 return token_type::value_string;
7389 }
7390
7391 // escapes
7392 case '\\':
7393 {
7394 switch (get())
7395 {
7396 // quotation mark
7397 case '\"':
7398 add('\"');
7399 break;
7400 // reverse solidus
7401 case '\\':
7402 add('\\');
7403 break;
7404 // solidus
7405 case '/':
7406 add('/');
7407 break;
7408 // backspace
7409 case 'b':
7410 add('\b');
7411 break;
7412 // form feed
7413 case 'f':
7414 add('\f');
7415 break;
7416 // line feed
7417 case 'n':
7418 add('\n');
7419 break;
7420 // carriage return
7421 case 'r':
7422 add('\r');
7423 break;
7424 // tab
7425 case 't':
7426 add('\t');
7427 break;
7428
7429 // unicode escapes
7430 case 'u':
7431 {
7432 const int codepoint1 = get_codepoint();
7433 int codepoint = codepoint1; // start with codepoint1
7434
7435 if (JSON_HEDLEY_UNLIKELY(codepoint1 == -1))
7436 {
7437 error_message = "invalid string: '\\u' must be followed by 4 hex digits";
7438 return token_type::parse_error;
7439 }
7440
7441 // check if code point is a high surrogate
7442 if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF)
7443 {
7444 // expect next \uxxxx entry
7445 if (JSON_HEDLEY_LIKELY(get() == '\\' and get() == 'u'))
7446 {
7447 const int codepoint2 = get_codepoint();
7448
7449 if (JSON_HEDLEY_UNLIKELY(codepoint2 == -1))
7450 {
7451 error_message = "invalid string: '\\u' must be followed by 4 hex digits";
7452 return token_type::parse_error;
7453 }
7454
7455 // check if codepoint2 is a low surrogate
7456 if (JSON_HEDLEY_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF))
7457 {
7458 // overwrite codepoint
7459 codepoint = static_cast<int>(
7460 // high surrogate occupies the most significant 22 bits
7461 (static_cast<unsigned int>(codepoint1) << 10u)
7462 // low surrogate occupies the least significant 15 bits
7463 + static_cast<unsigned int>(codepoint2)
7464 // there is still the 0xD800, 0xDC00 and 0x10000 noise
7465 // in the result so we have to subtract with:
7466 // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
7467 - 0x35FDC00u);
7468 }
7469 else
7470 {
7471 error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
7472 return token_type::parse_error;
7473 }
7474 }
7475 else
7476 {
7477 error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
7478 return token_type::parse_error;
7479 }
7480 }
7481 else
7482 {
7483 if (JSON_HEDLEY_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF))
7484 {
7485 error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
7486 return token_type::parse_error;
7487 }
7488 }
7489
7490 // result of the above calculation yields a proper codepoint
7491 assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
7492
7493 // translate codepoint into bytes
7494 if (codepoint < 0x80)
7495 {
7496 // 1-byte characters: 0xxxxxxx (ASCII)
7497 add(codepoint);
7498 }
7499 else if (codepoint <= 0x7FF)
7500 {
7501 // 2-byte characters: 110xxxxx 10xxxxxx
7502 add(static_cast<int>(0xC0u | (static_cast<unsigned int>(codepoint) >> 6u)));
7503 add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7504 }
7505 else if (codepoint <= 0xFFFF)
7506 {
7507 // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
7508 add(static_cast<int>(0xE0u | (static_cast<unsigned int>(codepoint) >> 12u)));
7509 add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
7510 add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7511 }
7512 else
7513 {
7514 // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
7515 add(static_cast<int>(0xF0u | (static_cast<unsigned int>(codepoint) >> 18u)));
7516 add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 12u) & 0x3Fu)));
7517 add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
7518 add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7519 }
7520
7521 break;
7522 }
7523
7524 // other characters after escape
7525 default:
7526 error_message = "invalid string: forbidden character after backslash";
7527 return token_type::parse_error;
7528 }
7529
7530 break;
7531 }
7532
7533 // invalid control characters
7534 case 0x00:
7535 {
7536 error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000";
7537 return token_type::parse_error;
7538 }
7539
7540 case 0x01:
7541 {
7542 error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001";
7543 return token_type::parse_error;
7544 }
7545
7546 case 0x02:
7547 {
7548 error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002";
7549 return token_type::parse_error;
7550 }
7551
7552 case 0x03:
7553 {
7554 error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003";
7555 return token_type::parse_error;
7556 }
7557
7558 case 0x04:
7559 {
7560 error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004";
7561 return token_type::parse_error;
7562 }
7563
7564 case 0x05:
7565 {
7566 error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005";
7567 return token_type::parse_error;
7568 }
7569
7570 case 0x06:
7571 {
7572 error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006";
7573 return token_type::parse_error;
7574 }
7575
7576 case 0x07:
7577 {
7578 error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007";
7579 return token_type::parse_error;
7580 }
7581
7582 case 0x08:
7583 {
7584 error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b";
7585 return token_type::parse_error;
7586 }
7587
7588 case 0x09:
7589 {
7590 error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t";
7591 return token_type::parse_error;
7592 }
7593
7594 case 0x0A:
7595 {
7596 error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n";
7597 return token_type::parse_error;
7598 }
7599
7600 case 0x0B:
7601 {
7602 error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B";
7603 return token_type::parse_error;
7604 }
7605
7606 case 0x0C:
7607 {
7608 error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f";
7609 return token_type::parse_error;
7610 }
7611
7612 case 0x0D:
7613 {
7614 error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r";
7615 return token_type::parse_error;
7616 }
7617
7618 case 0x0E:
7619 {
7620 error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E";
7621 return token_type::parse_error;
7622 }
7623
7624 case 0x0F:
7625 {
7626 error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F";
7627 return token_type::parse_error;
7628 }
7629
7630 case 0x10:
7631 {
7632 error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010";
7633 return token_type::parse_error;
7634 }
7635
7636 case 0x11:
7637 {
7638 error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011";
7639 return token_type::parse_error;
7640 }
7641
7642 case 0x12:
7643 {
7644 error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012";
7645 return token_type::parse_error;
7646 }
7647
7648 case 0x13:
7649 {
7650 error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013";
7651 return token_type::parse_error;
7652 }
7653
7654 case 0x14:
7655 {
7656 error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014";
7657 return token_type::parse_error;
7658 }
7659
7660 case 0x15:
7661 {
7662 error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015";
7663 return token_type::parse_error;
7664 }
7665
7666 case 0x16:
7667 {
7668 error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016";
7669 return token_type::parse_error;
7670 }
7671
7672 case 0x17:
7673 {
7674 error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017";
7675 return token_type::parse_error;
7676 }
7677
7678 case 0x18:
7679 {
7680 error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018";
7681 return token_type::parse_error;
7682 }
7683
7684 case 0x19:
7685 {
7686 error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019";
7687 return token_type::parse_error;
7688 }
7689
7690 case 0x1A:
7691 {
7692 error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A";
7693 return token_type::parse_error;
7694 }
7695
7696 case 0x1B:
7697 {
7698 error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B";
7699 return token_type::parse_error;
7700 }
7701
7702 case 0x1C:
7703 {
7704 error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C";
7705 return token_type::parse_error;
7706 }
7707
7708 case 0x1D:
7709 {
7710 error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D";
7711 return token_type::parse_error;
7712 }
7713
7714 case 0x1E:
7715 {
7716 error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E";
7717 return token_type::parse_error;
7718 }
7719
7720 case 0x1F:
7721 {
7722 error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F";
7723 return token_type::parse_error;
7724 }
7725
7726 // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
7727 case 0x20:
7728 case 0x21:
7729 case 0x23:
7730 case 0x24:
7731 case 0x25:
7732 case 0x26:
7733 case 0x27:
7734 case 0x28:
7735 case 0x29:
7736 case 0x2A:
7737 case 0x2B:
7738 case 0x2C:
7739 case 0x2D:
7740 case 0x2E:
7741 case 0x2F:
7742 case 0x30:
7743 case 0x31:
7744 case 0x32:
7745 case 0x33:
7746 case 0x34:
7747 case 0x35:
7748 case 0x36:
7749 case 0x37:
7750 case 0x38:
7751 case 0x39:
7752 case 0x3A:
7753 case 0x3B:
7754 case 0x3C:
7755 case 0x3D:
7756 case 0x3E:
7757 case 0x3F:
7758 case 0x40:
7759 case 0x41:
7760 case 0x42:
7761 case 0x43:
7762 case 0x44:
7763 case 0x45:
7764 case 0x46:
7765 case 0x47:
7766 case 0x48:
7767 case 0x49:
7768 case 0x4A:
7769 case 0x4B:
7770 case 0x4C:
7771 case 0x4D:
7772 case 0x4E:
7773 case 0x4F:
7774 case 0x50:
7775 case 0x51:
7776 case 0x52:
7777 case 0x53:
7778 case 0x54:
7779 case 0x55:
7780 case 0x56:
7781 case 0x57:
7782 case 0x58:
7783 case 0x59:
7784 case 0x5A:
7785 case 0x5B:
7786 case 0x5D:
7787 case 0x5E:
7788 case 0x5F:
7789 case 0x60:
7790 case 0x61:
7791 case 0x62:
7792 case 0x63:
7793 case 0x64:
7794 case 0x65:
7795 case 0x66:
7796 case 0x67:
7797 case 0x68:
7798 case 0x69:
7799 case 0x6A:
7800 case 0x6B:
7801 case 0x6C:
7802 case 0x6D:
7803 case 0x6E:
7804 case 0x6F:
7805 case 0x70:
7806 case 0x71:
7807 case 0x72:
7808 case 0x73:
7809 case 0x74:
7810 case 0x75:
7811 case 0x76:
7812 case 0x77:
7813 case 0x78:
7814 case 0x79:
7815 case 0x7A:
7816 case 0x7B:
7817 case 0x7C:
7818 case 0x7D:
7819 case 0x7E:
7820 case 0x7F:
7821 {
7822 add(current);
7823 break;
7824 }
7825
7826 // U+0080..U+07FF: bytes C2..DF 80..BF
7827 case 0xC2:
7828 case 0xC3:
7829 case 0xC4:
7830 case 0xC5:
7831 case 0xC6:
7832 case 0xC7:
7833 case 0xC8:
7834 case 0xC9:
7835 case 0xCA:
7836 case 0xCB:
7837 case 0xCC:
7838 case 0xCD:
7839 case 0xCE:
7840 case 0xCF:
7841 case 0xD0:
7842 case 0xD1:
7843 case 0xD2:
7844 case 0xD3:
7845 case 0xD4:
7846 case 0xD5:
7847 case 0xD6:
7848 case 0xD7:
7849 case 0xD8:
7850 case 0xD9:
7851 case 0xDA:
7852 case 0xDB:
7853 case 0xDC:
7854 case 0xDD:
7855 case 0xDE:
7856 case 0xDF:
7857 {
7858 if (JSON_HEDLEY_UNLIKELY(not next_byte_in_range({0x80, 0xBF})))
7859 {
7860 return token_type::parse_error;
7861 }
7862 break;
7863 }
7864
7865 // U+0800..U+0FFF: bytes E0 A0..BF 80..BF
7866 case 0xE0:
7867 {
7868 if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
7869 {
7870 return token_type::parse_error;
7871 }
7872 break;
7873 }
7874
7875 // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
7876 // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
7877 case 0xE1:
7878 case 0xE2:
7879 case 0xE3:
7880 case 0xE4:
7881 case 0xE5:
7882 case 0xE6:
7883 case 0xE7:
7884 case 0xE8:
7885 case 0xE9:
7886 case 0xEA:
7887 case 0xEB:
7888 case 0xEC:
7889 case 0xEE:
7890 case 0xEF:
7891 {
7892 if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
7893 {
7894 return token_type::parse_error;
7895 }
7896 break;
7897 }
7898
7899 // U+D000..U+D7FF: bytes ED 80..9F 80..BF
7900 case 0xED:
7901 {
7902 if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
7903 {
7904 return token_type::parse_error;
7905 }
7906 break;
7907 }
7908
7909 // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
7910 case 0xF0:
7911 {
7912 if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
7913 {
7914 return token_type::parse_error;
7915 }
7916 break;
7917 }
7918
7919 // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
7920 case 0xF1:
7921 case 0xF2:
7922 case 0xF3:
7923 {
7924 if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
7925 {
7926 return token_type::parse_error;
7927 }
7928 break;
7929 }
7930
7931 // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
7932 case 0xF4:
7933 {
7934 if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
7935 {
7936 return token_type::parse_error;
7937 }
7938 break;
7939 }
7940
7941 // remaining bytes (80..C1 and F5..FF) are ill-formed
7942 default:
7943 {
7944 error_message = "invalid string: ill-formed UTF-8 byte";
7945 return token_type::parse_error;
7946 }
7947 }
7948 }
7949 }
7950
7951 JSON_HEDLEY_NON_NULL(2)
7952 static void strtof(float& f, const char* str, char** endptr) noexcept
7953 {
7954 f = std::strtof(str, endptr);
7955 }
7956
7957 JSON_HEDLEY_NON_NULL(2)
7958 static void strtof(double& f, const char* str, char** endptr) noexcept
7959 {
7960 f = std::strtod(str, endptr);
7961 }
7962
7963 JSON_HEDLEY_NON_NULL(2)
7964 static void strtof(long double& f, const char* str, char** endptr) noexcept
7965 {
7966 f = std::strtold(str, endptr);
7967 }
7968
7969 /*!
7970 @brief scan a number literal
7971
7972 This function scans a string according to Sect. 6 of RFC 7159.
7973
7974 The function is realized with a deterministic finite state machine derived
7975 from the grammar described in RFC 7159. Starting in state "init", the
7976 input is read and used to determined the next state. Only state "done"
7977 accepts the number. State "error" is a trap state to model errors. In the
7978 table below, "anything" means any character but the ones listed before.
7979
7980 state | 0 | 1-9 | e E | + | - | . | anything
7981 ---------|----------|----------|----------|---------|---------|----------|-----------
7982 init | zero | any1 | [error] | [error] | minus | [error] | [error]
7983 minus | zero | any1 | [error] | [error] | [error] | [error] | [error]
7984 zero | done | done | exponent | done | done | decimal1 | done
7985 any1 | any1 | any1 | exponent | done | done | decimal1 | done
7986 decimal1 | decimal2 | [error] | [error] | [error] | [error] | [error] | [error]
7987 decimal2 | decimal2 | decimal2 | exponent | done | done | done | done
7988 exponent | any2 | any2 | [error] | sign | sign | [error] | [error]
7989 sign | any2 | any2 | [error] | [error] | [error] | [error] | [error]
7990 any2 | any2 | any2 | done | done | done | done | done
7991
7992 The state machine is realized with one label per state (prefixed with
7993 "scan_number_") and `goto` statements between them. The state machine
7994 contains cycles, but any cycle can be left when EOF is read. Therefore,
7995 the function is guaranteed to terminate.
7996
7997 During scanning, the read bytes are stored in token_buffer. This string is
7998 then converted to a signed integer, an unsigned integer, or a
7999 floating-point number.
8000
8001 @return token_type::value_unsigned, token_type::value_integer, or
8002 token_type::value_float if number could be successfully scanned,
8003 token_type::parse_error otherwise
8004
8005 @note The scanner is independent of the current locale. Internally, the
8006 locale's decimal point is used instead of `.` to work with the
8007 locale-dependent converters.
8008 */
8009 token_type scan_number() // lgtm [cpp/use-of-goto]
8010 {
8011 // reset token_buffer to store the number's bytes
8012 reset();
8013
8014 // the type of the parsed number; initially set to unsigned; will be
8015 // changed if minus sign, decimal point or exponent is read
8016 token_type number_type = token_type::value_unsigned;
8017
8018 // state (init): we just found out we need to scan a number
8019 switch (current)
8020 {
8021 case '-':
8022 {
8023 add(current);
8024 goto scan_number_minus;
8025 }
8026
8027 case '0':
8028 {
8029 add(current);
8030 goto scan_number_zero;
8031 }
8032
8033 case '1':
8034 case '2':
8035 case '3':
8036 case '4':
8037 case '5':
8038 case '6':
8039 case '7':
8040 case '8':
8041 case '9':
8042 {
8043 add(current);
8044 goto scan_number_any1;
8045 }
8046
8047 // all other characters are rejected outside scan_number()
8048 default: // LCOV_EXCL_LINE
8049 assert(false); // LCOV_EXCL_LINE
8050 }
8051
8052scan_number_minus:
8053 // state: we just parsed a leading minus sign
8054 number_type = token_type::value_integer;
8055 switch (get())
8056 {
8057 case '0':
8058 {
8059 add(current);
8060 goto scan_number_zero;
8061 }
8062
8063 case '1':
8064 case '2':
8065 case '3':
8066 case '4':
8067 case '5':
8068 case '6':
8069 case '7':
8070 case '8':
8071 case '9':
8072 {
8073 add(current);
8074 goto scan_number_any1;
8075 }
8076
8077 default:
8078 {
8079 error_message = "invalid number; expected digit after '-'";
8080 return token_type::parse_error;
8081 }
8082 }
8083
8084scan_number_zero:
8085 // state: we just parse a zero (maybe with a leading minus sign)
8086 switch (get())
8087 {
8088 case '.':
8089 {
8090 add(decimal_point_char);
8091 goto scan_number_decimal1;
8092 }
8093
8094 case 'e':
8095 case 'E':
8096 {
8097 add(current);
8098 goto scan_number_exponent;
8099 }
8100
8101 default:
8102 goto scan_number_done;
8103 }
8104
8105scan_number_any1:
8106 // state: we just parsed a number 0-9 (maybe with a leading minus sign)
8107 switch (get())
8108 {
8109 case '0':
8110 case '1':
8111 case '2':
8112 case '3':
8113 case '4':
8114 case '5':
8115 case '6':
8116 case '7':
8117 case '8':
8118 case '9':
8119 {
8120 add(current);
8121 goto scan_number_any1;
8122 }
8123
8124 case '.':
8125 {
8126 add(decimal_point_char);
8127 goto scan_number_decimal1;
8128 }
8129
8130 case 'e':
8131 case 'E':
8132 {
8133 add(current);
8134 goto scan_number_exponent;
8135 }
8136
8137 default:
8138 goto scan_number_done;
8139 }
8140
8141scan_number_decimal1:
8142 // state: we just parsed a decimal point
8143 number_type = token_type::value_float;
8144 switch (get())
8145 {
8146 case '0':
8147 case '1':
8148 case '2':
8149 case '3':
8150 case '4':
8151 case '5':
8152 case '6':
8153 case '7':
8154 case '8':
8155 case '9':
8156 {
8157 add(current);
8158 goto scan_number_decimal2;
8159 }
8160
8161 default:
8162 {
8163 error_message = "invalid number; expected digit after '.'";
8164 return token_type::parse_error;
8165 }
8166 }
8167
8168scan_number_decimal2:
8169 // we just parsed at least one number after a decimal point
8170 switch (get())
8171 {
8172 case '0':
8173 case '1':
8174 case '2':
8175 case '3':
8176 case '4':
8177 case '5':
8178 case '6':
8179 case '7':
8180 case '8':
8181 case '9':
8182 {
8183 add(current);
8184 goto scan_number_decimal2;
8185 }
8186
8187 case 'e':
8188 case 'E':
8189 {
8190 add(current);
8191 goto scan_number_exponent;
8192 }
8193
8194 default:
8195 goto scan_number_done;
8196 }
8197
8198scan_number_exponent:
8199 // we just parsed an exponent
8200 number_type = token_type::value_float;
8201 switch (get())
8202 {
8203 case '+':
8204 case '-':
8205 {
8206 add(current);
8207 goto scan_number_sign;
8208 }
8209
8210 case '0':
8211 case '1':
8212 case '2':
8213 case '3':
8214 case '4':
8215 case '5':
8216 case '6':
8217 case '7':
8218 case '8':
8219 case '9':
8220 {
8221 add(current);
8222 goto scan_number_any2;
8223 }
8224
8225 default:
8226 {
8227 error_message =
8228 "invalid number; expected '+', '-', or digit after exponent";
8229 return token_type::parse_error;
8230 }
8231 }
8232
8233scan_number_sign:
8234 // we just parsed an exponent sign
8235 switch (get())
8236 {
8237 case '0':
8238 case '1':
8239 case '2':
8240 case '3':
8241 case '4':
8242 case '5':
8243 case '6':
8244 case '7':
8245 case '8':
8246 case '9':
8247 {
8248 add(current);
8249 goto scan_number_any2;
8250 }
8251
8252 default:
8253 {
8254 error_message = "invalid number; expected digit after exponent sign";
8255 return token_type::parse_error;
8256 }
8257 }
8258
8259scan_number_any2:
8260 // we just parsed a number after the exponent or exponent sign
8261 switch (get())
8262 {
8263 case '0':
8264 case '1':
8265 case '2':
8266 case '3':
8267 case '4':
8268 case '5':
8269 case '6':
8270 case '7':
8271 case '8':
8272 case '9':
8273 {
8274 add(current);
8275 goto scan_number_any2;
8276 }
8277
8278 default:
8279 goto scan_number_done;
8280 }
8281
8282scan_number_done:
8283 // unget the character after the number (we only read it to know that
8284 // we are done scanning a number)
8285 unget();
8286
8287 char* endptr = nullptr;
8288 errno = 0;
8289
8290 // try to parse integers first and fall back to floats
8291 if (number_type == token_type::value_unsigned)
8292 {
8293 const auto x = std::strtoull(token_buffer.data(), &endptr, 10);
8294
8295 // we checked the number format before
8296 assert(endptr == token_buffer.data() + token_buffer.size());
8297
8298 if (errno == 0)
8299 {
8300 value_unsigned = static_cast<number_unsigned_t>(x);
8301 if (value_unsigned == x)
8302 {
8303 return token_type::value_unsigned;
8304 }
8305 }
8306 }
8307 else if (number_type == token_type::value_integer)
8308 {
8309 const auto x = std::strtoll(token_buffer.data(), &endptr, 10);
8310
8311 // we checked the number format before
8312 assert(endptr == token_buffer.data() + token_buffer.size());
8313
8314 if (errno == 0)
8315 {
8316 value_integer = static_cast<number_integer_t>(x);
8317 if (value_integer == x)
8318 {
8319 return token_type::value_integer;
8320 }
8321 }
8322 }
8323
8324 // this code is reached if we parse a floating-point number or if an
8325 // integer conversion above failed
8326 strtof(value_float, token_buffer.data(), &endptr);
8327
8328 // we checked the number format before
8329 assert(endptr == token_buffer.data() + token_buffer.size());
8330
8331 return token_type::value_float;
8332 }
8333
8334 /*!
8335 @param[in] literal_text the literal text to expect
8336 @param[in] length the length of the passed literal text
8337 @param[in] return_type the token type to return on success
8338 */
8339 JSON_HEDLEY_NON_NULL(2)
8340 token_type scan_literal(const char* literal_text, const std::size_t length,
8341 token_type return_type)
8342 {
8343 assert(current == literal_text[0]);
8344 for (std::size_t i = 1; i < length; ++i)
8345 {
8346 if (JSON_HEDLEY_UNLIKELY(get() != literal_text[i]))
8347 {
8348 error_message = "invalid literal";
8349 return token_type::parse_error;
8350 }
8351 }
8352 return return_type;
8353 }
8354
8355 /////////////////////
8356 // input management
8357 /////////////////////
8358
8359 /// reset token_buffer; current character is beginning of token
8360 void reset() noexcept
8361 {
8362 token_buffer.clear();
8363 token_string.clear();
8364 token_string.push_back(std::char_traits<char>::to_char_type(current));
8365 }
8366
8367 /*
8368 @brief get next character from the input
8369
8370 This function provides the interface to the used input adapter. It does
8371 not throw in case the input reached EOF, but returns a
8372 `std::char_traits<char>::eof()` in that case. Stores the scanned characters
8373 for use in error messages.
8374
8375 @return character read from the input
8376 */
8377 std::char_traits<char>::int_type get()
8378 {
8379 ++position.chars_read_total;
8380 ++position.chars_read_current_line;
8381
8382 if (next_unget)
8383 {
8384 // just reset the next_unget variable and work with current
8385 next_unget = false;
8386 }
8387 else
8388 {
8389 current = ia->get_character();
8390 }
8391
8392 if (JSON_HEDLEY_LIKELY(current != std::char_traits<char>::eof()))
8393 {
8394 token_string.push_back(std::char_traits<char>::to_char_type(current));
8395 }
8396
8397 if (current == '\n')
8398 {
8399 ++position.lines_read;
8400 position.chars_read_current_line = 0;
8401 }
8402
8403 return current;
8404 }
8405
8406 /*!
8407 @brief unget current character (read it again on next get)
8408
8409 We implement unget by setting variable next_unget to true. The input is not
8410 changed - we just simulate ungetting by modifying chars_read_total,
8411 chars_read_current_line, and token_string. The next call to get() will
8412 behave as if the unget character is read again.
8413 */
8414 void unget()
8415 {
8416 next_unget = true;
8417
8418 --position.chars_read_total;
8419
8420 // in case we "unget" a newline, we have to also decrement the lines_read
8421 if (position.chars_read_current_line == 0)
8422 {
8423 if (position.lines_read > 0)
8424 {
8425 --position.lines_read;
8426 }
8427 }
8428 else
8429 {
8430 --position.chars_read_current_line;
8431 }
8432
8433 if (JSON_HEDLEY_LIKELY(current != std::char_traits<char>::eof()))
8434 {
8435 assert(not token_string.empty());
8436 token_string.pop_back();
8437 }
8438 }
8439
8440 /// add a character to token_buffer
8441 void add(int c)
8442 {
8443 token_buffer.push_back(std::char_traits<char>::to_char_type(c));
8444 }
8445
8446 public:
8447 /////////////////////
8448 // value getters
8449 /////////////////////
8450
8451 /// return integer value
8452 constexpr number_integer_t get_number_integer() const noexcept
8453 {
8454 return value_integer;
8455 }
8456
8457 /// return unsigned integer value
8458 constexpr number_unsigned_t get_number_unsigned() const noexcept
8459 {
8460 return value_unsigned;
8461 }
8462
8463 /// return floating-point value
8464 constexpr number_float_t get_number_float() const noexcept
8465 {
8466 return value_float;
8467 }
8468
8469 /// return current string value (implicitly resets the token; useful only once)
8470 string_t& get_string()
8471 {
8472 return token_buffer;
8473 }
8474
8475 /////////////////////
8476 // diagnostics
8477 /////////////////////
8478
8479 /// return position of last read token
8480 constexpr position_t get_position() const noexcept
8481 {
8482 return position;
8483 }
8484
8485 /// return the last read token (for errors only). Will never contain EOF
8486 /// (an arbitrary value that is not a valid char value, often -1), because
8487 /// 255 may legitimately occur. May contain NUL, which should be escaped.
8488 std::string get_token_string() const
8489 {
8490 // escape control characters
8491 std::string result;
8492 for (const auto c : token_string)
8493 {
8494 if ('\x00' <= c and c <= '\x1F')
8495 {
8496 // escape control characters
8497 std::array<char, 9> cs{{}};
8498 (std::snprintf)(cs.data(), cs.size(), "<U+%.4X>", static_cast<unsigned char>(c));
8499 result += cs.data();
8500 }
8501 else
8502 {
8503 // add character as is
8504 result.push_back(c);
8505 }
8506 }
8507
8508 return result;
8509 }
8510
8511 /// return syntax error message
8512 JSON_HEDLEY_RETURNS_NON_NULL
8513 constexpr const char* get_error_message() const noexcept
8514 {
8515 return error_message;
8516 }
8517
8518 /////////////////////
8519 // actual scanner
8520 /////////////////////
8521
8522 /*!
8523 @brief skip the UTF-8 byte order mark
8524 @return true iff there is no BOM or the correct BOM has been skipped
8525 */
8526 bool skip_bom()
8527 {
8528 if (get() == 0xEF)
8529 {
8530 // check if we completely parse the BOM
8531 return get() == 0xBB and get() == 0xBF;
8532 }
8533
8534 // the first character is not the beginning of the BOM; unget it to
8535 // process is later
8536 unget();
8537 return true;
8538 }
8539
8540 token_type scan()
8541 {
8542 // initially, skip the BOM
8543 if (position.chars_read_total == 0 and not skip_bom())
8544 {
8545 error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given";
8546 return token_type::parse_error;
8547 }
8548
8549 // read next character and ignore whitespace
8550 do
8551 {
8552 get();
8553 }
8554 while (current == ' ' or current == '\t' or current == '\n' or current == '\r');
8555
8556 switch (current)
8557 {
8558 // structural characters
8559 case '[':
8560 return token_type::begin_array;
8561 case ']':
8562 return token_type::end_array;
8563 case '{':
8564 return token_type::begin_object;
8565 case '}':
8566 return token_type::end_object;
8567 case ':':
8568 return token_type::name_separator;
8569 case ',':
8570 return token_type::value_separator;
8571
8572 // literals
8573 case 't':
8574 return scan_literal("true", 4, token_type::literal_true);
8575 case 'f':
8576 return scan_literal("false", 5, token_type::literal_false);
8577 case 'n':
8578 return scan_literal("null", 4, token_type::literal_null);
8579
8580 // string
8581 case '\"':
8582 return scan_string();
8583
8584 // number
8585 case '-':
8586 case '0':
8587 case '1':
8588 case '2':
8589 case '3':
8590 case '4':
8591 case '5':
8592 case '6':
8593 case '7':
8594 case '8':
8595 case '9':
8596 return scan_number();
8597
8598 // end of input (the null byte is needed when parsing from
8599 // string literals)
8600 case '\0':
8601 case std::char_traits<char>::eof():
8602 return token_type::end_of_input;
8603
8604 // error
8605 default:
8606 error_message = "invalid literal";
8607 return token_type::parse_error;
8608 }
8609 }
8610
8611 private:
8612 /// input adapter
8613 detail::input_adapter_t ia = nullptr;
8614
8615 /// the current character
8616 std::char_traits<char>::int_type current = std::char_traits<char>::eof();
8617
8618 /// whether the next get() call should just return current
8619 bool next_unget = false;
8620
8621 /// the start position of the current token
8622 position_t position {};
8623
8624 /// raw input token string (for error messages)
8625 std::vector<char> token_string {};
8626
8627 /// buffer for variable-length tokens (numbers, strings)
8628 string_t token_buffer {};
8629
8630 /// a description of occurred lexer errors
8631 const char* error_message = "";
8632
8633 // number values
8634 number_integer_t value_integer = 0;
8635 number_unsigned_t value_unsigned = 0;
8636 number_float_t value_float = 0;
8637
8638 /// the decimal point
8639 const char decimal_point_char = '.';
8640};
8641} // namespace detail
8642} // namespace nlohmann
8643
8644// #include <nlohmann/detail/input/parser.hpp>
8645
8646
8647#include <cassert> // assert
8648#include <cmath> // isfinite
8649#include <cstdint> // uint8_t
8650#include <functional> // function
8651#include <string> // string
8652#include <utility> // move
8653#include <vector> // vector
8654
8655// #include <nlohmann/detail/exceptions.hpp>
8656
8657// #include <nlohmann/detail/input/input_adapters.hpp>
8658
8659// #include <nlohmann/detail/input/json_sax.hpp>
8660
8661// #include <nlohmann/detail/input/lexer.hpp>
8662
8663// #include <nlohmann/detail/macro_scope.hpp>
8664
8665// #include <nlohmann/detail/meta/is_sax.hpp>
8666
8667// #include <nlohmann/detail/value_t.hpp>
8668
8669
8670namespace nlohmann
8671{
8672namespace detail
8673{
8674////////////
8675// parser //
8676////////////
8677
8678/*!
8679@brief syntax analysis
8680
8681This class implements a recursive decent parser.
8682*/
8683template<typename BasicJsonType>
8684class parser
8685{
8686 using number_integer_t = typename BasicJsonType::number_integer_t;
8687 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
8688 using number_float_t = typename BasicJsonType::number_float_t;
8689 using string_t = typename BasicJsonType::string_t;
8690 using lexer_t = lexer<BasicJsonType>;
8691 using token_type = typename lexer_t::token_type;
8692
8693 public:
8694 enum class parse_event_t : uint8_t
8695 {
8696 /// the parser read `{` and started to process a JSON object
8697 object_start,
8698 /// the parser read `}` and finished processing a JSON object
8699 object_end,
8700 /// the parser read `[` and started to process a JSON array
8701 array_start,
8702 /// the parser read `]` and finished processing a JSON array
8703 array_end,
8704 /// the parser read a key of a value in an object
8705 key,
8706 /// the parser finished reading a JSON value
8707 value
8708 };
8709
8710 using parser_callback_t =
8711 std::function<bool(int depth, parse_event_t event, BasicJsonType& parsed)>;
8712
8713 /// a parser reading from an input adapter
8714 explicit parser(detail::input_adapter_t&& adapter,
8715 const parser_callback_t cb = nullptr,
8716 const bool allow_exceptions_ = true)
8717 : callback(cb), m_lexer(std::move(adapter)), allow_exceptions(allow_exceptions_)
8718 {
8719 // read first token
8720 get_token();
8721 }
8722
8723 /*!
8724 @brief public parser interface
8725
8726 @param[in] strict whether to expect the last token to be EOF
8727 @param[in,out] result parsed JSON value
8728
8729 @throw parse_error.101 in case of an unexpected token
8730 @throw parse_error.102 if to_unicode fails or surrogate error
8731 @throw parse_error.103 if to_unicode fails
8732 */
8733 void parse(const bool strict, BasicJsonType& result)
8734 {
8735 if (callback)
8736 {
8737 json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
8738 sax_parse_internal(&sdp);
8739 result.assert_invariant();
8740
8741 // in strict mode, input must be completely read
8742 if (strict and (get_token() != token_type::end_of_input))
8743 {
8744 sdp.parse_error(m_lexer.get_position(),
8745 m_lexer.get_token_string(),
8746 parse_error::create(101, m_lexer.get_position(),
8747 exception_message(token_type::end_of_input, "value")));
8748 }
8749
8750 // in case of an error, return discarded value
8751 if (sdp.is_errored())
8752 {
8753 result = value_t::discarded;
8754 return;
8755 }
8756
8757 // set top-level value to null if it was discarded by the callback
8758 // function
8759 if (result.is_discarded())
8760 {
8761 result = nullptr;
8762 }
8763 }
8764 else
8765 {
8766 json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
8767 sax_parse_internal(&sdp);
8768 result.assert_invariant();
8769
8770 // in strict mode, input must be completely read
8771 if (strict and (get_token() != token_type::end_of_input))
8772 {
8773 sdp.parse_error(m_lexer.get_position(),
8774 m_lexer.get_token_string(),
8775 parse_error::create(101, m_lexer.get_position(),
8776 exception_message(token_type::end_of_input, "value")));
8777 }
8778
8779 // in case of an error, return discarded value
8780 if (sdp.is_errored())
8781 {
8782 result = value_t::discarded;
8783 return;
8784 }
8785 }
8786 }
8787
8788 /*!
8789 @brief public accept interface
8790
8791 @param[in] strict whether to expect the last token to be EOF
8792 @return whether the input is a proper JSON text
8793 */
8794 bool accept(const bool strict = true)
8795 {
8796 json_sax_acceptor<BasicJsonType> sax_acceptor;
8797 return sax_parse(&sax_acceptor, strict);
8798 }
8799
8800 template <typename SAX>
8801 JSON_HEDLEY_NON_NULL(2)
8802 bool sax_parse(SAX* sax, const bool strict = true)
8803 {
8804 (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
8805 const bool result = sax_parse_internal(sax);
8806
8807 // strict mode: next byte must be EOF
8808 if (result and strict and (get_token() != token_type::end_of_input))
8809 {
8810 return sax->parse_error(m_lexer.get_position(),
8811 m_lexer.get_token_string(),
8812 parse_error::create(101, m_lexer.get_position(),
8813 exception_message(token_type::end_of_input, "value")));
8814 }
8815
8816 return result;
8817 }
8818
8819 private:
8820 template <typename SAX>
8821 JSON_HEDLEY_NON_NULL(2)
8822 bool sax_parse_internal(SAX* sax)
8823 {
8824 // stack to remember the hierarchy of structured values we are parsing
8825 // true = array; false = object
8826 std::vector<bool> states;
8827 // value to avoid a goto (see comment where set to true)
8828 bool skip_to_state_evaluation = false;
8829
8830 while (true)
8831 {
8832 if (not skip_to_state_evaluation)
8833 {
8834 // invariant: get_token() was called before each iteration
8835 switch (last_token)
8836 {
8837 case token_type::begin_object:
8838 {
8839 if (JSON_HEDLEY_UNLIKELY(not sax->start_object(std::size_t(-1))))
8840 {
8841 return false;
8842 }
8843
8844 // closing } -> we are done
8845 if (get_token() == token_type::end_object)
8846 {
8847 if (JSON_HEDLEY_UNLIKELY(not sax->end_object()))
8848 {
8849 return false;
8850 }
8851 break;
8852 }
8853
8854 // parse key
8855 if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
8856 {
8857 return sax->parse_error(m_lexer.get_position(),
8858 m_lexer.get_token_string(),
8859 parse_error::create(101, m_lexer.get_position(),
8860 exception_message(token_type::value_string, "object key")));
8861 }
8862 if (JSON_HEDLEY_UNLIKELY(not sax->key(m_lexer.get_string())))
8863 {
8864 return false;
8865 }
8866
8867 // parse separator (:)
8868 if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
8869 {
8870 return sax->parse_error(m_lexer.get_position(),
8871 m_lexer.get_token_string(),
8872 parse_error::create(101, m_lexer.get_position(),
8873 exception_message(token_type::name_separator, "object separator")));
8874 }
8875
8876 // remember we are now inside an object
8877 states.push_back(false);
8878
8879 // parse values
8880 get_token();
8881 continue;
8882 }
8883
8884 case token_type::begin_array:
8885 {
8886 if (JSON_HEDLEY_UNLIKELY(not sax->start_array(std::size_t(-1))))
8887 {
8888 return false;
8889 }
8890
8891 // closing ] -> we are done
8892 if (get_token() == token_type::end_array)
8893 {
8894 if (JSON_HEDLEY_UNLIKELY(not sax->end_array()))
8895 {
8896 return false;
8897 }
8898 break;
8899 }
8900
8901 // remember we are now inside an array
8902 states.push_back(true);
8903
8904 // parse values (no need to call get_token)
8905 continue;
8906 }
8907
8908 case token_type::value_float:
8909 {
8910 const auto res = m_lexer.get_number_float();
8911
8912 if (JSON_HEDLEY_UNLIKELY(not std::isfinite(res)))
8913 {
8914 return sax->parse_error(m_lexer.get_position(),
8915 m_lexer.get_token_string(),
8916 out_of_range::create(406, "number overflow parsing '" + m_lexer.get_token_string() + "'"));
8917 }
8918
8919 if (JSON_HEDLEY_UNLIKELY(not sax->number_float(res, m_lexer.get_string())))
8920 {
8921 return false;
8922 }
8923
8924 break;
8925 }
8926
8927 case token_type::literal_false:
8928 {
8929 if (JSON_HEDLEY_UNLIKELY(not sax->boolean(false)))
8930 {
8931 return false;
8932 }
8933 break;
8934 }
8935
8936 case token_type::literal_null:
8937 {
8938 if (JSON_HEDLEY_UNLIKELY(not sax->null()))
8939 {
8940 return false;
8941 }
8942 break;
8943 }
8944
8945 case token_type::literal_true:
8946 {
8947 if (JSON_HEDLEY_UNLIKELY(not sax->boolean(true)))
8948 {
8949 return false;
8950 }
8951 break;
8952 }
8953
8954 case token_type::value_integer:
8955 {
8956 if (JSON_HEDLEY_UNLIKELY(not sax->number_integer(m_lexer.get_number_integer())))
8957 {
8958 return false;
8959 }
8960 break;
8961 }
8962
8963 case token_type::value_string:
8964 {
8965 if (JSON_HEDLEY_UNLIKELY(not sax->string(m_lexer.get_string())))
8966 {
8967 return false;
8968 }
8969 break;
8970 }
8971
8972 case token_type::value_unsigned:
8973 {
8974 if (JSON_HEDLEY_UNLIKELY(not sax->number_unsigned(m_lexer.get_number_unsigned())))
8975 {
8976 return false;
8977 }
8978 break;
8979 }
8980
8981 case token_type::parse_error:
8982 {
8983 // using "uninitialized" to avoid "expected" message
8984 return sax->parse_error(m_lexer.get_position(),
8985 m_lexer.get_token_string(),
8986 parse_error::create(101, m_lexer.get_position(),
8987 exception_message(token_type::uninitialized, "value")));
8988 }
8989
8990 default: // the last token was unexpected
8991 {
8992 return sax->parse_error(m_lexer.get_position(),
8993 m_lexer.get_token_string(),
8994 parse_error::create(101, m_lexer.get_position(),
8995 exception_message(token_type::literal_or_value, "value")));
8996 }
8997 }
8998 }
8999 else
9000 {
9001 skip_to_state_evaluation = false;
9002 }
9003
9004 // we reached this line after we successfully parsed a value
9005 if (states.empty())
9006 {
9007 // empty stack: we reached the end of the hierarchy: done
9008 return true;
9009 }
9010
9011 if (states.back()) // array
9012 {
9013 // comma -> next value
9014 if (get_token() == token_type::value_separator)
9015 {
9016 // parse a new value
9017 get_token();
9018 continue;
9019 }
9020
9021 // closing ]
9022 if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
9023 {
9024 if (JSON_HEDLEY_UNLIKELY(not sax->end_array()))
9025 {
9026 return false;
9027 }
9028
9029 // We are done with this array. Before we can parse a
9030 // new value, we need to evaluate the new state first.
9031 // By setting skip_to_state_evaluation to false, we
9032 // are effectively jumping to the beginning of this if.
9033 assert(not states.empty());
9034 states.pop_back();
9035 skip_to_state_evaluation = true;
9036 continue;
9037 }
9038
9039 return sax->parse_error(m_lexer.get_position(),
9040 m_lexer.get_token_string(),
9041 parse_error::create(101, m_lexer.get_position(),
9042 exception_message(token_type::end_array, "array")));
9043 }
9044 else // object
9045 {
9046 // comma -> next value
9047 if (get_token() == token_type::value_separator)
9048 {
9049 // parse key
9050 if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
9051 {
9052 return sax->parse_error(m_lexer.get_position(),
9053 m_lexer.get_token_string(),
9054 parse_error::create(101, m_lexer.get_position(),
9055 exception_message(token_type::value_string, "object key")));
9056 }
9057
9058 if (JSON_HEDLEY_UNLIKELY(not sax->key(m_lexer.get_string())))
9059 {
9060 return false;
9061 }
9062
9063 // parse separator (:)
9064 if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
9065 {
9066 return sax->parse_error(m_lexer.get_position(),
9067 m_lexer.get_token_string(),
9068 parse_error::create(101, m_lexer.get_position(),
9069 exception_message(token_type::name_separator, "object separator")));
9070 }
9071
9072 // parse values
9073 get_token();
9074 continue;
9075 }
9076
9077 // closing }
9078 if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
9079 {
9080 if (JSON_HEDLEY_UNLIKELY(not sax->end_object()))
9081 {
9082 return false;
9083 }
9084
9085 // We are done with this object. Before we can parse a
9086 // new value, we need to evaluate the new state first.
9087 // By setting skip_to_state_evaluation to false, we
9088 // are effectively jumping to the beginning of this if.
9089 assert(not states.empty());
9090 states.pop_back();
9091 skip_to_state_evaluation = true;
9092 continue;
9093 }
9094
9095 return sax->parse_error(m_lexer.get_position(),
9096 m_lexer.get_token_string(),
9097 parse_error::create(101, m_lexer.get_position(),
9098 exception_message(token_type::end_object, "object")));
9099 }
9100 }
9101 }
9102
9103 /// get next token from lexer
9104 token_type get_token()
9105 {
9106 return last_token = m_lexer.scan();
9107 }
9108
9109 std::string exception_message(const token_type expected, const std::string& context)
9110 {
9111 std::string error_msg = "syntax error ";
9112
9113 if (not context.empty())
9114 {
9115 error_msg += "while parsing " + context + " ";
9116 }
9117
9118 error_msg += "- ";
9119
9120 if (last_token == token_type::parse_error)
9121 {
9122 error_msg += std::string(m_lexer.get_error_message()) + "; last read: '" +
9123 m_lexer.get_token_string() + "'";
9124 }
9125 else
9126 {
9127 error_msg += "unexpected " + std::string(lexer_t::token_type_name(last_token));
9128 }
9129
9130 if (expected != token_type::uninitialized)
9131 {
9132 error_msg += "; expected " + std::string(lexer_t::token_type_name(expected));
9133 }
9134
9135 return error_msg;
9136 }
9137
9138 private:
9139 /// callback function
9140 const parser_callback_t callback = nullptr;
9141 /// the type of the last read token
9142 token_type last_token = token_type::uninitialized;
9143 /// the lexer
9144 lexer_t m_lexer;
9145 /// whether to throw exceptions in case of errors
9146 const bool allow_exceptions = true;
9147};
9148} // namespace detail
9149} // namespace nlohmann
9150
9151// #include <nlohmann/detail/iterators/internal_iterator.hpp>
9152
9153
9154// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
9155
9156
9157#include <cstddef> // ptrdiff_t
9158#include <limits> // numeric_limits
9159
9160namespace nlohmann
9161{
9162namespace detail
9163{
9164/*
9165@brief an iterator for primitive JSON types
9166
9167This class models an iterator for primitive JSON types (boolean, number,
9168string). It's only purpose is to allow the iterator/const_iterator classes
9169to "iterate" over primitive values. Internally, the iterator is modeled by
9170a `difference_type` variable. Value begin_value (`0`) models the begin,
9171end_value (`1`) models past the end.
9172*/
9173class primitive_iterator_t
9174{
9175 private:
9176 using difference_type = std::ptrdiff_t;
9177 static constexpr difference_type begin_value = 0;
9178 static constexpr difference_type end_value = begin_value + 1;
9179
9180 /// iterator as signed integer type
9181 difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
9182
9183 public:
9184 constexpr difference_type get_value() const noexcept
9185 {
9186 return m_it;
9187 }
9188
9189 /// set iterator to a defined beginning
9190 void set_begin() noexcept
9191 {
9192 m_it = begin_value;
9193 }
9194
9195 /// set iterator to a defined past the end
9196 void set_end() noexcept
9197 {
9198 m_it = end_value;
9199 }
9200
9201 /// return whether the iterator can be dereferenced
9202 constexpr bool is_begin() const noexcept
9203 {
9204 return m_it == begin_value;
9205 }
9206
9207 /// return whether the iterator is at end
9208 constexpr bool is_end() const noexcept
9209 {
9210 return m_it == end_value;
9211 }
9212
9213 friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
9214 {
9215 return lhs.m_it == rhs.m_it;
9216 }
9217
9218 friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
9219 {
9220 return lhs.m_it < rhs.m_it;
9221 }
9222
9223 primitive_iterator_t operator+(difference_type n) noexcept
9224 {
9225 auto result = *this;
9226 result += n;
9227 return result;
9228 }
9229
9230 friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
9231 {
9232 return lhs.m_it - rhs.m_it;
9233 }
9234
9235 primitive_iterator_t& operator++() noexcept
9236 {
9237 ++m_it;
9238 return *this;
9239 }
9240
9241 primitive_iterator_t const operator++(int) noexcept
9242 {
9243 auto result = *this;
9244 ++m_it;
9245 return result;
9246 }
9247
9248 primitive_iterator_t& operator--() noexcept
9249 {
9250 --m_it;
9251 return *this;
9252 }
9253
9254 primitive_iterator_t const operator--(int) noexcept
9255 {
9256 auto result = *this;
9257 --m_it;
9258 return result;
9259 }
9260
9261 primitive_iterator_t& operator+=(difference_type n) noexcept
9262 {
9263 m_it += n;
9264 return *this;
9265 }
9266
9267 primitive_iterator_t& operator-=(difference_type n) noexcept
9268 {
9269 m_it -= n;
9270 return *this;
9271 }
9272};
9273} // namespace detail
9274} // namespace nlohmann
9275
9276
9277namespace nlohmann
9278{
9279namespace detail
9280{
9281/*!
9282@brief an iterator value
9283
9284@note This structure could easily be a union, but MSVC currently does not allow
9285unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
9286*/
9287template<typename BasicJsonType> struct internal_iterator
9288{
9289 /// iterator for JSON objects
9290 typename BasicJsonType::object_t::iterator object_iterator {};
9291 /// iterator for JSON arrays
9292 typename BasicJsonType::array_t::iterator array_iterator {};
9293 /// generic iterator for all other types
9294 primitive_iterator_t primitive_iterator {};
9295};
9296} // namespace detail
9297} // namespace nlohmann
9298
9299// #include <nlohmann/detail/iterators/iter_impl.hpp>
9300
9301
9302#include <ciso646> // not
9303#include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
9304#include <type_traits> // conditional, is_const, remove_const
9305
9306// #include <nlohmann/detail/exceptions.hpp>
9307
9308// #include <nlohmann/detail/iterators/internal_iterator.hpp>
9309
9310// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
9311
9312// #include <nlohmann/detail/macro_scope.hpp>
9313
9314// #include <nlohmann/detail/meta/cpp_future.hpp>
9315
9316// #include <nlohmann/detail/meta/type_traits.hpp>
9317
9318// #include <nlohmann/detail/value_t.hpp>
9319
9320
9321namespace nlohmann
9322{
9323namespace detail
9324{
9325// forward declare, to be able to friend it later on
9326template<typename IteratorType> class iteration_proxy;
9327template<typename IteratorType> class iteration_proxy_value;
9328
9329/*!
9330@brief a template for a bidirectional iterator for the @ref basic_json class
9331This class implements a both iterators (iterator and const_iterator) for the
9332@ref basic_json class.
9333@note An iterator is called *initialized* when a pointer to a JSON value has
9334 been set (e.g., by a constructor or a copy assignment). If the iterator is
9335 default-constructed, it is *uninitialized* and most methods are undefined.
9336 **The library uses assertions to detect calls on uninitialized iterators.**
9337@requirement The class satisfies the following concept requirements:
9338-
9339[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
9340 The iterator that can be moved can be moved in both directions (i.e.
9341 incremented and decremented).
9342@since version 1.0.0, simplified in version 2.0.9, change to bidirectional
9343 iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
9344*/
9345template<typename BasicJsonType>
9346class iter_impl
9347{
9348 /// allow basic_json to access private members
9349 friend iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
9350 friend BasicJsonType;
9351 friend iteration_proxy<iter_impl>;
9352 friend iteration_proxy_value<iter_impl>;
9353
9354 using object_t = typename BasicJsonType::object_t;
9355 using array_t = typename BasicJsonType::array_t;
9356 // make sure BasicJsonType is basic_json or const basic_json
9357 static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
9358 "iter_impl only accepts (const) basic_json");
9359
9360 public:
9361
9362 /// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
9363 /// The C++ Standard has never required user-defined iterators to derive from std::iterator.
9364 /// A user-defined iterator should provide publicly accessible typedefs named
9365 /// iterator_category, value_type, difference_type, pointer, and reference.
9366 /// Note that value_type is required to be non-const, even for constant iterators.
9367 using iterator_category = std::bidirectional_iterator_tag;
9368
9369 /// the type of the values when the iterator is dereferenced
9370 using value_type = typename BasicJsonType::value_type;
9371 /// a type to represent differences between iterators
9372 using difference_type = typename BasicJsonType::difference_type;
9373 /// defines a pointer to the type iterated over (value_type)
9374 using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
9375 typename BasicJsonType::const_pointer,
9376 typename BasicJsonType::pointer>::type;
9377 /// defines a reference to the type iterated over (value_type)
9378 using reference =
9379 typename std::conditional<std::is_const<BasicJsonType>::value,
9380 typename BasicJsonType::const_reference,
9381 typename BasicJsonType::reference>::type;
9382
9383 /// default constructor
9384 iter_impl() = default;
9385
9386 /*!
9387 @brief constructor for a given JSON instance
9388 @param[in] object pointer to a JSON object for this iterator
9389 @pre object != nullptr
9390 @post The iterator is initialized; i.e. `m_object != nullptr`.
9391 */
9392 explicit iter_impl(pointer object) noexcept : m_object(object)
9393 {
9394 assert(m_object != nullptr);
9395
9396 switch (m_object->m_type)
9397 {
9398 case value_t::object:
9399 {
9400 m_it.object_iterator = typename object_t::iterator();
9401 break;
9402 }
9403
9404 case value_t::array:
9405 {
9406 m_it.array_iterator = typename array_t::iterator();
9407 break;
9408 }
9409
9410 default:
9411 {
9412 m_it.primitive_iterator = primitive_iterator_t();
9413 break;
9414 }
9415 }
9416 }
9417
9418 /*!
9419 @note The conventional copy constructor and copy assignment are implicitly
9420 defined. Combined with the following converting constructor and
9421 assignment, they support: (1) copy from iterator to iterator, (2)
9422 copy from const iterator to const iterator, and (3) conversion from
9423 iterator to const iterator. However conversion from const iterator
9424 to iterator is not defined.
9425 */
9426
9427 /*!
9428 @brief const copy constructor
9429 @param[in] other const iterator to copy from
9430 @note This copy constructor had to be defined explicitly to circumvent a bug
9431 occurring on msvc v19.0 compiler (VS 2015) debug build. For more
9432 information refer to: https://github.com/nlohmann/json/issues/1608
9433 */
9434 iter_impl(const iter_impl<const BasicJsonType>& other) noexcept
9435 : m_object(other.m_object), m_it(other.m_it)
9436 {}
9437
9438 /*!
9439 @brief converting assignment
9440 @param[in] other const iterator to copy from
9441 @return const/non-const iterator
9442 @note It is not checked whether @a other is initialized.
9443 */
9444 iter_impl& operator=(const iter_impl<const BasicJsonType>& other) noexcept
9445 {
9446 m_object = other.m_object;
9447 m_it = other.m_it;
9448 return *this;
9449 }
9450
9451 /*!
9452 @brief converting constructor
9453 @param[in] other non-const iterator to copy from
9454 @note It is not checked whether @a other is initialized.
9455 */
9456 iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
9457 : m_object(other.m_object), m_it(other.m_it)
9458 {}
9459
9460 /*!
9461 @brief converting assignment
9462 @param[in] other non-const iterator to copy from
9463 @return const/non-const iterator
9464 @note It is not checked whether @a other is initialized.
9465 */
9466 iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
9467 {
9468 m_object = other.m_object;
9469 m_it = other.m_it;
9470 return *this;
9471 }
9472
9473 private:
9474 /*!
9475 @brief set the iterator to the first value
9476 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9477 */
9478 void set_begin() noexcept
9479 {
9480 assert(m_object != nullptr);
9481
9482 switch (m_object->m_type)
9483 {
9484 case value_t::object:
9485 {
9486 m_it.object_iterator = m_object->m_value.object->begin();
9487 break;
9488 }
9489
9490 case value_t::array:
9491 {
9492 m_it.array_iterator = m_object->m_value.array->begin();
9493 break;
9494 }
9495
9496 case value_t::null:
9497 {
9498 // set to end so begin()==end() is true: null is empty
9499 m_it.primitive_iterator.set_end();
9500 break;
9501 }
9502
9503 default:
9504 {
9505 m_it.primitive_iterator.set_begin();
9506 break;
9507 }
9508 }
9509 }
9510
9511 /*!
9512 @brief set the iterator past the last value
9513 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9514 */
9515 void set_end() noexcept
9516 {
9517 assert(m_object != nullptr);
9518
9519 switch (m_object->m_type)
9520 {
9521 case value_t::object:
9522 {
9523 m_it.object_iterator = m_object->m_value.object->end();
9524 break;
9525 }
9526
9527 case value_t::array:
9528 {
9529 m_it.array_iterator = m_object->m_value.array->end();
9530 break;
9531 }
9532
9533 default:
9534 {
9535 m_it.primitive_iterator.set_end();
9536 break;
9537 }
9538 }
9539 }
9540
9541 public:
9542 /*!
9543 @brief return a reference to the value pointed to by the iterator
9544 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9545 */
9546 reference operator*() const
9547 {
9548 assert(m_object != nullptr);
9549
9550 switch (m_object->m_type)
9551 {
9552 case value_t::object:
9553 {
9554 assert(m_it.object_iterator != m_object->m_value.object->end());
9555 return m_it.object_iterator->second;
9556 }
9557
9558 case value_t::array:
9559 {
9560 assert(m_it.array_iterator != m_object->m_value.array->end());
9561 return *m_it.array_iterator;
9562 }
9563
9564 case value_t::null:
9565 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9566
9567 default:
9568 {
9569 if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
9570 {
9571 return *m_object;
9572 }
9573
9574 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9575 }
9576 }
9577 }
9578
9579 /*!
9580 @brief dereference the iterator
9581 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9582 */
9583 pointer operator->() const
9584 {
9585 assert(m_object != nullptr);
9586
9587 switch (m_object->m_type)
9588 {
9589 case value_t::object:
9590 {
9591 assert(m_it.object_iterator != m_object->m_value.object->end());
9592 return &(m_it.object_iterator->second);
9593 }
9594
9595 case value_t::array:
9596 {
9597 assert(m_it.array_iterator != m_object->m_value.array->end());
9598 return &*m_it.array_iterator;
9599 }
9600
9601 default:
9602 {
9603 if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
9604 {
9605 return m_object;
9606 }
9607
9608 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9609 }
9610 }
9611 }
9612
9613 /*!
9614 @brief post-increment (it++)
9615 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9616 */
9617 iter_impl const operator++(int)
9618 {
9619 auto result = *this;
9620 ++(*this);
9621 return result;
9622 }
9623
9624 /*!
9625 @brief pre-increment (++it)
9626 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9627 */
9628 iter_impl& operator++()
9629 {
9630 assert(m_object != nullptr);
9631
9632 switch (m_object->m_type)
9633 {
9634 case value_t::object:
9635 {
9636 std::advance(m_it.object_iterator, 1);
9637 break;
9638 }
9639
9640 case value_t::array:
9641 {
9642 std::advance(m_it.array_iterator, 1);
9643 break;
9644 }
9645
9646 default:
9647 {
9648 ++m_it.primitive_iterator;
9649 break;
9650 }
9651 }
9652
9653 return *this;
9654 }
9655
9656 /*!
9657 @brief post-decrement (it--)
9658 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9659 */
9660 iter_impl const operator--(int)
9661 {
9662 auto result = *this;
9663 --(*this);
9664 return result;
9665 }
9666
9667 /*!
9668 @brief pre-decrement (--it)
9669 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9670 */
9671 iter_impl& operator--()
9672 {
9673 assert(m_object != nullptr);
9674
9675 switch (m_object->m_type)
9676 {
9677 case value_t::object:
9678 {
9679 std::advance(m_it.object_iterator, -1);
9680 break;
9681 }
9682
9683 case value_t::array:
9684 {
9685 std::advance(m_it.array_iterator, -1);
9686 break;
9687 }
9688
9689 default:
9690 {
9691 --m_it.primitive_iterator;
9692 break;
9693 }
9694 }
9695
9696 return *this;
9697 }
9698
9699 /*!
9700 @brief comparison: equal
9701 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9702 */
9703 bool operator==(const iter_impl& other) const
9704 {
9705 // if objects are not the same, the comparison is undefined
9706 if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
9707 {
9708 JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
9709 }
9710
9711 assert(m_object != nullptr);
9712
9713 switch (m_object->m_type)
9714 {
9715 case value_t::object:
9716 return (m_it.object_iterator == other.m_it.object_iterator);
9717
9718 case value_t::array:
9719 return (m_it.array_iterator == other.m_it.array_iterator);
9720
9721 default:
9722 return (m_it.primitive_iterator == other.m_it.primitive_iterator);
9723 }
9724 }
9725
9726 /*!
9727 @brief comparison: not equal
9728 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9729 */
9730 bool operator!=(const iter_impl& other) const
9731 {
9732 return not operator==(other);
9733 }
9734
9735 /*!
9736 @brief comparison: smaller
9737 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9738 */
9739 bool operator<(const iter_impl& other) const
9740 {
9741 // if objects are not the same, the comparison is undefined
9742 if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
9743 {
9744 JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
9745 }
9746
9747 assert(m_object != nullptr);
9748
9749 switch (m_object->m_type)
9750 {
9751 case value_t::object:
9752 JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators"));
9753
9754 case value_t::array:
9755 return (m_it.array_iterator < other.m_it.array_iterator);
9756
9757 default:
9758 return (m_it.primitive_iterator < other.m_it.primitive_iterator);
9759 }
9760 }
9761
9762 /*!
9763 @brief comparison: less than or equal
9764 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9765 */
9766 bool operator<=(const iter_impl& other) const
9767 {
9768 return not other.operator < (*this);
9769 }
9770
9771 /*!
9772 @brief comparison: greater than
9773 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9774 */
9775 bool operator>(const iter_impl& other) const
9776 {
9777 return not operator<=(other);
9778 }
9779
9780 /*!
9781 @brief comparison: greater than or equal
9782 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9783 */
9784 bool operator>=(const iter_impl& other) const
9785 {
9786 return not operator<(other);
9787 }
9788
9789 /*!
9790 @brief add to iterator
9791 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9792 */
9793 iter_impl& operator+=(difference_type i)
9794 {
9795 assert(m_object != nullptr);
9796
9797 switch (m_object->m_type)
9798 {
9799 case value_t::object:
9800 JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
9801
9802 case value_t::array:
9803 {
9804 std::advance(m_it.array_iterator, i);
9805 break;
9806 }
9807
9808 default:
9809 {
9810 m_it.primitive_iterator += i;
9811 break;
9812 }
9813 }
9814
9815 return *this;
9816 }
9817
9818 /*!
9819 @brief subtract from iterator
9820 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9821 */
9822 iter_impl& operator-=(difference_type i)
9823 {
9824 return operator+=(-i);
9825 }
9826
9827 /*!
9828 @brief add to iterator
9829 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9830 */
9831 iter_impl operator+(difference_type i) const
9832 {
9833 auto result = *this;
9834 result += i;
9835 return result;
9836 }
9837
9838 /*!
9839 @brief addition of distance and iterator
9840 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9841 */
9842 friend iter_impl operator+(difference_type i, const iter_impl& it)
9843 {
9844 auto result = it;
9845 result += i;
9846 return result;
9847 }
9848
9849 /*!
9850 @brief subtract from iterator
9851 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9852 */
9853 iter_impl operator-(difference_type i) const
9854 {
9855 auto result = *this;
9856 result -= i;
9857 return result;
9858 }
9859
9860 /*!
9861 @brief return difference
9862 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9863 */
9864 difference_type operator-(const iter_impl& other) const
9865 {
9866 assert(m_object != nullptr);
9867
9868 switch (m_object->m_type)
9869 {
9870 case value_t::object:
9871 JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
9872
9873 case value_t::array:
9874 return m_it.array_iterator - other.m_it.array_iterator;
9875
9876 default:
9877 return m_it.primitive_iterator - other.m_it.primitive_iterator;
9878 }
9879 }
9880
9881 /*!
9882 @brief access to successor
9883 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9884 */
9885 reference operator[](difference_type n) const
9886 {
9887 assert(m_object != nullptr);
9888
9889 switch (m_object->m_type)
9890 {
9891 case value_t::object:
9892 JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators"));
9893
9894 case value_t::array:
9895 return *std::next(m_it.array_iterator, n);
9896
9897 case value_t::null:
9898 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9899
9900 default:
9901 {
9902 if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.get_value() == -n))
9903 {
9904 return *m_object;
9905 }
9906
9907 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
9908 }
9909 }
9910 }
9911
9912 /*!
9913 @brief return the key of an object iterator
9914 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9915 */
9916 const typename object_t::key_type& key() const
9917 {
9918 assert(m_object != nullptr);
9919
9920 if (JSON_HEDLEY_LIKELY(m_object->is_object()))
9921 {
9922 return m_it.object_iterator->first;
9923 }
9924
9925 JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators"));
9926 }
9927
9928 /*!
9929 @brief return the value of an iterator
9930 @pre The iterator is initialized; i.e. `m_object != nullptr`.
9931 */
9932 reference value() const
9933 {
9934 return operator*();
9935 }
9936
9937 private:
9938 /// associated JSON instance
9939 pointer m_object = nullptr;
9940 /// the actual iterator of the associated instance
9941 internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it {};
9942};
9943} // namespace detail
9944} // namespace nlohmann
9945
9946// #include <nlohmann/detail/iterators/iteration_proxy.hpp>
9947
9948// #include <nlohmann/detail/iterators/json_reverse_iterator.hpp>
9949
9950
9951#include <cstddef> // ptrdiff_t
9952#include <iterator> // reverse_iterator
9953#include <utility> // declval
9954
9955namespace nlohmann
9956{
9957namespace detail
9958{
9959//////////////////////
9960// reverse_iterator //
9961//////////////////////
9962
9963/*!
9964@brief a template for a reverse iterator class
9965
9966@tparam Base the base iterator type to reverse. Valid types are @ref
9967iterator (to create @ref reverse_iterator) and @ref const_iterator (to
9968create @ref const_reverse_iterator).
9969
9970@requirement The class satisfies the following concept requirements:
9971-
9972[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
9973 The iterator that can be moved can be moved in both directions (i.e.
9974 incremented and decremented).
9975- [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
9976 It is possible to write to the pointed-to element (only if @a Base is
9977 @ref iterator).
9978
9979@since version 1.0.0
9980*/
9981template<typename Base>
9982class json_reverse_iterator : public std::reverse_iterator<Base>
9983{
9984 public:
9985 using difference_type = std::ptrdiff_t;
9986 /// shortcut to the reverse iterator adapter
9987 using base_iterator = std::reverse_iterator<Base>;
9988 /// the reference type for the pointed-to element
9989 using reference = typename Base::reference;
9990
9991 /// create reverse iterator from iterator
9992 explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
9993 : base_iterator(it) {}
9994
9995 /// create reverse iterator from base class
9996 explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
9997
9998 /// post-increment (it++)
9999 json_reverse_iterator const operator++(int)
10000 {
10001 return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
10002 }
10003
10004 /// pre-increment (++it)
10005 json_reverse_iterator& operator++()
10006 {
10007 return static_cast<json_reverse_iterator&>(base_iterator::operator++());
10008 }
10009
10010 /// post-decrement (it--)
10011 json_reverse_iterator const operator--(int)
10012 {
10013 return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
10014 }
10015
10016 /// pre-decrement (--it)
10017 json_reverse_iterator& operator--()
10018 {
10019 return static_cast<json_reverse_iterator&>(base_iterator::operator--());
10020 }
10021
10022 /// add to iterator
10023 json_reverse_iterator& operator+=(difference_type i)
10024 {
10025 return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
10026 }
10027
10028 /// add to iterator
10029 json_reverse_iterator operator+(difference_type i) const
10030 {
10031 return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
10032 }
10033
10034 /// subtract from iterator
10035 json_reverse_iterator operator-(difference_type i) const
10036 {
10037 return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
10038 }
10039
10040 /// return difference
10041 difference_type operator-(const json_reverse_iterator& other) const
10042 {
10043 return base_iterator(*this) - base_iterator(other);
10044 }
10045
10046 /// access to successor
10047 reference operator[](difference_type n) const
10048 {
10049 return *(this->operator+(n));
10050 }
10051
10052 /// return the key of an object iterator
10053 auto key() const -> decltype(std::declval<Base>().key())
10054 {
10055 auto it = --this->base();
10056 return it.key();
10057 }
10058
10059 /// return the value of an iterator
10060 reference value() const
10061 {
10062 auto it = --this->base();
10063 return it.operator * ();
10064 }
10065};
10066} // namespace detail
10067} // namespace nlohmann
10068
10069// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
10070
10071// #include <nlohmann/detail/json_pointer.hpp>
10072
10073
10074#include <algorithm> // all_of
10075#include <cassert> // assert
10076#include <cctype> // isdigit
10077#include <numeric> // accumulate
10078#include <string> // string
10079#include <utility> // move
10080#include <vector> // vector
10081
10082// #include <nlohmann/detail/exceptions.hpp>
10083
10084// #include <nlohmann/detail/macro_scope.hpp>
10085
10086// #include <nlohmann/detail/value_t.hpp>
10087
10088
10089namespace nlohmann
10090{
10091template<typename BasicJsonType>
10092class json_pointer
10093{
10094 // allow basic_json to access private members
10095 NLOHMANN_BASIC_JSON_TPL_DECLARATION
10096 friend class basic_json;
10097
10098 public:
10099 /*!
10100 @brief create JSON pointer
10101
10102 Create a JSON pointer according to the syntax described in
10103 [Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3).
10104
10105 @param[in] s string representing the JSON pointer; if omitted, the empty
10106 string is assumed which references the whole JSON value
10107
10108 @throw parse_error.107 if the given JSON pointer @a s is nonempty and does
10109 not begin with a slash (`/`); see example below
10110
10111 @throw parse_error.108 if a tilde (`~`) in the given JSON pointer @a s is
10112 not followed by `0` (representing `~`) or `1` (representing `/`); see
10113 example below
10114
10115 @liveexample{The example shows the construction several valid JSON pointers
10116 as well as the exceptional behavior.,json_pointer}
10117
10118 @since version 2.0.0
10119 */
10120 explicit json_pointer(const std::string& s = "")
10121 : reference_tokens(split(s))
10122 {}
10123
10124 /*!
10125 @brief return a string representation of the JSON pointer
10126
10127 @invariant For each JSON pointer `ptr`, it holds:
10128 @code {.cpp}
10129 ptr == json_pointer(ptr.to_string());
10130 @endcode
10131
10132 @return a string representation of the JSON pointer
10133
10134 @liveexample{The example shows the result of `to_string`.,json_pointer__to_string}
10135
10136 @since version 2.0.0
10137 */
10138 std::string to_string() const
10139 {
10140 return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
10141 std::string{},
10142 [](const std::string & a, const std::string & b)
10143 {
10144 return a + "/" + escape(b);
10145 });
10146 }
10147
10148 /// @copydoc to_string()
10149 operator std::string() const
10150 {
10151 return to_string();
10152 }
10153
10154 /*!
10155 @brief append another JSON pointer at the end of this JSON pointer
10156
10157 @param[in] ptr JSON pointer to append
10158 @return JSON pointer with @a ptr appended
10159
10160 @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
10161
10162 @complexity Linear in the length of @a ptr.
10163
10164 @sa @ref operator/=(std::string) to append a reference token
10165 @sa @ref operator/=(std::size_t) to append an array index
10166 @sa @ref operator/(const json_pointer&, const json_pointer&) for a binary operator
10167
10168 @since version 3.6.0
10169 */
10170 json_pointer& operator/=(const json_pointer& ptr)
10171 {
10172 reference_tokens.insert(reference_tokens.end(),
10173 ptr.reference_tokens.begin(),
10174 ptr.reference_tokens.end());
10175 return *this;
10176 }
10177
10178 /*!
10179 @brief append an unescaped reference token at the end of this JSON pointer
10180
10181 @param[in] token reference token to append
10182 @return JSON pointer with @a token appended without escaping @a token
10183
10184 @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
10185
10186 @complexity Amortized constant.
10187
10188 @sa @ref operator/=(const json_pointer&) to append a JSON pointer
10189 @sa @ref operator/=(std::size_t) to append an array index
10190 @sa @ref operator/(const json_pointer&, std::size_t) for a binary operator
10191
10192 @since version 3.6.0
10193 */
10194 json_pointer& operator/=(std::string token)
10195 {
10196 push_back(std::move(token));
10197 return *this;
10198 }
10199
10200 /*!
10201 @brief append an array index at the end of this JSON pointer
10202
10203 @param[in] array_index array index to append
10204 @return JSON pointer with @a array_index appended
10205
10206 @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add}
10207
10208 @complexity Amortized constant.
10209
10210 @sa @ref operator/=(const json_pointer&) to append a JSON pointer
10211 @sa @ref operator/=(std::string) to append a reference token
10212 @sa @ref operator/(const json_pointer&, std::string) for a binary operator
10213
10214 @since version 3.6.0
10215 */
10216 json_pointer& operator/=(std::size_t array_index)
10217 {
10218 return *this /= std::to_string(array_index);
10219 }
10220
10221 /*!
10222 @brief create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer
10223
10224 @param[in] lhs JSON pointer
10225 @param[in] rhs JSON pointer
10226 @return a new JSON pointer with @a rhs appended to @a lhs
10227
10228 @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
10229
10230 @complexity Linear in the length of @a lhs and @a rhs.
10231
10232 @sa @ref operator/=(const json_pointer&) to append a JSON pointer
10233
10234 @since version 3.6.0
10235 */
10236 friend json_pointer operator/(const json_pointer& lhs,
10237 const json_pointer& rhs)
10238 {
10239 return json_pointer(lhs) /= rhs;
10240 }
10241
10242 /*!
10243 @brief create a new JSON pointer by appending the unescaped token at the end of the JSON pointer
10244
10245 @param[in] ptr JSON pointer
10246 @param[in] token reference token
10247 @return a new JSON pointer with unescaped @a token appended to @a ptr
10248
10249 @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
10250
10251 @complexity Linear in the length of @a ptr.
10252
10253 @sa @ref operator/=(std::string) to append a reference token
10254
10255 @since version 3.6.0
10256 */
10257 friend json_pointer operator/(const json_pointer& ptr, std::string token)
10258 {
10259 return json_pointer(ptr) /= std::move(token);
10260 }
10261
10262 /*!
10263 @brief create a new JSON pointer by appending the array-index-token at the end of the JSON pointer
10264
10265 @param[in] ptr JSON pointer
10266 @param[in] array_index array index
10267 @return a new JSON pointer with @a array_index appended to @a ptr
10268
10269 @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary}
10270
10271 @complexity Linear in the length of @a ptr.
10272
10273 @sa @ref operator/=(std::size_t) to append an array index
10274
10275 @since version 3.6.0
10276 */
10277 friend json_pointer operator/(const json_pointer& ptr, std::size_t array_index)
10278 {
10279 return json_pointer(ptr) /= array_index;
10280 }
10281
10282 /*!
10283 @brief returns the parent of this JSON pointer
10284
10285 @return parent of this JSON pointer; in case this JSON pointer is the root,
10286 the root itself is returned
10287
10288 @complexity Linear in the length of the JSON pointer.
10289
10290 @liveexample{The example shows the result of `parent_pointer` for different
10291 JSON Pointers.,json_pointer__parent_pointer}
10292
10293 @since version 3.6.0
10294 */
10295 json_pointer parent_pointer() const
10296 {
10297 if (empty())
10298 {
10299 return *this;
10300 }
10301
10302 json_pointer res = *this;
10303 res.pop_back();
10304 return res;
10305 }
10306
10307 /*!
10308 @brief remove last reference token
10309
10310 @pre not `empty()`
10311
10312 @liveexample{The example shows the usage of `pop_back`.,json_pointer__pop_back}
10313
10314 @complexity Constant.
10315
10316 @throw out_of_range.405 if JSON pointer has no parent
10317
10318 @since version 3.6.0
10319 */
10320 void pop_back()
10321 {
10322 if (JSON_HEDLEY_UNLIKELY(empty()))
10323 {
10324 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
10325 }
10326
10327 reference_tokens.pop_back();
10328 }
10329
10330 /*!
10331 @brief return last reference token
10332
10333 @pre not `empty()`
10334 @return last reference token
10335
10336 @liveexample{The example shows the usage of `back`.,json_pointer__back}
10337
10338 @complexity Constant.
10339
10340 @throw out_of_range.405 if JSON pointer has no parent
10341
10342 @since version 3.6.0
10343 */
10344 const std::string& back() const
10345 {
10346 if (JSON_HEDLEY_UNLIKELY(empty()))
10347 {
10348 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
10349 }
10350
10351 return reference_tokens.back();
10352 }
10353
10354 /*!
10355 @brief append an unescaped token at the end of the reference pointer
10356
10357 @param[in] token token to add
10358
10359 @complexity Amortized constant.
10360
10361 @liveexample{The example shows the result of `push_back` for different
10362 JSON Pointers.,json_pointer__push_back}
10363
10364 @since version 3.6.0
10365 */
10366 void push_back(const std::string& token)
10367 {
10368 reference_tokens.push_back(token);
10369 }
10370
10371 /// @copydoc push_back(const std::string&)
10372 void push_back(std::string&& token)
10373 {
10374 reference_tokens.push_back(std::move(token));
10375 }
10376
10377 /*!
10378 @brief return whether pointer points to the root document
10379
10380 @return true iff the JSON pointer points to the root document
10381
10382 @complexity Constant.
10383
10384 @exceptionsafety No-throw guarantee: this function never throws exceptions.
10385
10386 @liveexample{The example shows the result of `empty` for different JSON
10387 Pointers.,json_pointer__empty}
10388
10389 @since version 3.6.0
10390 */
10391 bool empty() const noexcept
10392 {
10393 return reference_tokens.empty();
10394 }
10395
10396 private:
10397 /*!
10398 @param[in] s reference token to be converted into an array index
10399
10400 @return integer representation of @a s
10401
10402 @throw out_of_range.404 if string @a s could not be converted to an integer
10403 */
10404 static int array_index(const std::string& s)
10405 {
10406 std::size_t processed_chars = 0;
10407 const int res = std::stoi(s, &processed_chars);
10408
10409 // check if the string was completely read
10410 if (JSON_HEDLEY_UNLIKELY(processed_chars != s.size()))
10411 {
10412 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + s + "'"));
10413 }
10414
10415 return res;
10416 }
10417
10418 json_pointer top() const
10419 {
10420 if (JSON_HEDLEY_UNLIKELY(empty()))
10421 {
10422 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
10423 }
10424
10425 json_pointer result = *this;
10426 result.reference_tokens = {reference_tokens[0]};
10427 return result;
10428 }
10429
10430 /*!
10431 @brief create and return a reference to the pointed to value
10432
10433 @complexity Linear in the number of reference tokens.
10434
10435 @throw parse_error.109 if array index is not a number
10436 @throw type_error.313 if value cannot be unflattened
10437 */
10438 BasicJsonType& get_and_create(BasicJsonType& j) const
10439 {
10440 using size_type = typename BasicJsonType::size_type;
10441 auto result = &j;
10442
10443 // in case no reference tokens exist, return a reference to the JSON value
10444 // j which will be overwritten by a primitive value
10445 for (const auto& reference_token : reference_tokens)
10446 {
10447 switch (result->type())
10448 {
10449 case detail::value_t::null:
10450 {
10451 if (reference_token == "0")
10452 {
10453 // start a new array if reference token is 0
10454 result = &result->operator[](0);
10455 }
10456 else
10457 {
10458 // start a new object otherwise
10459 result = &result->operator[](reference_token);
10460 }
10461 break;
10462 }
10463
10464 case detail::value_t::object:
10465 {
10466 // create an entry in the object
10467 result = &result->operator[](reference_token);
10468 break;
10469 }
10470
10471 case detail::value_t::array:
10472 {
10473 // create an entry in the array
10474 JSON_TRY
10475 {
10476 result = &result->operator[](static_cast<size_type>(array_index(reference_token)));
10477 }
10478 JSON_CATCH(std::invalid_argument&)
10479 {
10480 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10481 }
10482 break;
10483 }
10484
10485 /*
10486 The following code is only reached if there exists a reference
10487 token _and_ the current value is primitive. In this case, we have
10488 an error situation, because primitive values may only occur as
10489 single value; that is, with an empty list of reference tokens.
10490 */
10491 default:
10492 JSON_THROW(detail::type_error::create(313, "invalid value to unflatten"));
10493 }
10494 }
10495
10496 return *result;
10497 }
10498
10499 /*!
10500 @brief return a reference to the pointed to value
10501
10502 @note This version does not throw if a value is not present, but tries to
10503 create nested values instead. For instance, calling this function
10504 with pointer `"/this/that"` on a null value is equivalent to calling
10505 `operator[]("this").operator[]("that")` on that value, effectively
10506 changing the null value to an object.
10507
10508 @param[in] ptr a JSON value
10509
10510 @return reference to the JSON value pointed to by the JSON pointer
10511
10512 @complexity Linear in the length of the JSON pointer.
10513
10514 @throw parse_error.106 if an array index begins with '0'
10515 @throw parse_error.109 if an array index was not a number
10516 @throw out_of_range.404 if the JSON pointer can not be resolved
10517 */
10518 BasicJsonType& get_unchecked(BasicJsonType* ptr) const
10519 {
10520 using size_type = typename BasicJsonType::size_type;
10521 for (const auto& reference_token : reference_tokens)
10522 {
10523 // convert null values to arrays or objects before continuing
10524 if (ptr->is_null())
10525 {
10526 // check if reference token is a number
10527 const bool nums =
10528 std::all_of(reference_token.begin(), reference_token.end(),
10529 [](const unsigned char x)
10530 {
10531 return std::isdigit(x);
10532 });
10533
10534 // change value to array for numbers or "-" or to object otherwise
10535 *ptr = (nums or reference_token == "-")
10536 ? detail::value_t::array
10537 : detail::value_t::object;
10538 }
10539
10540 switch (ptr->type())
10541 {
10542 case detail::value_t::object:
10543 {
10544 // use unchecked object access
10545 ptr = &ptr->operator[](reference_token);
10546 break;
10547 }
10548
10549 case detail::value_t::array:
10550 {
10551 // error condition (cf. RFC 6901, Sect. 4)
10552 if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10553 {
10554 JSON_THROW(detail::parse_error::create(106, 0,
10555 "array index '" + reference_token +
10556 "' must not begin with '0'"));
10557 }
10558
10559 if (reference_token == "-")
10560 {
10561 // explicitly treat "-" as index beyond the end
10562 ptr = &ptr->operator[](ptr->m_value.array->size());
10563 }
10564 else
10565 {
10566 // convert array index to number; unchecked access
10567 JSON_TRY
10568 {
10569 ptr = &ptr->operator[](
10570 static_cast<size_type>(array_index(reference_token)));
10571 }
10572 JSON_CATCH(std::invalid_argument&)
10573 {
10574 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10575 }
10576 }
10577 break;
10578 }
10579
10580 default:
10581 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10582 }
10583 }
10584
10585 return *ptr;
10586 }
10587
10588 /*!
10589 @throw parse_error.106 if an array index begins with '0'
10590 @throw parse_error.109 if an array index was not a number
10591 @throw out_of_range.402 if the array index '-' is used
10592 @throw out_of_range.404 if the JSON pointer can not be resolved
10593 */
10594 BasicJsonType& get_checked(BasicJsonType* ptr) const
10595 {
10596 using size_type = typename BasicJsonType::size_type;
10597 for (const auto& reference_token : reference_tokens)
10598 {
10599 switch (ptr->type())
10600 {
10601 case detail::value_t::object:
10602 {
10603 // note: at performs range check
10604 ptr = &ptr->at(reference_token);
10605 break;
10606 }
10607
10608 case detail::value_t::array:
10609 {
10610 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10611 {
10612 // "-" always fails the range check
10613 JSON_THROW(detail::out_of_range::create(402,
10614 "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
10615 ") is out of range"));
10616 }
10617
10618 // error condition (cf. RFC 6901, Sect. 4)
10619 if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10620 {
10621 JSON_THROW(detail::parse_error::create(106, 0,
10622 "array index '" + reference_token +
10623 "' must not begin with '0'"));
10624 }
10625
10626 // note: at performs range check
10627 JSON_TRY
10628 {
10629 ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
10630 }
10631 JSON_CATCH(std::invalid_argument&)
10632 {
10633 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10634 }
10635 break;
10636 }
10637
10638 default:
10639 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10640 }
10641 }
10642
10643 return *ptr;
10644 }
10645
10646 /*!
10647 @brief return a const reference to the pointed to value
10648
10649 @param[in] ptr a JSON value
10650
10651 @return const reference to the JSON value pointed to by the JSON
10652 pointer
10653
10654 @throw parse_error.106 if an array index begins with '0'
10655 @throw parse_error.109 if an array index was not a number
10656 @throw out_of_range.402 if the array index '-' is used
10657 @throw out_of_range.404 if the JSON pointer can not be resolved
10658 */
10659 const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const
10660 {
10661 using size_type = typename BasicJsonType::size_type;
10662 for (const auto& reference_token : reference_tokens)
10663 {
10664 switch (ptr->type())
10665 {
10666 case detail::value_t::object:
10667 {
10668 // use unchecked object access
10669 ptr = &ptr->operator[](reference_token);
10670 break;
10671 }
10672
10673 case detail::value_t::array:
10674 {
10675 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10676 {
10677 // "-" cannot be used for const access
10678 JSON_THROW(detail::out_of_range::create(402,
10679 "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
10680 ") is out of range"));
10681 }
10682
10683 // error condition (cf. RFC 6901, Sect. 4)
10684 if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10685 {
10686 JSON_THROW(detail::parse_error::create(106, 0,
10687 "array index '" + reference_token +
10688 "' must not begin with '0'"));
10689 }
10690
10691 // use unchecked array access
10692 JSON_TRY
10693 {
10694 ptr = &ptr->operator[](
10695 static_cast<size_type>(array_index(reference_token)));
10696 }
10697 JSON_CATCH(std::invalid_argument&)
10698 {
10699 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10700 }
10701 break;
10702 }
10703
10704 default:
10705 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10706 }
10707 }
10708
10709 return *ptr;
10710 }
10711
10712 /*!
10713 @throw parse_error.106 if an array index begins with '0'
10714 @throw parse_error.109 if an array index was not a number
10715 @throw out_of_range.402 if the array index '-' is used
10716 @throw out_of_range.404 if the JSON pointer can not be resolved
10717 */
10718 const BasicJsonType& get_checked(const BasicJsonType* ptr) const
10719 {
10720 using size_type = typename BasicJsonType::size_type;
10721 for (const auto& reference_token : reference_tokens)
10722 {
10723 switch (ptr->type())
10724 {
10725 case detail::value_t::object:
10726 {
10727 // note: at performs range check
10728 ptr = &ptr->at(reference_token);
10729 break;
10730 }
10731
10732 case detail::value_t::array:
10733 {
10734 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10735 {
10736 // "-" always fails the range check
10737 JSON_THROW(detail::out_of_range::create(402,
10738 "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
10739 ") is out of range"));
10740 }
10741
10742 // error condition (cf. RFC 6901, Sect. 4)
10743 if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10744 {
10745 JSON_THROW(detail::parse_error::create(106, 0,
10746 "array index '" + reference_token +
10747 "' must not begin with '0'"));
10748 }
10749
10750 // note: at performs range check
10751 JSON_TRY
10752 {
10753 ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
10754 }
10755 JSON_CATCH(std::invalid_argument&)
10756 {
10757 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10758 }
10759 break;
10760 }
10761
10762 default:
10763 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
10764 }
10765 }
10766
10767 return *ptr;
10768 }
10769
10770 /*!
10771 @throw parse_error.106 if an array index begins with '0'
10772 @throw parse_error.109 if an array index was not a number
10773 */
10774 bool contains(const BasicJsonType* ptr) const
10775 {
10776 using size_type = typename BasicJsonType::size_type;
10777 for (const auto& reference_token : reference_tokens)
10778 {
10779 switch (ptr->type())
10780 {
10781 case detail::value_t::object:
10782 {
10783 if (not ptr->contains(reference_token))
10784 {
10785 // we did not find the key in the object
10786 return false;
10787 }
10788
10789 ptr = &ptr->operator[](reference_token);
10790 break;
10791 }
10792
10793 case detail::value_t::array:
10794 {
10795 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
10796 {
10797 // "-" always fails the range check
10798 return false;
10799 }
10800
10801 // error condition (cf. RFC 6901, Sect. 4)
10802 if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
10803 {
10804 JSON_THROW(detail::parse_error::create(106, 0,
10805 "array index '" + reference_token +
10806 "' must not begin with '0'"));
10807 }
10808
10809 JSON_TRY
10810 {
10811 const auto idx = static_cast<size_type>(array_index(reference_token));
10812 if (idx >= ptr->size())
10813 {
10814 // index out of range
10815 return false;
10816 }
10817
10818 ptr = &ptr->operator[](idx);
10819 break;
10820 }
10821 JSON_CATCH(std::invalid_argument&)
10822 {
10823 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
10824 }
10825 break;
10826 }
10827
10828 default:
10829 {
10830 // we do not expect primitive values if there is still a
10831 // reference token to process
10832 return false;
10833 }
10834 }
10835 }
10836
10837 // no reference token left means we found a primitive value
10838 return true;
10839 }
10840
10841 /*!
10842 @brief split the string input to reference tokens
10843
10844 @note This function is only called by the json_pointer constructor.
10845 All exceptions below are documented there.
10846
10847 @throw parse_error.107 if the pointer is not empty or begins with '/'
10848 @throw parse_error.108 if character '~' is not followed by '0' or '1'
10849 */
10850 static std::vector<std::string> split(const std::string& reference_string)
10851 {
10852 std::vector<std::string> result;
10853
10854 // special case: empty reference string -> no reference tokens
10855 if (reference_string.empty())
10856 {
10857 return result;
10858 }
10859
10860 // check if nonempty reference string begins with slash
10861 if (JSON_HEDLEY_UNLIKELY(reference_string[0] != '/'))
10862 {
10863 JSON_THROW(detail::parse_error::create(107, 1,
10864 "JSON pointer must be empty or begin with '/' - was: '" +
10865 reference_string + "'"));
10866 }
10867
10868 // extract the reference tokens:
10869 // - slash: position of the last read slash (or end of string)
10870 // - start: position after the previous slash
10871 for (
10872 // search for the first slash after the first character
10873 std::size_t slash = reference_string.find_first_of('/', 1),
10874 // set the beginning of the first reference token
10875 start = 1;
10876 // we can stop if start == 0 (if slash == std::string::npos)
10877 start != 0;
10878 // set the beginning of the next reference token
10879 // (will eventually be 0 if slash == std::string::npos)
10880 start = (slash == std::string::npos) ? 0 : slash + 1,
10881 // find next slash
10882 slash = reference_string.find_first_of('/', start))
10883 {
10884 // use the text between the beginning of the reference token
10885 // (start) and the last slash (slash).
10886 auto reference_token = reference_string.substr(start, slash - start);
10887
10888 // check reference tokens are properly escaped
10889 for (std::size_t pos = reference_token.find_first_of('~');
10890 pos != std::string::npos;
10891 pos = reference_token.find_first_of('~', pos + 1))
10892 {
10893 assert(reference_token[pos] == '~');
10894
10895 // ~ must be followed by 0 or 1
10896 if (JSON_HEDLEY_UNLIKELY(pos == reference_token.size() - 1 or
10897 (reference_token[pos + 1] != '0' and
10898 reference_token[pos + 1] != '1')))
10899 {
10900 JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'"));
10901 }
10902 }
10903
10904 // finally, store the reference token
10905 unescape(reference_token);
10906 result.push_back(reference_token);
10907 }
10908
10909 return result;
10910 }
10911
10912 /*!
10913 @brief replace all occurrences of a substring by another string
10914
10915 @param[in,out] s the string to manipulate; changed so that all
10916 occurrences of @a f are replaced with @a t
10917 @param[in] f the substring to replace with @a t
10918 @param[in] t the string to replace @a f
10919
10920 @pre The search string @a f must not be empty. **This precondition is
10921 enforced with an assertion.**
10922
10923 @since version 2.0.0
10924 */
10925 static void replace_substring(std::string& s, const std::string& f,
10926 const std::string& t)
10927 {
10928 assert(not f.empty());
10929 for (auto pos = s.find(f); // find first occurrence of f
10930 pos != std::string::npos; // make sure f was found
10931 s.replace(pos, f.size(), t), // replace with t, and
10932 pos = s.find(f, pos + t.size())) // find next occurrence of f
10933 {}
10934 }
10935
10936 /// escape "~" to "~0" and "/" to "~1"
10937 static std::string escape(std::string s)
10938 {
10939 replace_substring(s, "~", "~0");
10940 replace_substring(s, "/", "~1");
10941 return s;
10942 }
10943
10944 /// unescape "~1" to tilde and "~0" to slash (order is important!)
10945 static void unescape(std::string& s)
10946 {
10947 replace_substring(s, "~1", "/");
10948 replace_substring(s, "~0", "~");
10949 }
10950
10951 /*!
10952 @param[in] reference_string the reference string to the current value
10953 @param[in] value the value to consider
10954 @param[in,out] result the result object to insert values to
10955
10956 @note Empty objects or arrays are flattened to `null`.
10957 */
10958 static void flatten(const std::string& reference_string,
10959 const BasicJsonType& value,
10960 BasicJsonType& result)
10961 {
10962 switch (value.type())
10963 {
10964 case detail::value_t::array:
10965 {
10966 if (value.m_value.array->empty())
10967 {
10968 // flatten empty array as null
10969 result[reference_string] = nullptr;
10970 }
10971 else
10972 {
10973 // iterate array and use index as reference string
10974 for (std::size_t i = 0; i < value.m_value.array->size(); ++i)
10975 {
10976 flatten(reference_string + "/" + std::to_string(i),
10977 value.m_value.array->operator[](i), result);
10978 }
10979 }
10980 break;
10981 }
10982
10983 case detail::value_t::object:
10984 {
10985 if (value.m_value.object->empty())
10986 {
10987 // flatten empty object as null
10988 result[reference_string] = nullptr;
10989 }
10990 else
10991 {
10992 // iterate object and use keys as reference string
10993 for (const auto& element : *value.m_value.object)
10994 {
10995 flatten(reference_string + "/" + escape(element.first), element.second, result);
10996 }
10997 }
10998 break;
10999 }
11000
11001 default:
11002 {
11003 // add primitive value with its reference string
11004 result[reference_string] = value;
11005 break;
11006 }
11007 }
11008 }
11009
11010 /*!
11011 @param[in] value flattened JSON
11012
11013 @return unflattened JSON
11014
11015 @throw parse_error.109 if array index is not a number
11016 @throw type_error.314 if value is not an object
11017 @throw type_error.315 if object values are not primitive
11018 @throw type_error.313 if value cannot be unflattened
11019 */
11020 static BasicJsonType
11021 unflatten(const BasicJsonType& value)
11022 {
11023 if (JSON_HEDLEY_UNLIKELY(not value.is_object()))
11024 {
11025 JSON_THROW(detail::type_error::create(314, "only objects can be unflattened"));
11026 }
11027
11028 BasicJsonType result;
11029
11030 // iterate the JSON object values
11031 for (const auto& element : *value.m_value.object)
11032 {
11033 if (JSON_HEDLEY_UNLIKELY(not element.second.is_primitive()))
11034 {
11035 JSON_THROW(detail::type_error::create(315, "values in object must be primitive"));
11036 }
11037
11038 // assign value to reference pointed to by JSON pointer; Note that if
11039 // the JSON pointer is "" (i.e., points to the whole value), function
11040 // get_and_create returns a reference to result itself. An assignment
11041 // will then create a primitive value.
11042 json_pointer(element.first).get_and_create(result) = element.second;
11043 }
11044
11045 return result;
11046 }
11047
11048 /*!
11049 @brief compares two JSON pointers for equality
11050
11051 @param[in] lhs JSON pointer to compare
11052 @param[in] rhs JSON pointer to compare
11053 @return whether @a lhs is equal to @a rhs
11054
11055 @complexity Linear in the length of the JSON pointer
11056
11057 @exceptionsafety No-throw guarantee: this function never throws exceptions.
11058 */
11059 friend bool operator==(json_pointer const& lhs,
11060 json_pointer const& rhs) noexcept
11061 {
11062 return lhs.reference_tokens == rhs.reference_tokens;
11063 }
11064
11065 /*!
11066 @brief compares two JSON pointers for inequality
11067
11068 @param[in] lhs JSON pointer to compare
11069 @param[in] rhs JSON pointer to compare
11070 @return whether @a lhs is not equal @a rhs
11071
11072 @complexity Linear in the length of the JSON pointer
11073
11074 @exceptionsafety No-throw guarantee: this function never throws exceptions.
11075 */
11076 friend bool operator!=(json_pointer const& lhs,
11077 json_pointer const& rhs) noexcept
11078 {
11079 return not (lhs == rhs);
11080 }
11081
11082 /// the reference tokens
11083 std::vector<std::string> reference_tokens;
11084};
11085} // namespace nlohmann
11086
11087// #include <nlohmann/detail/json_ref.hpp>
11088
11089
11090#include <initializer_list>
11091#include <utility>
11092
11093// #include <nlohmann/detail/meta/type_traits.hpp>
11094
11095
11096namespace nlohmann
11097{
11098namespace detail
11099{
11100template<typename BasicJsonType>
11101class json_ref
11102{
11103 public:
11104 using value_type = BasicJsonType;
11105
11106 json_ref(value_type&& value)
11107 : owned_value(std::move(value)), value_ref(&owned_value), is_rvalue(true)
11108 {}
11109
11110 json_ref(const value_type& value)
11111 : value_ref(const_cast<value_type*>(&value)), is_rvalue(false)
11112 {}
11113
11114 json_ref(std::initializer_list<json_ref> init)
11115 : owned_value(init), value_ref(&owned_value), is_rvalue(true)
11116 {}
11117
11118 template <
11119 class... Args,
11120 enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 >
11121 json_ref(Args && ... args)
11122 : owned_value(std::forward<Args>(args)...), value_ref(&owned_value),
11123 is_rvalue(true) {}
11124
11125 // class should be movable only
11126 json_ref(json_ref&&) = default;
11127 json_ref(const json_ref&) = delete;
11128 json_ref& operator=(const json_ref&) = delete;
11129 json_ref& operator=(json_ref&&) = delete;
11130 ~json_ref() = default;
11131
11132 value_type moved_or_copied() const
11133 {
11134 if (is_rvalue)
11135 {
11136 return std::move(*value_ref);
11137 }
11138 return *value_ref;
11139 }
11140
11141 value_type const& operator*() const
11142 {
11143 return *static_cast<value_type const*>(value_ref);
11144 }
11145
11146 value_type const* operator->() const
11147 {
11148 return static_cast<value_type const*>(value_ref);
11149 }
11150
11151 private:
11152 mutable value_type owned_value = nullptr;
11153 value_type* value_ref = nullptr;
11154 const bool is_rvalue;
11155};
11156} // namespace detail
11157} // namespace nlohmann
11158
11159// #include <nlohmann/detail/macro_scope.hpp>
11160
11161// #include <nlohmann/detail/meta/cpp_future.hpp>
11162
11163// #include <nlohmann/detail/meta/type_traits.hpp>
11164
11165// #include <nlohmann/detail/output/binary_writer.hpp>
11166
11167
11168#include <algorithm> // reverse
11169#include <array> // array
11170#include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
11171#include <cstring> // memcpy
11172#include <limits> // numeric_limits
11173#include <string> // string
11174
11175// #include <nlohmann/detail/input/binary_reader.hpp>
11176
11177// #include <nlohmann/detail/macro_scope.hpp>
11178
11179// #include <nlohmann/detail/output/output_adapters.hpp>
11180
11181
11182#include <algorithm> // copy
11183#include <cstddef> // size_t
11184#include <ios> // streamsize
11185#include <iterator> // back_inserter
11186#include <memory> // shared_ptr, make_shared
11187#include <ostream> // basic_ostream
11188#include <string> // basic_string
11189#include <vector> // vector
11190// #include <nlohmann/detail/macro_scope.hpp>
11191
11192
11193namespace nlohmann
11194{
11195namespace detail
11196{
11197/// abstract output adapter interface
11198template<typename CharType> struct output_adapter_protocol
11199{
11200 virtual void write_character(CharType c) = 0;
11201 virtual void write_characters(const CharType* s, std::size_t length) = 0;
11202 virtual ~output_adapter_protocol() = default;
11203};
11204
11205/// a type to simplify interfaces
11206template<typename CharType>
11207using output_adapter_t = std::shared_ptr<output_adapter_protocol<CharType>>;
11208
11209/// output adapter for byte vectors
11210template<typename CharType>
11211class output_vector_adapter : public output_adapter_protocol<CharType>
11212{
11213 public:
11214 explicit output_vector_adapter(std::vector<CharType>& vec) noexcept
11215 : v(vec)
11216 {}
11217
11218 void write_character(CharType c) override
11219 {
11220 v.push_back(c);
11221 }
11222
11223 JSON_HEDLEY_NON_NULL(2)
11224 void write_characters(const CharType* s, std::size_t length) override
11225 {
11226 std::copy(s, s + length, std::back_inserter(v));
11227 }
11228
11229 private:
11230 std::vector<CharType>& v;
11231};
11232
11233/// output adapter for output streams
11234template<typename CharType>
11235class output_stream_adapter : public output_adapter_protocol<CharType>
11236{
11237 public:
11238 explicit output_stream_adapter(std::basic_ostream<CharType>& s) noexcept
11239 : stream(s)
11240 {}
11241
11242 void write_character(CharType c) override
11243 {
11244 stream.put(c);
11245 }
11246
11247 JSON_HEDLEY_NON_NULL(2)
11248 void write_characters(const CharType* s, std::size_t length) override
11249 {
11250 stream.write(s, static_cast<std::streamsize>(length));
11251 }
11252
11253 private:
11254 std::basic_ostream<CharType>& stream;
11255};
11256
11257/// output adapter for basic_string
11258template<typename CharType, typename StringType = std::basic_string<CharType>>
11259class output_string_adapter : public output_adapter_protocol<CharType>
11260{
11261 public:
11262 explicit output_string_adapter(StringType& s) noexcept
11263 : str(s)
11264 {}
11265
11266 void write_character(CharType c) override
11267 {
11268 str.push_back(c);
11269 }
11270
11271 JSON_HEDLEY_NON_NULL(2)
11272 void write_characters(const CharType* s, std::size_t length) override
11273 {
11274 str.append(s, length);
11275 }
11276
11277 private:
11278 StringType& str;
11279};
11280
11281template<typename CharType, typename StringType = std::basic_string<CharType>>
11282class output_adapter
11283{
11284 public:
11285 output_adapter(std::vector<CharType>& vec)
11286 : oa(std::make_shared<output_vector_adapter<CharType>>(vec)) {}
11287
11288 output_adapter(std::basic_ostream<CharType>& s)
11289 : oa(std::make_shared<output_stream_adapter<CharType>>(s)) {}
11290
11291 output_adapter(StringType& s)
11292 : oa(std::make_shared<output_string_adapter<CharType, StringType>>(s)) {}
11293
11294 operator output_adapter_t<CharType>()
11295 {
11296 return oa;
11297 }
11298
11299 private:
11300 output_adapter_t<CharType> oa = nullptr;
11301};
11302} // namespace detail
11303} // namespace nlohmann
11304
11305
11306namespace nlohmann
11307{
11308namespace detail
11309{
11310///////////////////
11311// binary writer //
11312///////////////////
11313
11314/*!
11315@brief serialization to CBOR and MessagePack values
11316*/
11317template<typename BasicJsonType, typename CharType>
11318class binary_writer
11319{
11320 using string_t = typename BasicJsonType::string_t;
11321
11322 public:
11323 /*!
11324 @brief create a binary writer
11325
11326 @param[in] adapter output adapter to write to
11327 */
11328 explicit binary_writer(output_adapter_t<CharType> adapter) : oa(adapter)
11329 {
11330 assert(oa);
11331 }
11332
11333 /*!
11334 @param[in] j JSON value to serialize
11335 @pre j.type() == value_t::object
11336 */
11337 void write_bson(const BasicJsonType& j)
11338 {
11339 switch (j.type())
11340 {
11341 case value_t::object:
11342 {
11343 write_bson_object(*j.m_value.object);
11344 break;
11345 }
11346
11347 default:
11348 {
11349 JSON_THROW(type_error::create(317, "to serialize to BSON, top-level type must be object, but is " + std::string(j.type_name())));
11350 }
11351 }
11352 }
11353
11354 /*!
11355 @param[in] j JSON value to serialize
11356 */
11357 void write_cbor(const BasicJsonType& j)
11358 {
11359 switch (j.type())
11360 {
11361 case value_t::null:
11362 {
11363 oa->write_character(to_char_type(0xF6));
11364 break;
11365 }
11366
11367 case value_t::boolean:
11368 {
11369 oa->write_character(j.m_value.boolean
11370 ? to_char_type(0xF5)
11371 : to_char_type(0xF4));
11372 break;
11373 }
11374
11375 case value_t::number_integer:
11376 {
11377 if (j.m_value.number_integer >= 0)
11378 {
11379 // CBOR does not differentiate between positive signed
11380 // integers and unsigned integers. Therefore, we used the
11381 // code from the value_t::number_unsigned case here.
11382 if (j.m_value.number_integer <= 0x17)
11383 {
11384 write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11385 }
11386 else if (j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
11387 {
11388 oa->write_character(to_char_type(0x18));
11389 write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11390 }
11391 else if (j.m_value.number_integer <= (std::numeric_limits<std::uint16_t>::max)())
11392 {
11393 oa->write_character(to_char_type(0x19));
11394 write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
11395 }
11396 else if (j.m_value.number_integer <= (std::numeric_limits<std::uint32_t>::max)())
11397 {
11398 oa->write_character(to_char_type(0x1A));
11399 write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
11400 }
11401 else
11402 {
11403 oa->write_character(to_char_type(0x1B));
11404 write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
11405 }
11406 }
11407 else
11408 {
11409 // The conversions below encode the sign in the first
11410 // byte, and the value is converted to a positive number.
11411 const auto positive_number = -1 - j.m_value.number_integer;
11412 if (j.m_value.number_integer >= -24)
11413 {
11414 write_number(static_cast<std::uint8_t>(0x20 + positive_number));
11415 }
11416 else if (positive_number <= (std::numeric_limits<std::uint8_t>::max)())
11417 {
11418 oa->write_character(to_char_type(0x38));
11419 write_number(static_cast<std::uint8_t>(positive_number));
11420 }
11421 else if (positive_number <= (std::numeric_limits<std::uint16_t>::max)())
11422 {
11423 oa->write_character(to_char_type(0x39));
11424 write_number(static_cast<std::uint16_t>(positive_number));
11425 }
11426 else if (positive_number <= (std::numeric_limits<std::uint32_t>::max)())
11427 {
11428 oa->write_character(to_char_type(0x3A));
11429 write_number(static_cast<std::uint32_t>(positive_number));
11430 }
11431 else
11432 {
11433 oa->write_character(to_char_type(0x3B));
11434 write_number(static_cast<std::uint64_t>(positive_number));
11435 }
11436 }
11437 break;
11438 }
11439
11440 case value_t::number_unsigned:
11441 {
11442 if (j.m_value.number_unsigned <= 0x17)
11443 {
11444 write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned));
11445 }
11446 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
11447 {
11448 oa->write_character(to_char_type(0x18));
11449 write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned));
11450 }
11451 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
11452 {
11453 oa->write_character(to_char_type(0x19));
11454 write_number(static_cast<std::uint16_t>(j.m_value.number_unsigned));
11455 }
11456 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
11457 {
11458 oa->write_character(to_char_type(0x1A));
11459 write_number(static_cast<std::uint32_t>(j.m_value.number_unsigned));
11460 }
11461 else
11462 {
11463 oa->write_character(to_char_type(0x1B));
11464 write_number(static_cast<std::uint64_t>(j.m_value.number_unsigned));
11465 }
11466 break;
11467 }
11468
11469 case value_t::number_float:
11470 {
11471 oa->write_character(get_cbor_float_prefix(j.m_value.number_float));
11472 write_number(j.m_value.number_float);
11473 break;
11474 }
11475
11476 case value_t::string:
11477 {
11478 // step 1: write control byte and the string length
11479 const auto N = j.m_value.string->size();
11480 if (N <= 0x17)
11481 {
11482 write_number(static_cast<std::uint8_t>(0x60 + N));
11483 }
11484 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11485 {
11486 oa->write_character(to_char_type(0x78));
11487 write_number(static_cast<std::uint8_t>(N));
11488 }
11489 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11490 {
11491 oa->write_character(to_char_type(0x79));
11492 write_number(static_cast<std::uint16_t>(N));
11493 }
11494 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11495 {
11496 oa->write_character(to_char_type(0x7A));
11497 write_number(static_cast<std::uint32_t>(N));
11498 }
11499 // LCOV_EXCL_START
11500 else if (N <= (std::numeric_limits<std::uint64_t>::max)())
11501 {
11502 oa->write_character(to_char_type(0x7B));
11503 write_number(static_cast<std::uint64_t>(N));
11504 }
11505 // LCOV_EXCL_STOP
11506
11507 // step 2: write the string
11508 oa->write_characters(
11509 reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
11510 j.m_value.string->size());
11511 break;
11512 }
11513
11514 case value_t::array:
11515 {
11516 // step 1: write control byte and the array size
11517 const auto N = j.m_value.array->size();
11518 if (N <= 0x17)
11519 {
11520 write_number(static_cast<std::uint8_t>(0x80 + N));
11521 }
11522 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11523 {
11524 oa->write_character(to_char_type(0x98));
11525 write_number(static_cast<std::uint8_t>(N));
11526 }
11527 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11528 {
11529 oa->write_character(to_char_type(0x99));
11530 write_number(static_cast<std::uint16_t>(N));
11531 }
11532 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11533 {
11534 oa->write_character(to_char_type(0x9A));
11535 write_number(static_cast<std::uint32_t>(N));
11536 }
11537 // LCOV_EXCL_START
11538 else if (N <= (std::numeric_limits<std::uint64_t>::max)())
11539 {
11540 oa->write_character(to_char_type(0x9B));
11541 write_number(static_cast<std::uint64_t>(N));
11542 }
11543 // LCOV_EXCL_STOP
11544
11545 // step 2: write each element
11546 for (const auto& el : *j.m_value.array)
11547 {
11548 write_cbor(el);
11549 }
11550 break;
11551 }
11552
11553 case value_t::object:
11554 {
11555 // step 1: write control byte and the object size
11556 const auto N = j.m_value.object->size();
11557 if (N <= 0x17)
11558 {
11559 write_number(static_cast<std::uint8_t>(0xA0 + N));
11560 }
11561 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11562 {
11563 oa->write_character(to_char_type(0xB8));
11564 write_number(static_cast<std::uint8_t>(N));
11565 }
11566 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11567 {
11568 oa->write_character(to_char_type(0xB9));
11569 write_number(static_cast<std::uint16_t>(N));
11570 }
11571 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11572 {
11573 oa->write_character(to_char_type(0xBA));
11574 write_number(static_cast<std::uint32_t>(N));
11575 }
11576 // LCOV_EXCL_START
11577 else if (N <= (std::numeric_limits<std::uint64_t>::max)())
11578 {
11579 oa->write_character(to_char_type(0xBB));
11580 write_number(static_cast<std::uint64_t>(N));
11581 }
11582 // LCOV_EXCL_STOP
11583
11584 // step 2: write each element
11585 for (const auto& el : *j.m_value.object)
11586 {
11587 write_cbor(el.first);
11588 write_cbor(el.second);
11589 }
11590 break;
11591 }
11592
11593 default:
11594 break;
11595 }
11596 }
11597
11598 /*!
11599 @param[in] j JSON value to serialize
11600 */
11601 void write_msgpack(const BasicJsonType& j)
11602 {
11603 switch (j.type())
11604 {
11605 case value_t::null: // nil
11606 {
11607 oa->write_character(to_char_type(0xC0));
11608 break;
11609 }
11610
11611 case value_t::boolean: // true and false
11612 {
11613 oa->write_character(j.m_value.boolean
11614 ? to_char_type(0xC3)
11615 : to_char_type(0xC2));
11616 break;
11617 }
11618
11619 case value_t::number_integer:
11620 {
11621 if (j.m_value.number_integer >= 0)
11622 {
11623 // MessagePack does not differentiate between positive
11624 // signed integers and unsigned integers. Therefore, we used
11625 // the code from the value_t::number_unsigned case here.
11626 if (j.m_value.number_unsigned < 128)
11627 {
11628 // positive fixnum
11629 write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11630 }
11631 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
11632 {
11633 // uint 8
11634 oa->write_character(to_char_type(0xCC));
11635 write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11636 }
11637 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
11638 {
11639 // uint 16
11640 oa->write_character(to_char_type(0xCD));
11641 write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
11642 }
11643 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
11644 {
11645 // uint 32
11646 oa->write_character(to_char_type(0xCE));
11647 write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
11648 }
11649 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
11650 {
11651 // uint 64
11652 oa->write_character(to_char_type(0xCF));
11653 write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
11654 }
11655 }
11656 else
11657 {
11658 if (j.m_value.number_integer >= -32)
11659 {
11660 // negative fixnum
11661 write_number(static_cast<std::int8_t>(j.m_value.number_integer));
11662 }
11663 else if (j.m_value.number_integer >= (std::numeric_limits<std::int8_t>::min)() and
11664 j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
11665 {
11666 // int 8
11667 oa->write_character(to_char_type(0xD0));
11668 write_number(static_cast<std::int8_t>(j.m_value.number_integer));
11669 }
11670 else if (j.m_value.number_integer >= (std::numeric_limits<std::int16_t>::min)() and
11671 j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
11672 {
11673 // int 16
11674 oa->write_character(to_char_type(0xD1));
11675 write_number(static_cast<std::int16_t>(j.m_value.number_integer));
11676 }
11677 else if (j.m_value.number_integer >= (std::numeric_limits<std::int32_t>::min)() and
11678 j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
11679 {
11680 // int 32
11681 oa->write_character(to_char_type(0xD2));
11682 write_number(static_cast<std::int32_t>(j.m_value.number_integer));
11683 }
11684 else if (j.m_value.number_integer >= (std::numeric_limits<std::int64_t>::min)() and
11685 j.m_value.number_integer <= (std::numeric_limits<std::int64_t>::max)())
11686 {
11687 // int 64
11688 oa->write_character(to_char_type(0xD3));
11689 write_number(static_cast<std::int64_t>(j.m_value.number_integer));
11690 }
11691 }
11692 break;
11693 }
11694
11695 case value_t::number_unsigned:
11696 {
11697 if (j.m_value.number_unsigned < 128)
11698 {
11699 // positive fixnum
11700 write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11701 }
11702 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
11703 {
11704 // uint 8
11705 oa->write_character(to_char_type(0xCC));
11706 write_number(static_cast<std::uint8_t>(j.m_value.number_integer));
11707 }
11708 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
11709 {
11710 // uint 16
11711 oa->write_character(to_char_type(0xCD));
11712 write_number(static_cast<std::uint16_t>(j.m_value.number_integer));
11713 }
11714 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
11715 {
11716 // uint 32
11717 oa->write_character(to_char_type(0xCE));
11718 write_number(static_cast<std::uint32_t>(j.m_value.number_integer));
11719 }
11720 else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
11721 {
11722 // uint 64
11723 oa->write_character(to_char_type(0xCF));
11724 write_number(static_cast<std::uint64_t>(j.m_value.number_integer));
11725 }
11726 break;
11727 }
11728
11729 case value_t::number_float:
11730 {
11731 oa->write_character(get_msgpack_float_prefix(j.m_value.number_float));
11732 write_number(j.m_value.number_float);
11733 break;
11734 }
11735
11736 case value_t::string:
11737 {
11738 // step 1: write control byte and the string length
11739 const auto N = j.m_value.string->size();
11740 if (N <= 31)
11741 {
11742 // fixstr
11743 write_number(static_cast<std::uint8_t>(0xA0 | N));
11744 }
11745 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
11746 {
11747 // str 8
11748 oa->write_character(to_char_type(0xD9));
11749 write_number(static_cast<std::uint8_t>(N));
11750 }
11751 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11752 {
11753 // str 16
11754 oa->write_character(to_char_type(0xDA));
11755 write_number(static_cast<std::uint16_t>(N));
11756 }
11757 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11758 {
11759 // str 32
11760 oa->write_character(to_char_type(0xDB));
11761 write_number(static_cast<std::uint32_t>(N));
11762 }
11763
11764 // step 2: write the string
11765 oa->write_characters(
11766 reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
11767 j.m_value.string->size());
11768 break;
11769 }
11770
11771 case value_t::array:
11772 {
11773 // step 1: write control byte and the array size
11774 const auto N = j.m_value.array->size();
11775 if (N <= 15)
11776 {
11777 // fixarray
11778 write_number(static_cast<std::uint8_t>(0x90 | N));
11779 }
11780 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11781 {
11782 // array 16
11783 oa->write_character(to_char_type(0xDC));
11784 write_number(static_cast<std::uint16_t>(N));
11785 }
11786 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11787 {
11788 // array 32
11789 oa->write_character(to_char_type(0xDD));
11790 write_number(static_cast<std::uint32_t>(N));
11791 }
11792
11793 // step 2: write each element
11794 for (const auto& el : *j.m_value.array)
11795 {
11796 write_msgpack(el);
11797 }
11798 break;
11799 }
11800
11801 case value_t::object:
11802 {
11803 // step 1: write control byte and the object size
11804 const auto N = j.m_value.object->size();
11805 if (N <= 15)
11806 {
11807 // fixmap
11808 write_number(static_cast<std::uint8_t>(0x80 | (N & 0xF)));
11809 }
11810 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
11811 {
11812 // map 16
11813 oa->write_character(to_char_type(0xDE));
11814 write_number(static_cast<std::uint16_t>(N));
11815 }
11816 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
11817 {
11818 // map 32
11819 oa->write_character(to_char_type(0xDF));
11820 write_number(static_cast<std::uint32_t>(N));
11821 }
11822
11823 // step 2: write each element
11824 for (const auto& el : *j.m_value.object)
11825 {
11826 write_msgpack(el.first);
11827 write_msgpack(el.second);
11828 }
11829 break;
11830 }
11831
11832 default:
11833 break;
11834 }
11835 }
11836
11837 /*!
11838 @param[in] j JSON value to serialize
11839 @param[in] use_count whether to use '#' prefixes (optimized format)
11840 @param[in] use_type whether to use '$' prefixes (optimized format)
11841 @param[in] add_prefix whether prefixes need to be used for this value
11842 */
11843 void write_ubjson(const BasicJsonType& j, const bool use_count,
11844 const bool use_type, const bool add_prefix = true)
11845 {
11846 switch (j.type())
11847 {
11848 case value_t::null:
11849 {
11850 if (add_prefix)
11851 {
11852 oa->write_character(to_char_type('Z'));
11853 }
11854 break;
11855 }
11856
11857 case value_t::boolean:
11858 {
11859 if (add_prefix)
11860 {
11861 oa->write_character(j.m_value.boolean
11862 ? to_char_type('T')
11863 : to_char_type('F'));
11864 }
11865 break;
11866 }
11867
11868 case value_t::number_integer:
11869 {
11870 write_number_with_ubjson_prefix(j.m_value.number_integer, add_prefix);
11871 break;
11872 }
11873
11874 case value_t::number_unsigned:
11875 {
11876 write_number_with_ubjson_prefix(j.m_value.number_unsigned, add_prefix);
11877 break;
11878 }
11879
11880 case value_t::number_float:
11881 {
11882 write_number_with_ubjson_prefix(j.m_value.number_float, add_prefix);
11883 break;
11884 }
11885
11886 case value_t::string:
11887 {
11888 if (add_prefix)
11889 {
11890 oa->write_character(to_char_type('S'));
11891 }
11892 write_number_with_ubjson_prefix(j.m_value.string->size(), true);
11893 oa->write_characters(
11894 reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
11895 j.m_value.string->size());
11896 break;
11897 }
11898
11899 case value_t::array:
11900 {
11901 if (add_prefix)
11902 {
11903 oa->write_character(to_char_type('['));
11904 }
11905
11906 bool prefix_required = true;
11907 if (use_type and not j.m_value.array->empty())
11908 {
11909 assert(use_count);
11910 const CharType first_prefix = ubjson_prefix(j.front());
11911 const bool same_prefix = std::all_of(j.begin() + 1, j.end(),
11912 [this, first_prefix](const BasicJsonType & v)
11913 {
11914 return ubjson_prefix(v) == first_prefix;
11915 });
11916
11917 if (same_prefix)
11918 {
11919 prefix_required = false;
11920 oa->write_character(to_char_type('$'));
11921 oa->write_character(first_prefix);
11922 }
11923 }
11924
11925 if (use_count)
11926 {
11927 oa->write_character(to_char_type('#'));
11928 write_number_with_ubjson_prefix(j.m_value.array->size(), true);
11929 }
11930
11931 for (const auto& el : *j.m_value.array)
11932 {
11933 write_ubjson(el, use_count, use_type, prefix_required);
11934 }
11935
11936 if (not use_count)
11937 {
11938 oa->write_character(to_char_type(']'));
11939 }
11940
11941 break;
11942 }
11943
11944 case value_t::object:
11945 {
11946 if (add_prefix)
11947 {
11948 oa->write_character(to_char_type('{'));
11949 }
11950
11951 bool prefix_required = true;
11952 if (use_type and not j.m_value.object->empty())
11953 {
11954 assert(use_count);
11955 const CharType first_prefix = ubjson_prefix(j.front());
11956 const bool same_prefix = std::all_of(j.begin(), j.end(),
11957 [this, first_prefix](const BasicJsonType & v)
11958 {
11959 return ubjson_prefix(v) == first_prefix;
11960 });
11961
11962 if (same_prefix)
11963 {
11964 prefix_required = false;
11965 oa->write_character(to_char_type('$'));
11966 oa->write_character(first_prefix);
11967 }
11968 }
11969
11970 if (use_count)
11971 {
11972 oa->write_character(to_char_type('#'));
11973 write_number_with_ubjson_prefix(j.m_value.object->size(), true);
11974 }
11975
11976 for (const auto& el : *j.m_value.object)
11977 {
11978 write_number_with_ubjson_prefix(el.first.size(), true);
11979 oa->write_characters(
11980 reinterpret_cast<const CharType*>(el.first.c_str()),
11981 el.first.size());
11982 write_ubjson(el.second, use_count, use_type, prefix_required);
11983 }
11984
11985 if (not use_count)
11986 {
11987 oa->write_character(to_char_type('}'));
11988 }
11989
11990 break;
11991 }
11992
11993 default:
11994 break;
11995 }
11996 }
11997
11998 private:
11999 //////////
12000 // BSON //
12001 //////////
12002
12003 /*!
12004 @return The size of a BSON document entry header, including the id marker
12005 and the entry name size (and its null-terminator).
12006 */
12007 static std::size_t calc_bson_entry_header_size(const string_t& name)
12008 {
12009 const auto it = name.find(static_cast<typename string_t::value_type>(0));
12010 if (JSON_HEDLEY_UNLIKELY(it != BasicJsonType::string_t::npos))
12011 {
12012 JSON_THROW(out_of_range::create(409,
12013 "BSON key cannot contain code point U+0000 (at byte " + std::to_string(it) + ")"));
12014 }
12015
12016 return /*id*/ 1ul + name.size() + /*zero-terminator*/1u;
12017 }
12018
12019 /*!
12020 @brief Writes the given @a element_type and @a name to the output adapter
12021 */
12022 void write_bson_entry_header(const string_t& name,
12023 const std::uint8_t element_type)
12024 {
12025 oa->write_character(to_char_type(element_type)); // boolean
12026 oa->write_characters(
12027 reinterpret_cast<const CharType*>(name.c_str()),
12028 name.size() + 1u);
12029 }
12030
12031 /*!
12032 @brief Writes a BSON element with key @a name and boolean value @a value
12033 */
12034 void write_bson_boolean(const string_t& name,
12035 const bool value)
12036 {
12037 write_bson_entry_header(name, 0x08);
12038 oa->write_character(value ? to_char_type(0x01) : to_char_type(0x00));
12039 }
12040
12041 /*!
12042 @brief Writes a BSON element with key @a name and double value @a value
12043 */
12044 void write_bson_double(const string_t& name,
12045 const double value)
12046 {
12047 write_bson_entry_header(name, 0x01);
12048 write_number<double, true>(value);
12049 }
12050
12051 /*!
12052 @return The size of the BSON-encoded string in @a value
12053 */
12054 static std::size_t calc_bson_string_size(const string_t& value)
12055 {
12056 return sizeof(std::int32_t) + value.size() + 1ul;
12057 }
12058
12059 /*!
12060 @brief Writes a BSON element with key @a name and string value @a value
12061 */
12062 void write_bson_string(const string_t& name,
12063 const string_t& value)
12064 {
12065 write_bson_entry_header(name, 0x02);
12066
12067 write_number<std::int32_t, true>(static_cast<std::int32_t>(value.size() + 1ul));
12068 oa->write_characters(
12069 reinterpret_cast<const CharType*>(value.c_str()),
12070 value.size() + 1);
12071 }
12072
12073 /*!
12074 @brief Writes a BSON element with key @a name and null value
12075 */
12076 void write_bson_null(const string_t& name)
12077 {
12078 write_bson_entry_header(name, 0x0A);
12079 }
12080
12081 /*!
12082 @return The size of the BSON-encoded integer @a value
12083 */
12084 static std::size_t calc_bson_integer_size(const std::int64_t value)
12085 {
12086 return (std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)()
12087 ? sizeof(std::int32_t)
12088 : sizeof(std::int64_t);
12089 }
12090
12091 /*!
12092 @brief Writes a BSON element with key @a name and integer @a value
12093 */
12094 void write_bson_integer(const string_t& name,
12095 const std::int64_t value)
12096 {
12097 if ((std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)())
12098 {
12099 write_bson_entry_header(name, 0x10); // int32
12100 write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
12101 }
12102 else
12103 {
12104 write_bson_entry_header(name, 0x12); // int64
12105 write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
12106 }
12107 }
12108
12109 /*!
12110 @return The size of the BSON-encoded unsigned integer in @a j
12111 */
12112 static constexpr std::size_t calc_bson_unsigned_size(const std::uint64_t value) noexcept
12113 {
12114 return (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12115 ? sizeof(std::int32_t)
12116 : sizeof(std::int64_t);
12117 }
12118
12119 /*!
12120 @brief Writes a BSON element with key @a name and unsigned @a value
12121 */
12122 void write_bson_unsigned(const string_t& name,
12123 const std::uint64_t value)
12124 {
12125 if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12126 {
12127 write_bson_entry_header(name, 0x10 /* int32 */);
12128 write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
12129 }
12130 else if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
12131 {
12132 write_bson_entry_header(name, 0x12 /* int64 */);
12133 write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
12134 }
12135 else
12136 {
12137 JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(value) + " cannot be represented by BSON as it does not fit int64"));
12138 }
12139 }
12140
12141 /*!
12142 @brief Writes a BSON element with key @a name and object @a value
12143 */
12144 void write_bson_object_entry(const string_t& name,
12145 const typename BasicJsonType::object_t& value)
12146 {
12147 write_bson_entry_header(name, 0x03); // object
12148 write_bson_object(value);
12149 }
12150
12151 /*!
12152 @return The size of the BSON-encoded array @a value
12153 */
12154 static std::size_t calc_bson_array_size(const typename BasicJsonType::array_t& value)
12155 {
12156 std::size_t array_index = 0ul;
12157
12158 const std::size_t embedded_document_size = std::accumulate(std::begin(value), std::end(value), 0ul, [&array_index](std::size_t result, const typename BasicJsonType::array_t::value_type & el)
12159 {
12160 return result + calc_bson_element_size(std::to_string(array_index++), el);
12161 });
12162
12163 return sizeof(std::int32_t) + embedded_document_size + 1ul;
12164 }
12165
12166 /*!
12167 @brief Writes a BSON element with key @a name and array @a value
12168 */
12169 void write_bson_array(const string_t& name,
12170 const typename BasicJsonType::array_t& value)
12171 {
12172 write_bson_entry_header(name, 0x04); // array
12173 write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_array_size(value)));
12174
12175 std::size_t array_index = 0ul;
12176
12177 for (const auto& el : value)
12178 {
12179 write_bson_element(std::to_string(array_index++), el);
12180 }
12181
12182 oa->write_character(to_char_type(0x00));
12183 }
12184
12185 /*!
12186 @brief Calculates the size necessary to serialize the JSON value @a j with its @a name
12187 @return The calculated size for the BSON document entry for @a j with the given @a name.
12188 */
12189 static std::size_t calc_bson_element_size(const string_t& name,
12190 const BasicJsonType& j)
12191 {
12192 const auto header_size = calc_bson_entry_header_size(name);
12193 switch (j.type())
12194 {
12195 case value_t::object:
12196 return header_size + calc_bson_object_size(*j.m_value.object);
12197
12198 case value_t::array:
12199 return header_size + calc_bson_array_size(*j.m_value.array);
12200
12201 case value_t::boolean:
12202 return header_size + 1ul;
12203
12204 case value_t::number_float:
12205 return header_size + 8ul;
12206
12207 case value_t::number_integer:
12208 return header_size + calc_bson_integer_size(j.m_value.number_integer);
12209
12210 case value_t::number_unsigned:
12211 return header_size + calc_bson_unsigned_size(j.m_value.number_unsigned);
12212
12213 case value_t::string:
12214 return header_size + calc_bson_string_size(*j.m_value.string);
12215
12216 case value_t::null:
12217 return header_size + 0ul;
12218
12219 // LCOV_EXCL_START
12220 default:
12221 assert(false);
12222 return 0ul;
12223 // LCOV_EXCL_STOP
12224 }
12225 }
12226
12227 /*!
12228 @brief Serializes the JSON value @a j to BSON and associates it with the
12229 key @a name.
12230 @param name The name to associate with the JSON entity @a j within the
12231 current BSON document
12232 @return The size of the BSON entry
12233 */
12234 void write_bson_element(const string_t& name,
12235 const BasicJsonType& j)
12236 {
12237 switch (j.type())
12238 {
12239 case value_t::object:
12240 return write_bson_object_entry(name, *j.m_value.object);
12241
12242 case value_t::array:
12243 return write_bson_array(name, *j.m_value.array);
12244
12245 case value_t::boolean:
12246 return write_bson_boolean(name, j.m_value.boolean);
12247
12248 case value_t::number_float:
12249 return write_bson_double(name, j.m_value.number_float);
12250
12251 case value_t::number_integer:
12252 return write_bson_integer(name, j.m_value.number_integer);
12253
12254 case value_t::number_unsigned:
12255 return write_bson_unsigned(name, j.m_value.number_unsigned);
12256
12257 case value_t::string:
12258 return write_bson_string(name, *j.m_value.string);
12259
12260 case value_t::null:
12261 return write_bson_null(name);
12262
12263 // LCOV_EXCL_START
12264 default:
12265 assert(false);
12266 return;
12267 // LCOV_EXCL_STOP
12268 }
12269 }
12270
12271 /*!
12272 @brief Calculates the size of the BSON serialization of the given
12273 JSON-object @a j.
12274 @param[in] j JSON value to serialize
12275 @pre j.type() == value_t::object
12276 */
12277 static std::size_t calc_bson_object_size(const typename BasicJsonType::object_t& value)
12278 {
12279 std::size_t document_size = std::accumulate(value.begin(), value.end(), 0ul,
12280 [](size_t result, const typename BasicJsonType::object_t::value_type & el)
12281 {
12282 return result += calc_bson_element_size(el.first, el.second);
12283 });
12284
12285 return sizeof(std::int32_t) + document_size + 1ul;
12286 }
12287
12288 /*!
12289 @param[in] j JSON value to serialize
12290 @pre j.type() == value_t::object
12291 */
12292 void write_bson_object(const typename BasicJsonType::object_t& value)
12293 {
12294 write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_object_size(value)));
12295
12296 for (const auto& el : value)
12297 {
12298 write_bson_element(el.first, el.second);
12299 }
12300
12301 oa->write_character(to_char_type(0x00));
12302 }
12303
12304 //////////
12305 // CBOR //
12306 //////////
12307
12308 static constexpr CharType get_cbor_float_prefix(float /*unused*/)
12309 {
12310 return to_char_type(0xFA); // Single-Precision Float
12311 }
12312
12313 static constexpr CharType get_cbor_float_prefix(double /*unused*/)
12314 {
12315 return to_char_type(0xFB); // Double-Precision Float
12316 }
12317
12318 /////////////
12319 // MsgPack //
12320 /////////////
12321
12322 static constexpr CharType get_msgpack_float_prefix(float /*unused*/)
12323 {
12324 return to_char_type(0xCA); // float 32
12325 }
12326
12327 static constexpr CharType get_msgpack_float_prefix(double /*unused*/)
12328 {
12329 return to_char_type(0xCB); // float 64
12330 }
12331
12332 ////////////
12333 // UBJSON //
12334 ////////////
12335
12336 // UBJSON: write number (floating point)
12337 template<typename NumberType, typename std::enable_if<
12338 std::is_floating_point<NumberType>::value, int>::type = 0>
12339 void write_number_with_ubjson_prefix(const NumberType n,
12340 const bool add_prefix)
12341 {
12342 if (add_prefix)
12343 {
12344 oa->write_character(get_ubjson_float_prefix(n));
12345 }
12346 write_number(n);
12347 }
12348
12349 // UBJSON: write number (unsigned integer)
12350 template<typename NumberType, typename std::enable_if<
12351 std::is_unsigned<NumberType>::value, int>::type = 0>
12352 void write_number_with_ubjson_prefix(const NumberType n,
12353 const bool add_prefix)
12354 {
12355 if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
12356 {
12357 if (add_prefix)
12358 {
12359 oa->write_character(to_char_type('i')); // int8
12360 }
12361 write_number(static_cast<std::uint8_t>(n));
12362 }
12363 else if (n <= (std::numeric_limits<std::uint8_t>::max)())
12364 {
12365 if (add_prefix)
12366 {
12367 oa->write_character(to_char_type('U')); // uint8
12368 }
12369 write_number(static_cast<std::uint8_t>(n));
12370 }
12371 else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
12372 {
12373 if (add_prefix)
12374 {
12375 oa->write_character(to_char_type('I')); // int16
12376 }
12377 write_number(static_cast<std::int16_t>(n));
12378 }
12379 else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12380 {
12381 if (add_prefix)
12382 {
12383 oa->write_character(to_char_type('l')); // int32
12384 }
12385 write_number(static_cast<std::int32_t>(n));
12386 }
12387 else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
12388 {
12389 if (add_prefix)
12390 {
12391 oa->write_character(to_char_type('L')); // int64
12392 }
12393 write_number(static_cast<std::int64_t>(n));
12394 }
12395 else
12396 {
12397 JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
12398 }
12399 }
12400
12401 // UBJSON: write number (signed integer)
12402 template<typename NumberType, typename std::enable_if<
12403 std::is_signed<NumberType>::value and
12404 not std::is_floating_point<NumberType>::value, int>::type = 0>
12405 void write_number_with_ubjson_prefix(const NumberType n,
12406 const bool add_prefix)
12407 {
12408 if ((std::numeric_limits<std::int8_t>::min)() <= n and n <= (std::numeric_limits<std::int8_t>::max)())
12409 {
12410 if (add_prefix)
12411 {
12412 oa->write_character(to_char_type('i')); // int8
12413 }
12414 write_number(static_cast<std::int8_t>(n));
12415 }
12416 else if (static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::min)()) <= n and n <= static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::max)()))
12417 {
12418 if (add_prefix)
12419 {
12420 oa->write_character(to_char_type('U')); // uint8
12421 }
12422 write_number(static_cast<std::uint8_t>(n));
12423 }
12424 else if ((std::numeric_limits<std::int16_t>::min)() <= n and n <= (std::numeric_limits<std::int16_t>::max)())
12425 {
12426 if (add_prefix)
12427 {
12428 oa->write_character(to_char_type('I')); // int16
12429 }
12430 write_number(static_cast<std::int16_t>(n));
12431 }
12432 else if ((std::numeric_limits<std::int32_t>::min)() <= n and n <= (std::numeric_limits<std::int32_t>::max)())
12433 {
12434 if (add_prefix)
12435 {
12436 oa->write_character(to_char_type('l')); // int32
12437 }
12438 write_number(static_cast<std::int32_t>(n));
12439 }
12440 else if ((std::numeric_limits<std::int64_t>::min)() <= n and n <= (std::numeric_limits<std::int64_t>::max)())
12441 {
12442 if (add_prefix)
12443 {
12444 oa->write_character(to_char_type('L')); // int64
12445 }
12446 write_number(static_cast<std::int64_t>(n));
12447 }
12448 // LCOV_EXCL_START
12449 else
12450 {
12451 JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
12452 }
12453 // LCOV_EXCL_STOP
12454 }
12455
12456 /*!
12457 @brief determine the type prefix of container values
12458
12459 @note This function does not need to be 100% accurate when it comes to
12460 integer limits. In case a number exceeds the limits of int64_t,
12461 this will be detected by a later call to function
12462 write_number_with_ubjson_prefix. Therefore, we return 'L' for any
12463 value that does not fit the previous limits.
12464 */
12465 CharType ubjson_prefix(const BasicJsonType& j) const noexcept
12466 {
12467 switch (j.type())
12468 {
12469 case value_t::null:
12470 return 'Z';
12471
12472 case value_t::boolean:
12473 return j.m_value.boolean ? 'T' : 'F';
12474
12475 case value_t::number_integer:
12476 {
12477 if ((std::numeric_limits<std::int8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
12478 {
12479 return 'i';
12480 }
12481 if ((std::numeric_limits<std::uint8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
12482 {
12483 return 'U';
12484 }
12485 if ((std::numeric_limits<std::int16_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
12486 {
12487 return 'I';
12488 }
12489 if ((std::numeric_limits<std::int32_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
12490 {
12491 return 'l';
12492 }
12493 // no check and assume int64_t (see note above)
12494 return 'L';
12495 }
12496
12497 case value_t::number_unsigned:
12498 {
12499 if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
12500 {
12501 return 'i';
12502 }
12503 if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::uint8_t>::max)()))
12504 {
12505 return 'U';
12506 }
12507 if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
12508 {
12509 return 'I';
12510 }
12511 if (j.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
12512 {
12513 return 'l';
12514 }
12515 // no check and assume int64_t (see note above)
12516 return 'L';
12517 }
12518
12519 case value_t::number_float:
12520 return get_ubjson_float_prefix(j.m_value.number_float);
12521
12522 case value_t::string:
12523 return 'S';
12524
12525 case value_t::array:
12526 return '[';
12527
12528 case value_t::object:
12529 return '{';
12530
12531 default: // discarded values
12532 return 'N';
12533 }
12534 }
12535
12536 static constexpr CharType get_ubjson_float_prefix(float /*unused*/)
12537 {
12538 return 'd'; // float 32
12539 }
12540
12541 static constexpr CharType get_ubjson_float_prefix(double /*unused*/)
12542 {
12543 return 'D'; // float 64
12544 }
12545
12546 ///////////////////////
12547 // Utility functions //
12548 ///////////////////////
12549
12550 /*
12551 @brief write a number to output input
12552 @param[in] n number of type @a NumberType
12553 @tparam NumberType the type of the number
12554 @tparam OutputIsLittleEndian Set to true if output data is
12555 required to be little endian
12556
12557 @note This function needs to respect the system's endianess, because bytes
12558 in CBOR, MessagePack, and UBJSON are stored in network order (big
12559 endian) and therefore need reordering on little endian systems.
12560 */
12561 template<typename NumberType, bool OutputIsLittleEndian = false>
12562 void write_number(const NumberType n)
12563 {
12564 // step 1: write number to array of length NumberType
12565 std::array<CharType, sizeof(NumberType)> vec;
12566 std::memcpy(vec.data(), &n, sizeof(NumberType));
12567
12568 // step 2: write array to output (with possible reordering)
12569 if (is_little_endian != OutputIsLittleEndian)
12570 {
12571 // reverse byte order prior to conversion if necessary
12572 std::reverse(vec.begin(), vec.end());
12573 }
12574
12575 oa->write_characters(vec.data(), sizeof(NumberType));
12576 }
12577
12578 public:
12579 // The following to_char_type functions are implement the conversion
12580 // between uint8_t and CharType. In case CharType is not unsigned,
12581 // such a conversion is required to allow values greater than 128.
12582 // See <https://github.com/nlohmann/json/issues/1286> for a discussion.
12583 template < typename C = CharType,
12584 enable_if_t < std::is_signed<C>::value and std::is_signed<char>::value > * = nullptr >
12585 static constexpr CharType to_char_type(std::uint8_t x) noexcept
12586 {
12587 return *reinterpret_cast<char*>(&x);
12588 }
12589
12590 template < typename C = CharType,
12591 enable_if_t < std::is_signed<C>::value and std::is_unsigned<char>::value > * = nullptr >
12592 static CharType to_char_type(std::uint8_t x) noexcept
12593 {
12594 static_assert(sizeof(std::uint8_t) == sizeof(CharType), "size of CharType must be equal to std::uint8_t");
12595 static_assert(std::is_pod<CharType>::value, "CharType must be POD");
12596 CharType result;
12597 std::memcpy(&result, &x, sizeof(x));
12598 return result;
12599 }
12600
12601 template<typename C = CharType,
12602 enable_if_t<std::is_unsigned<C>::value>* = nullptr>
12603 static constexpr CharType to_char_type(std::uint8_t x) noexcept
12604 {
12605 return x;
12606 }
12607
12608 template < typename InputCharType, typename C = CharType,
12609 enable_if_t <
12610 std::is_signed<C>::value and
12611 std::is_signed<char>::value and
12612 std::is_same<char, typename std::remove_cv<InputCharType>::type>::value
12613 > * = nullptr >
12614 static constexpr CharType to_char_type(InputCharType x) noexcept
12615 {
12616 return x;
12617 }
12618
12619 private:
12620 /// whether we can assume little endianess
12621 const bool is_little_endian = binary_reader<BasicJsonType>::little_endianess();
12622
12623 /// the output
12624 output_adapter_t<CharType> oa = nullptr;
12625};
12626} // namespace detail
12627} // namespace nlohmann
12628
12629// #include <nlohmann/detail/output/output_adapters.hpp>
12630
12631// #include <nlohmann/detail/output/serializer.hpp>
12632
12633
12634#include <algorithm> // reverse, remove, fill, find, none_of
12635#include <array> // array
12636#include <cassert> // assert
12637#include <ciso646> // and, or
12638#include <clocale> // localeconv, lconv
12639#include <cmath> // labs, isfinite, isnan, signbit
12640#include <cstddef> // size_t, ptrdiff_t
12641#include <cstdint> // uint8_t
12642#include <cstdio> // snprintf
12643#include <limits> // numeric_limits
12644#include <string> // string
12645#include <type_traits> // is_same
12646#include <utility> // move
12647
12648// #include <nlohmann/detail/conversions/to_chars.hpp>
12649
12650
12651#include <array> // array
12652#include <cassert> // assert
12653#include <ciso646> // or, and, not
12654#include <cmath> // signbit, isfinite
12655#include <cstdint> // intN_t, uintN_t
12656#include <cstring> // memcpy, memmove
12657#include <limits> // numeric_limits
12658#include <type_traits> // conditional
12659// #include <nlohmann/detail/macro_scope.hpp>
12660
12661
12662namespace nlohmann
12663{
12664namespace detail
12665{
12666
12667/*!
12668@brief implements the Grisu2 algorithm for binary to decimal floating-point
12669conversion.
12670
12671This implementation is a slightly modified version of the reference
12672implementation which may be obtained from
12673http://florian.loitsch.com/publications (bench.tar.gz).
12674
12675The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
12676
12677For a detailed description of the algorithm see:
12678
12679[1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
12680 Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
12681 Language Design and Implementation, PLDI 2010
12682[2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
12683 Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
12684 Design and Implementation, PLDI 1996
12685*/
12686namespace dtoa_impl
12687{
12688
12689template <typename Target, typename Source>
12690Target reinterpret_bits(const Source source)
12691{
12692 static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
12693
12694 Target target;
12695 std::memcpy(&target, &source, sizeof(Source));
12696 return target;
12697}
12698
12699struct diyfp // f * 2^e
12700{
12701 static constexpr int kPrecision = 64; // = q
12702
12703 std::uint64_t f = 0;
12704 int e = 0;
12705
12706 constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
12707
12708 /*!
12709 @brief returns x - y
12710 @pre x.e == y.e and x.f >= y.f
12711 */
12712 static diyfp sub(const diyfp& x, const diyfp& y) noexcept
12713 {
12714 assert(x.e == y.e);
12715 assert(x.f >= y.f);
12716
12717 return {x.f - y.f, x.e};
12718 }
12719
12720 /*!
12721 @brief returns x * y
12722 @note The result is rounded. (Only the upper q bits are returned.)
12723 */
12724 static diyfp mul(const diyfp& x, const diyfp& y) noexcept
12725 {
12726 static_assert(kPrecision == 64, "internal error");
12727
12728 // Computes:
12729 // f = round((x.f * y.f) / 2^q)
12730 // e = x.e + y.e + q
12731
12732 // Emulate the 64-bit * 64-bit multiplication:
12733 //
12734 // p = u * v
12735 // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
12736 // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi )
12737 // = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 )
12738 // = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 )
12739 // = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3)
12740 // = (p0_lo ) + 2^32 (Q ) + 2^64 (H )
12741 // = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
12742 //
12743 // (Since Q might be larger than 2^32 - 1)
12744 //
12745 // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
12746 //
12747 // (Q_hi + H does not overflow a 64-bit int)
12748 //
12749 // = p_lo + 2^64 p_hi
12750
12751 const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
12752 const std::uint64_t u_hi = x.f >> 32u;
12753 const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
12754 const std::uint64_t v_hi = y.f >> 32u;
12755
12756 const std::uint64_t p0 = u_lo * v_lo;
12757 const std::uint64_t p1 = u_lo * v_hi;
12758 const std::uint64_t p2 = u_hi * v_lo;
12759 const std::uint64_t p3 = u_hi * v_hi;
12760
12761 const std::uint64_t p0_hi = p0 >> 32u;
12762 const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
12763 const std::uint64_t p1_hi = p1 >> 32u;
12764 const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
12765 const std::uint64_t p2_hi = p2 >> 32u;
12766
12767 std::uint64_t Q = p0_hi + p1_lo + p2_lo;
12768
12769 // The full product might now be computed as
12770 //
12771 // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
12772 // p_lo = p0_lo + (Q << 32)
12773 //
12774 // But in this particular case here, the full p_lo is not required.
12775 // Effectively we only need to add the highest bit in p_lo to p_hi (and
12776 // Q_hi + 1 does not overflow).
12777
12778 Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
12779
12780 const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
12781
12782 return {h, x.e + y.e + 64};
12783 }
12784
12785 /*!
12786 @brief normalize x such that the significand is >= 2^(q-1)
12787 @pre x.f != 0
12788 */
12789 static diyfp normalize(diyfp x) noexcept
12790 {
12791 assert(x.f != 0);
12792
12793 while ((x.f >> 63u) == 0)
12794 {
12795 x.f <<= 1u;
12796 x.e--;
12797 }
12798
12799 return x;
12800 }
12801
12802 /*!
12803 @brief normalize x such that the result has the exponent E
12804 @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
12805 */
12806 static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
12807 {
12808 const int delta = x.e - target_exponent;
12809
12810 assert(delta >= 0);
12811 assert(((x.f << delta) >> delta) == x.f);
12812
12813 return {x.f << delta, target_exponent};
12814 }
12815};
12816
12817struct boundaries
12818{
12819 diyfp w;
12820 diyfp minus;
12821 diyfp plus;
12822};
12823
12824/*!
12825Compute the (normalized) diyfp representing the input number 'value' and its
12826boundaries.
12827
12828@pre value must be finite and positive
12829*/
12830template <typename FloatType>
12831boundaries compute_boundaries(FloatType value)
12832{
12833 assert(std::isfinite(value));
12834 assert(value > 0);
12835
12836 // Convert the IEEE representation into a diyfp.
12837 //
12838 // If v is denormal:
12839 // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
12840 // If v is normalized:
12841 // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
12842
12843 static_assert(std::numeric_limits<FloatType>::is_iec559,
12844 "internal error: dtoa_short requires an IEEE-754 floating-point implementation");
12845
12846 constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
12847 constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
12848 constexpr int kMinExp = 1 - kBias;
12849 constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
12850
12851 using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type;
12852
12853 const std::uint64_t bits = reinterpret_bits<bits_type>(value);
12854 const std::uint64_t E = bits >> (kPrecision - 1);
12855 const std::uint64_t F = bits & (kHiddenBit - 1);
12856
12857 const bool is_denormal = E == 0;
12858 const diyfp v = is_denormal
12859 ? diyfp(F, kMinExp)
12860 : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
12861
12862 // Compute the boundaries m- and m+ of the floating-point value
12863 // v = f * 2^e.
12864 //
12865 // Determine v- and v+, the floating-point predecessor and successor if v,
12866 // respectively.
12867 //
12868 // v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
12869 // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
12870 //
12871 // v+ = v + 2^e
12872 //
12873 // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
12874 // between m- and m+ round to v, regardless of how the input rounding
12875 // algorithm breaks ties.
12876 //
12877 // ---+-------------+-------------+-------------+-------------+--- (A)
12878 // v- m- v m+ v+
12879 //
12880 // -----------------+------+------+-------------+-------------+--- (B)
12881 // v- m- v m+ v+
12882
12883 const bool lower_boundary_is_closer = F == 0 and E > 1;
12884 const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
12885 const diyfp m_minus = lower_boundary_is_closer
12886 ? diyfp(4 * v.f - 1, v.e - 2) // (B)
12887 : diyfp(2 * v.f - 1, v.e - 1); // (A)
12888
12889 // Determine the normalized w+ = m+.
12890 const diyfp w_plus = diyfp::normalize(m_plus);
12891
12892 // Determine w- = m- such that e_(w-) = e_(w+).
12893 const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
12894
12895 return {diyfp::normalize(v), w_minus, w_plus};
12896}
12897
12898// Given normalized diyfp w, Grisu needs to find a (normalized) cached
12899// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
12900// within a certain range [alpha, gamma] (Definition 3.2 from [1])
12901//
12902// alpha <= e = e_c + e_w + q <= gamma
12903//
12904// or
12905//
12906// f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
12907// <= f_c * f_w * 2^gamma
12908//
12909// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
12910//
12911// 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
12912//
12913// or
12914//
12915// 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
12916//
12917// The choice of (alpha,gamma) determines the size of the table and the form of
12918// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
12919// in practice:
12920//
12921// The idea is to cut the number c * w = f * 2^e into two parts, which can be
12922// processed independently: An integral part p1, and a fractional part p2:
12923//
12924// f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
12925// = (f div 2^-e) + (f mod 2^-e) * 2^e
12926// = p1 + p2 * 2^e
12927//
12928// The conversion of p1 into decimal form requires a series of divisions and
12929// modulos by (a power of) 10. These operations are faster for 32-bit than for
12930// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
12931// achieved by choosing
12932//
12933// -e >= 32 or e <= -32 := gamma
12934//
12935// In order to convert the fractional part
12936//
12937// p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
12938//
12939// into decimal form, the fraction is repeatedly multiplied by 10 and the digits
12940// d[-i] are extracted in order:
12941//
12942// (10 * p2) div 2^-e = d[-1]
12943// (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
12944//
12945// The multiplication by 10 must not overflow. It is sufficient to choose
12946//
12947// 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
12948//
12949// Since p2 = f mod 2^-e < 2^-e,
12950//
12951// -e <= 60 or e >= -60 := alpha
12952
12953constexpr int kAlpha = -60;
12954constexpr int kGamma = -32;
12955
12956struct cached_power // c = f * 2^e ~= 10^k
12957{
12958 std::uint64_t f;
12959 int e;
12960 int k;
12961};
12962
12963/*!
12964For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
12965power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
12966satisfies (Definition 3.2 from [1])
12967
12968 alpha <= e_c + e + q <= gamma.
12969*/
12970inline cached_power get_cached_power_for_binary_exponent(int e)
12971{
12972 // Now
12973 //
12974 // alpha <= e_c + e + q <= gamma (1)
12975 // ==> f_c * 2^alpha <= c * 2^e * 2^q
12976 //
12977 // and since the c's are normalized, 2^(q-1) <= f_c,
12978 //
12979 // ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
12980 // ==> 2^(alpha - e - 1) <= c
12981 //
12982 // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
12983 //
12984 // k = ceil( log_10( 2^(alpha - e - 1) ) )
12985 // = ceil( (alpha - e - 1) * log_10(2) )
12986 //
12987 // From the paper:
12988 // "In theory the result of the procedure could be wrong since c is rounded,
12989 // and the computation itself is approximated [...]. In practice, however,
12990 // this simple function is sufficient."
12991 //
12992 // For IEEE double precision floating-point numbers converted into
12993 // normalized diyfp's w = f * 2^e, with q = 64,
12994 //
12995 // e >= -1022 (min IEEE exponent)
12996 // -52 (p - 1)
12997 // -52 (p - 1, possibly normalize denormal IEEE numbers)
12998 // -11 (normalize the diyfp)
12999 // = -1137
13000 //
13001 // and
13002 //
13003 // e <= +1023 (max IEEE exponent)
13004 // -52 (p - 1)
13005 // -11 (normalize the diyfp)
13006 // = 960
13007 //
13008 // This binary exponent range [-1137,960] results in a decimal exponent
13009 // range [-307,324]. One does not need to store a cached power for each
13010 // k in this range. For each such k it suffices to find a cached power
13011 // such that the exponent of the product lies in [alpha,gamma].
13012 // This implies that the difference of the decimal exponents of adjacent
13013 // table entries must be less than or equal to
13014 //
13015 // floor( (gamma - alpha) * log_10(2) ) = 8.
13016 //
13017 // (A smaller distance gamma-alpha would require a larger table.)
13018
13019 // NB:
13020 // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
13021
13022 constexpr int kCachedPowersMinDecExp = -300;
13023 constexpr int kCachedPowersDecStep = 8;
13024
13025 static constexpr std::array<cached_power, 79> kCachedPowers =
13026 {
13027 {
13028 { 0xAB70FE17C79AC6CA, -1060, -300 },
13029 { 0xFF77B1FCBEBCDC4F, -1034, -292 },
13030 { 0xBE5691EF416BD60C, -1007, -284 },
13031 { 0x8DD01FAD907FFC3C, -980, -276 },
13032 { 0xD3515C2831559A83, -954, -268 },
13033 { 0x9D71AC8FADA6C9B5, -927, -260 },
13034 { 0xEA9C227723EE8BCB, -901, -252 },
13035 { 0xAECC49914078536D, -874, -244 },
13036 { 0x823C12795DB6CE57, -847, -236 },
13037 { 0xC21094364DFB5637, -821, -228 },
13038 { 0x9096EA6F3848984F, -794, -220 },
13039 { 0xD77485CB25823AC7, -768, -212 },
13040 { 0xA086CFCD97BF97F4, -741, -204 },
13041 { 0xEF340A98172AACE5, -715, -196 },
13042 { 0xB23867FB2A35B28E, -688, -188 },
13043 { 0x84C8D4DFD2C63F3B, -661, -180 },
13044 { 0xC5DD44271AD3CDBA, -635, -172 },
13045 { 0x936B9FCEBB25C996, -608, -164 },
13046 { 0xDBAC6C247D62A584, -582, -156 },
13047 { 0xA3AB66580D5FDAF6, -555, -148 },
13048 { 0xF3E2F893DEC3F126, -529, -140 },
13049 { 0xB5B5ADA8AAFF80B8, -502, -132 },
13050 { 0x87625F056C7C4A8B, -475, -124 },
13051 { 0xC9BCFF6034C13053, -449, -116 },
13052 { 0x964E858C91BA2655, -422, -108 },
13053 { 0xDFF9772470297EBD, -396, -100 },
13054 { 0xA6DFBD9FB8E5B88F, -369, -92 },
13055 { 0xF8A95FCF88747D94, -343, -84 },
13056 { 0xB94470938FA89BCF, -316, -76 },
13057 { 0x8A08F0F8BF0F156B, -289, -68 },
13058 { 0xCDB02555653131B6, -263, -60 },
13059 { 0x993FE2C6D07B7FAC, -236, -52 },
13060 { 0xE45C10C42A2B3B06, -210, -44 },
13061 { 0xAA242499697392D3, -183, -36 },
13062 { 0xFD87B5F28300CA0E, -157, -28 },
13063 { 0xBCE5086492111AEB, -130, -20 },
13064 { 0x8CBCCC096F5088CC, -103, -12 },
13065 { 0xD1B71758E219652C, -77, -4 },
13066 { 0x9C40000000000000, -50, 4 },
13067 { 0xE8D4A51000000000, -24, 12 },
13068 { 0xAD78EBC5AC620000, 3, 20 },
13069 { 0x813F3978F8940984, 30, 28 },
13070 { 0xC097CE7BC90715B3, 56, 36 },
13071 { 0x8F7E32CE7BEA5C70, 83, 44 },
13072 { 0xD5D238A4ABE98068, 109, 52 },
13073 { 0x9F4F2726179A2245, 136, 60 },
13074 { 0xED63A231D4C4FB27, 162, 68 },
13075 { 0xB0DE65388CC8ADA8, 189, 76 },
13076 { 0x83C7088E1AAB65DB, 216, 84 },
13077 { 0xC45D1DF942711D9A, 242, 92 },
13078 { 0x924D692CA61BE758, 269, 100 },
13079 { 0xDA01EE641A708DEA, 295, 108 },
13080 { 0xA26DA3999AEF774A, 322, 116 },
13081 { 0xF209787BB47D6B85, 348, 124 },
13082 { 0xB454E4A179DD1877, 375, 132 },
13083 { 0x865B86925B9BC5C2, 402, 140 },
13084 { 0xC83553C5C8965D3D, 428, 148 },
13085 { 0x952AB45CFA97A0B3, 455, 156 },
13086 { 0xDE469FBD99A05FE3, 481, 164 },
13087 { 0xA59BC234DB398C25, 508, 172 },
13088 { 0xF6C69A72A3989F5C, 534, 180 },
13089 { 0xB7DCBF5354E9BECE, 561, 188 },
13090 { 0x88FCF317F22241E2, 588, 196 },
13091 { 0xCC20CE9BD35C78A5, 614, 204 },
13092 { 0x98165AF37B2153DF, 641, 212 },
13093 { 0xE2A0B5DC971F303A, 667, 220 },
13094 { 0xA8D9D1535CE3B396, 694, 228 },
13095 { 0xFB9B7CD9A4A7443C, 720, 236 },
13096 { 0xBB764C4CA7A44410, 747, 244 },
13097 { 0x8BAB8EEFB6409C1A, 774, 252 },
13098 { 0xD01FEF10A657842C, 800, 260 },
13099 { 0x9B10A4E5E9913129, 827, 268 },
13100 { 0xE7109BFBA19C0C9D, 853, 276 },
13101 { 0xAC2820D9623BF429, 880, 284 },
13102 { 0x80444B5E7AA7CF85, 907, 292 },
13103 { 0xBF21E44003ACDD2D, 933, 300 },
13104 { 0x8E679C2F5E44FF8F, 960, 308 },
13105 { 0xD433179D9C8CB841, 986, 316 },
13106 { 0x9E19DB92B4E31BA9, 1013, 324 },
13107 }
13108 };
13109
13110 // This computation gives exactly the same results for k as
13111 // k = ceil((kAlpha - e - 1) * 0.30102999566398114)
13112 // for |e| <= 1500, but doesn't require floating-point operations.
13113 // NB: log_10(2) ~= 78913 / 2^18
13114 assert(e >= -1500);
13115 assert(e <= 1500);
13116 const int f = kAlpha - e - 1;
13117 const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
13118
13119 const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
13120 assert(index >= 0);
13121 assert(static_cast<std::size_t>(index) < kCachedPowers.size());
13122
13123 const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
13124 assert(kAlpha <= cached.e + e + 64);
13125 assert(kGamma >= cached.e + e + 64);
13126
13127 return cached;
13128}
13129
13130/*!
13131For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
13132For n == 0, returns 1 and sets pow10 := 1.
13133*/
13134inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
13135{
13136 // LCOV_EXCL_START
13137 if (n >= 1000000000)
13138 {
13139 pow10 = 1000000000;
13140 return 10;
13141 }
13142 // LCOV_EXCL_STOP
13143 else if (n >= 100000000)
13144 {
13145 pow10 = 100000000;
13146 return 9;
13147 }
13148 else if (n >= 10000000)
13149 {
13150 pow10 = 10000000;
13151 return 8;
13152 }
13153 else if (n >= 1000000)
13154 {
13155 pow10 = 1000000;
13156 return 7;
13157 }
13158 else if (n >= 100000)
13159 {
13160 pow10 = 100000;
13161 return 6;
13162 }
13163 else if (n >= 10000)
13164 {
13165 pow10 = 10000;
13166 return 5;
13167 }
13168 else if (n >= 1000)
13169 {
13170 pow10 = 1000;
13171 return 4;
13172 }
13173 else if (n >= 100)
13174 {
13175 pow10 = 100;
13176 return 3;
13177 }
13178 else if (n >= 10)
13179 {
13180 pow10 = 10;
13181 return 2;
13182 }
13183 else
13184 {
13185 pow10 = 1;
13186 return 1;
13187 }
13188}
13189
13190inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,
13191 std::uint64_t rest, std::uint64_t ten_k)
13192{
13193 assert(len >= 1);
13194 assert(dist <= delta);
13195 assert(rest <= delta);
13196 assert(ten_k > 0);
13197
13198 // <--------------------------- delta ---->
13199 // <---- dist --------->
13200 // --------------[------------------+-------------------]--------------
13201 // M- w M+
13202 //
13203 // ten_k
13204 // <------>
13205 // <---- rest ---->
13206 // --------------[------------------+----+--------------]--------------
13207 // w V
13208 // = buf * 10^k
13209 //
13210 // ten_k represents a unit-in-the-last-place in the decimal representation
13211 // stored in buf.
13212 // Decrement buf by ten_k while this takes buf closer to w.
13213
13214 // The tests are written in this order to avoid overflow in unsigned
13215 // integer arithmetic.
13216
13217 while (rest < dist
13218 and delta - rest >= ten_k
13219 and (rest + ten_k < dist or dist - rest > rest + ten_k - dist))
13220 {
13221 assert(buf[len - 1] != '0');
13222 buf[len - 1]--;
13223 rest += ten_k;
13224 }
13225}
13226
13227/*!
13228Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
13229M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
13230*/
13231inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
13232 diyfp M_minus, diyfp w, diyfp M_plus)
13233{
13234 static_assert(kAlpha >= -60, "internal error");
13235 static_assert(kGamma <= -32, "internal error");
13236
13237 // Generates the digits (and the exponent) of a decimal floating-point
13238 // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
13239 // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
13240 //
13241 // <--------------------------- delta ---->
13242 // <---- dist --------->
13243 // --------------[------------------+-------------------]--------------
13244 // M- w M+
13245 //
13246 // Grisu2 generates the digits of M+ from left to right and stops as soon as
13247 // V is in [M-,M+].
13248
13249 assert(M_plus.e >= kAlpha);
13250 assert(M_plus.e <= kGamma);
13251
13252 std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
13253 std::uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e)
13254
13255 // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
13256 //
13257 // M+ = f * 2^e
13258 // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
13259 // = ((p1 ) * 2^-e + (p2 )) * 2^e
13260 // = p1 + p2 * 2^e
13261
13262 const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
13263
13264 auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
13265 std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
13266
13267 // 1)
13268 //
13269 // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
13270
13271 assert(p1 > 0);
13272
13273 std::uint32_t pow10;
13274 const int k = find_largest_pow10(p1, pow10);
13275
13276 // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
13277 //
13278 // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
13279 // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
13280 //
13281 // M+ = p1 + p2 * 2^e
13282 // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
13283 // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
13284 // = d[k-1] * 10^(k-1) + ( rest) * 2^e
13285 //
13286 // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
13287 //
13288 // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
13289 //
13290 // but stop as soon as
13291 //
13292 // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
13293
13294 int n = k;
13295 while (n > 0)
13296 {
13297 // Invariants:
13298 // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
13299 // pow10 = 10^(n-1) <= p1 < 10^n
13300 //
13301 const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
13302 const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
13303 //
13304 // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
13305 // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
13306 //
13307 assert(d <= 9);
13308 buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
13309 //
13310 // M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
13311 //
13312 p1 = r;
13313 n--;
13314 //
13315 // M+ = buffer * 10^n + (p1 + p2 * 2^e)
13316 // pow10 = 10^n
13317 //
13318
13319 // Now check if enough digits have been generated.
13320 // Compute
13321 //
13322 // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
13323 //
13324 // Note:
13325 // Since rest and delta share the same exponent e, it suffices to
13326 // compare the significands.
13327 const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
13328 if (rest <= delta)
13329 {
13330 // V = buffer * 10^n, with M- <= V <= M+.
13331
13332 decimal_exponent += n;
13333
13334 // We may now just stop. But instead look if the buffer could be
13335 // decremented to bring V closer to w.
13336 //
13337 // pow10 = 10^n is now 1 ulp in the decimal representation V.
13338 // The rounding procedure works with diyfp's with an implicit
13339 // exponent of e.
13340 //
13341 // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
13342 //
13343 const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
13344 grisu2_round(buffer, length, dist, delta, rest, ten_n);
13345
13346 return;
13347 }
13348
13349 pow10 /= 10;
13350 //
13351 // pow10 = 10^(n-1) <= p1 < 10^n
13352 // Invariants restored.
13353 }
13354
13355 // 2)
13356 //
13357 // The digits of the integral part have been generated:
13358 //
13359 // M+ = d[k-1]...d[1]d[0] + p2 * 2^e
13360 // = buffer + p2 * 2^e
13361 //
13362 // Now generate the digits of the fractional part p2 * 2^e.
13363 //
13364 // Note:
13365 // No decimal point is generated: the exponent is adjusted instead.
13366 //
13367 // p2 actually represents the fraction
13368 //
13369 // p2 * 2^e
13370 // = p2 / 2^-e
13371 // = d[-1] / 10^1 + d[-2] / 10^2 + ...
13372 //
13373 // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
13374 //
13375 // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
13376 // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
13377 //
13378 // using
13379 //
13380 // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
13381 // = ( d) * 2^-e + ( r)
13382 //
13383 // or
13384 // 10^m * p2 * 2^e = d + r * 2^e
13385 //
13386 // i.e.
13387 //
13388 // M+ = buffer + p2 * 2^e
13389 // = buffer + 10^-m * (d + r * 2^e)
13390 // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
13391 //
13392 // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
13393
13394 assert(p2 > delta);
13395
13396 int m = 0;
13397 for (;;)
13398 {
13399 // Invariant:
13400 // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
13401 // = buffer * 10^-m + 10^-m * (p2 ) * 2^e
13402 // = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e
13403 // = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
13404 //
13405 assert(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);
13406 p2 *= 10;
13407 const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
13408 const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
13409 //
13410 // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
13411 // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
13412 // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
13413 //
13414 assert(d <= 9);
13415 buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
13416 //
13417 // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
13418 //
13419 p2 = r;
13420 m++;
13421 //
13422 // M+ = buffer * 10^-m + 10^-m * p2 * 2^e
13423 // Invariant restored.
13424
13425 // Check if enough digits have been generated.
13426 //
13427 // 10^-m * p2 * 2^e <= delta * 2^e
13428 // p2 * 2^e <= 10^m * delta * 2^e
13429 // p2 <= 10^m * delta
13430 delta *= 10;
13431 dist *= 10;
13432 if (p2 <= delta)
13433 {
13434 break;
13435 }
13436 }
13437
13438 // V = buffer * 10^-m, with M- <= V <= M+.
13439
13440 decimal_exponent -= m;
13441
13442 // 1 ulp in the decimal representation is now 10^-m.
13443 // Since delta and dist are now scaled by 10^m, we need to do the
13444 // same with ulp in order to keep the units in sync.
13445 //
13446 // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
13447 //
13448 const std::uint64_t ten_m = one.f;
13449 grisu2_round(buffer, length, dist, delta, p2, ten_m);
13450
13451 // By construction this algorithm generates the shortest possible decimal
13452 // number (Loitsch, Theorem 6.2) which rounds back to w.
13453 // For an input number of precision p, at least
13454 //
13455 // N = 1 + ceil(p * log_10(2))
13456 //
13457 // decimal digits are sufficient to identify all binary floating-point
13458 // numbers (Matula, "In-and-Out conversions").
13459 // This implies that the algorithm does not produce more than N decimal
13460 // digits.
13461 //
13462 // N = 17 for p = 53 (IEEE double precision)
13463 // N = 9 for p = 24 (IEEE single precision)
13464}
13465
13466/*!
13467v = buf * 10^decimal_exponent
13468len is the length of the buffer (number of decimal digits)
13469The buffer must be large enough, i.e. >= max_digits10.
13470*/
13471JSON_HEDLEY_NON_NULL(1)
13472inline void grisu2(char* buf, int& len, int& decimal_exponent,
13473 diyfp m_minus, diyfp v, diyfp m_plus)
13474{
13475 assert(m_plus.e == m_minus.e);
13476 assert(m_plus.e == v.e);
13477
13478 // --------(-----------------------+-----------------------)-------- (A)
13479 // m- v m+
13480 //
13481 // --------------------(-----------+-----------------------)-------- (B)
13482 // m- v m+
13483 //
13484 // First scale v (and m- and m+) such that the exponent is in the range
13485 // [alpha, gamma].
13486
13487 const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
13488
13489 const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
13490
13491 // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
13492 const diyfp w = diyfp::mul(v, c_minus_k);
13493 const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
13494 const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
13495
13496 // ----(---+---)---------------(---+---)---------------(---+---)----
13497 // w- w w+
13498 // = c*m- = c*v = c*m+
13499 //
13500 // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
13501 // w+ are now off by a small amount.
13502 // In fact:
13503 //
13504 // w - v * 10^k < 1 ulp
13505 //
13506 // To account for this inaccuracy, add resp. subtract 1 ulp.
13507 //
13508 // --------+---[---------------(---+---)---------------]---+--------
13509 // w- M- w M+ w+
13510 //
13511 // Now any number in [M-, M+] (bounds included) will round to w when input,
13512 // regardless of how the input rounding algorithm breaks ties.
13513 //
13514 // And digit_gen generates the shortest possible such number in [M-, M+].
13515 // Note that this does not mean that Grisu2 always generates the shortest
13516 // possible number in the interval (m-, m+).
13517 const diyfp M_minus(w_minus.f + 1, w_minus.e);
13518 const diyfp M_plus (w_plus.f - 1, w_plus.e );
13519
13520 decimal_exponent = -cached.k; // = -(-k) = k
13521
13522 grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
13523}
13524
13525/*!
13526v = buf * 10^decimal_exponent
13527len is the length of the buffer (number of decimal digits)
13528The buffer must be large enough, i.e. >= max_digits10.
13529*/
13530template <typename FloatType>
13531JSON_HEDLEY_NON_NULL(1)
13532void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
13533{
13534 static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
13535 "internal error: not enough precision");
13536
13537 assert(std::isfinite(value));
13538 assert(value > 0);
13539
13540 // If the neighbors (and boundaries) of 'value' are always computed for double-precision
13541 // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
13542 // decimal representations are not exactly "short".
13543 //
13544 // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
13545 // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
13546 // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars'
13547 // does.
13548 // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
13549 // representation using the corresponding std::from_chars function recovers value exactly". That
13550 // indicates that single precision floating-point numbers should be recovered using
13551 // 'std::strtof'.
13552 //
13553 // NB: If the neighbors are computed for single-precision numbers, there is a single float
13554 // (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
13555 // value is off by 1 ulp.
13556#if 0
13557 const boundaries w = compute_boundaries(static_cast<double>(value));
13558#else
13559 const boundaries w = compute_boundaries(value);
13560#endif
13561
13562 grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
13563}
13564
13565/*!
13566@brief appends a decimal representation of e to buf
13567@return a pointer to the element following the exponent.
13568@pre -1000 < e < 1000
13569*/
13570JSON_HEDLEY_NON_NULL(1)
13571JSON_HEDLEY_RETURNS_NON_NULL
13572inline char* append_exponent(char* buf, int e)
13573{
13574 assert(e > -1000);
13575 assert(e < 1000);
13576
13577 if (e < 0)
13578 {
13579 e = -e;
13580 *buf++ = '-';
13581 }
13582 else
13583 {
13584 *buf++ = '+';
13585 }
13586
13587 auto k = static_cast<std::uint32_t>(e);
13588 if (k < 10)
13589 {
13590 // Always print at least two digits in the exponent.
13591 // This is for compatibility with printf("%g").
13592 *buf++ = '0';
13593 *buf++ = static_cast<char>('0' + k);
13594 }
13595 else if (k < 100)
13596 {
13597 *buf++ = static_cast<char>('0' + k / 10);
13598 k %= 10;
13599 *buf++ = static_cast<char>('0' + k);
13600 }
13601 else
13602 {
13603 *buf++ = static_cast<char>('0' + k / 100);
13604 k %= 100;
13605 *buf++ = static_cast<char>('0' + k / 10);
13606 k %= 10;
13607 *buf++ = static_cast<char>('0' + k);
13608 }
13609
13610 return buf;
13611}
13612
13613/*!
13614@brief prettify v = buf * 10^decimal_exponent
13615
13616If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
13617notation. Otherwise it will be printed in exponential notation.
13618
13619@pre min_exp < 0
13620@pre max_exp > 0
13621*/
13622JSON_HEDLEY_NON_NULL(1)
13623JSON_HEDLEY_RETURNS_NON_NULL
13624inline char* format_buffer(char* buf, int len, int decimal_exponent,
13625 int min_exp, int max_exp)
13626{
13627 assert(min_exp < 0);
13628 assert(max_exp > 0);
13629
13630 const int k = len;
13631 const int n = len + decimal_exponent;
13632
13633 // v = buf * 10^(n-k)
13634 // k is the length of the buffer (number of decimal digits)
13635 // n is the position of the decimal point relative to the start of the buffer.
13636
13637 if (k <= n and n <= max_exp)
13638 {
13639 // digits[000]
13640 // len <= max_exp + 2
13641
13642 std::memset(buf + k, '0', static_cast<size_t>(n - k));
13643 // Make it look like a floating-point number (#362, #378)
13644 buf[n + 0] = '.';
13645 buf[n + 1] = '0';
13646 return buf + (n + 2);
13647 }
13648
13649 if (0 < n and n <= max_exp)
13650 {
13651 // dig.its
13652 // len <= max_digits10 + 1
13653
13654 assert(k > n);
13655
13656 std::memmove(buf + (n + 1), buf + n, static_cast<size_t>(k - n));
13657 buf[n] = '.';
13658 return buf + (k + 1);
13659 }
13660
13661 if (min_exp < n and n <= 0)
13662 {
13663 // 0.[000]digits
13664 // len <= 2 + (-min_exp - 1) + max_digits10
13665
13666 std::memmove(buf + (2 + -n), buf, static_cast<size_t>(k));
13667 buf[0] = '0';
13668 buf[1] = '.';
13669 std::memset(buf + 2, '0', static_cast<size_t>(-n));
13670 return buf + (2 + (-n) + k);
13671 }
13672
13673 if (k == 1)
13674 {
13675 // dE+123
13676 // len <= 1 + 5
13677
13678 buf += 1;
13679 }
13680 else
13681 {
13682 // d.igitsE+123
13683 // len <= max_digits10 + 1 + 5
13684
13685 std::memmove(buf + 2, buf + 1, static_cast<size_t>(k - 1));
13686 buf[1] = '.';
13687 buf += 1 + k;
13688 }
13689
13690 *buf++ = 'e';
13691 return append_exponent(buf, n - 1);
13692}
13693
13694} // namespace dtoa_impl
13695
13696/*!
13697@brief generates a decimal representation of the floating-point number value in [first, last).
13698
13699The format of the resulting decimal representation is similar to printf's %g
13700format. Returns an iterator pointing past-the-end of the decimal representation.
13701
13702@note The input number must be finite, i.e. NaN's and Inf's are not supported.
13703@note The buffer must be large enough.
13704@note The result is NOT null-terminated.
13705*/
13706template <typename FloatType>
13707JSON_HEDLEY_NON_NULL(1, 2)
13708JSON_HEDLEY_RETURNS_NON_NULL
13709char* to_chars(char* first, const char* last, FloatType value)
13710{
13711 static_cast<void>(last); // maybe unused - fix warning
13712 assert(std::isfinite(value));
13713
13714 // Use signbit(value) instead of (value < 0) since signbit works for -0.
13715 if (std::signbit(value))
13716 {
13717 value = -value;
13718 *first++ = '-';
13719 }
13720
13721 if (value == 0) // +-0
13722 {
13723 *first++ = '0';
13724 // Make it look like a floating-point number (#362, #378)
13725 *first++ = '.';
13726 *first++ = '0';
13727 return first;
13728 }
13729
13730 assert(last - first >= std::numeric_limits<FloatType>::max_digits10);
13731
13732 // Compute v = buffer * 10^decimal_exponent.
13733 // The decimal digits are stored in the buffer, which needs to be interpreted
13734 // as an unsigned decimal integer.
13735 // len is the length of the buffer, i.e. the number of decimal digits.
13736 int len = 0;
13737 int decimal_exponent = 0;
13738 dtoa_impl::grisu2(first, len, decimal_exponent, value);
13739
13740 assert(len <= std::numeric_limits<FloatType>::max_digits10);
13741
13742 // Format the buffer like printf("%.*g", prec, value)
13743 constexpr int kMinExp = -4;
13744 // Use digits10 here to increase compatibility with version 2.
13745 constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
13746
13747 assert(last - first >= kMaxExp + 2);
13748 assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
13749 assert(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
13750
13751 return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
13752}
13753
13754} // namespace detail
13755} // namespace nlohmann
13756
13757// #include <nlohmann/detail/exceptions.hpp>
13758
13759// #include <nlohmann/detail/macro_scope.hpp>
13760
13761// #include <nlohmann/detail/meta/cpp_future.hpp>
13762
13763// #include <nlohmann/detail/output/binary_writer.hpp>
13764
13765// #include <nlohmann/detail/output/output_adapters.hpp>
13766
13767// #include <nlohmann/detail/value_t.hpp>
13768
13769
13770namespace nlohmann
13771{
13772namespace detail
13773{
13774///////////////////
13775// serialization //
13776///////////////////
13777
13778/// how to treat decoding errors
13779enum class error_handler_t
13780{
13781 strict, ///< throw a type_error exception in case of invalid UTF-8
13782 replace, ///< replace invalid UTF-8 sequences with U+FFFD
13783 ignore ///< ignore invalid UTF-8 sequences
13784};
13785
13786template<typename BasicJsonType>
13787class serializer
13788{
13789 using string_t = typename BasicJsonType::string_t;
13790 using number_float_t = typename BasicJsonType::number_float_t;
13791 using number_integer_t = typename BasicJsonType::number_integer_t;
13792 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
13793 static constexpr std::uint8_t UTF8_ACCEPT = 0;
13794 static constexpr std::uint8_t UTF8_REJECT = 1;
13795
13796 public:
13797 /*!
13798 @param[in] s output stream to serialize to
13799 @param[in] ichar indentation character to use
13800 @param[in] error_handler_ how to react on decoding errors
13801 */
13802 serializer(output_adapter_t<char> s, const char ichar,
13803 error_handler_t error_handler_ = error_handler_t::strict)
13804 : o(std::move(s))
13805 , loc(std::localeconv())
13806 , thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep))
13807 , decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point))
13808 , indent_char(ichar)
13809 , indent_string(512, indent_char)
13810 , error_handler(error_handler_)
13811 {}
13812
13813 // delete because of pointer members
13814 serializer(const serializer&) = delete;
13815 serializer& operator=(const serializer&) = delete;
13816 serializer(serializer&&) = delete;
13817 serializer& operator=(serializer&&) = delete;
13818 ~serializer() = default;
13819
13820 /*!
13821 @brief internal implementation of the serialization function
13822
13823 This function is called by the public member function dump and organizes
13824 the serialization internally. The indentation level is propagated as
13825 additional parameter. In case of arrays and objects, the function is
13826 called recursively.
13827
13828 - strings and object keys are escaped using `escape_string()`
13829 - integer numbers are converted implicitly via `operator<<`
13830 - floating-point numbers are converted to a string using `"%g"` format
13831
13832 @param[in] val value to serialize
13833 @param[in] pretty_print whether the output shall be pretty-printed
13834 @param[in] indent_step the indent level
13835 @param[in] current_indent the current indent level (only used internally)
13836 */
13837 void dump(const BasicJsonType& val, const bool pretty_print,
13838 const bool ensure_ascii,
13839 const unsigned int indent_step,
13840 const unsigned int current_indent = 0)
13841 {
13842 switch (val.m_type)
13843 {
13844 case value_t::object:
13845 {
13846 if (val.m_value.object->empty())
13847 {
13848 o->write_characters("{}", 2);
13849 return;
13850 }
13851
13852 if (pretty_print)
13853 {
13854 o->write_characters("{\n", 2);
13855
13856 // variable to hold indentation for recursive calls
13857 const auto new_indent = current_indent + indent_step;
13858 if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
13859 {
13860 indent_string.resize(indent_string.size() * 2, ' ');
13861 }
13862
13863 // first n-1 elements
13864 auto i = val.m_value.object->cbegin();
13865 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
13866 {
13867 o->write_characters(indent_string.c_str(), new_indent);
13868 o->write_character('\"');
13869 dump_escaped(i->first, ensure_ascii);
13870 o->write_characters("\": ", 3);
13871 dump(i->second, true, ensure_ascii, indent_step, new_indent);
13872 o->write_characters(",\n", 2);
13873 }
13874
13875 // last element
13876 assert(i != val.m_value.object->cend());
13877 assert(std::next(i) == val.m_value.object->cend());
13878 o->write_characters(indent_string.c_str(), new_indent);
13879 o->write_character('\"');
13880 dump_escaped(i->first, ensure_ascii);
13881 o->write_characters("\": ", 3);
13882 dump(i->second, true, ensure_ascii, indent_step, new_indent);
13883
13884 o->write_character('\n');
13885 o->write_characters(indent_string.c_str(), current_indent);
13886 o->write_character('}');
13887 }
13888 else
13889 {
13890 o->write_character('{');
13891
13892 // first n-1 elements
13893 auto i = val.m_value.object->cbegin();
13894 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
13895 {
13896 o->write_character('\"');
13897 dump_escaped(i->first, ensure_ascii);
13898 o->write_characters("\":", 2);
13899 dump(i->second, false, ensure_ascii, indent_step, current_indent);
13900 o->write_character(',');
13901 }
13902
13903 // last element
13904 assert(i != val.m_value.object->cend());
13905 assert(std::next(i) == val.m_value.object->cend());
13906 o->write_character('\"');
13907 dump_escaped(i->first, ensure_ascii);
13908 o->write_characters("\":", 2);
13909 dump(i->second, false, ensure_ascii, indent_step, current_indent);
13910
13911 o->write_character('}');
13912 }
13913
13914 return;
13915 }
13916
13917 case value_t::array:
13918 {
13919 if (val.m_value.array->empty())
13920 {
13921 o->write_characters("[]", 2);
13922 return;
13923 }
13924
13925 if (pretty_print)
13926 {
13927 o->write_characters("[\n", 2);
13928
13929 // variable to hold indentation for recursive calls
13930 const auto new_indent = current_indent + indent_step;
13931 if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
13932 {
13933 indent_string.resize(indent_string.size() * 2, ' ');
13934 }
13935
13936 // first n-1 elements
13937 for (auto i = val.m_value.array->cbegin();
13938 i != val.m_value.array->cend() - 1; ++i)
13939 {
13940 o->write_characters(indent_string.c_str(), new_indent);
13941 dump(*i, true, ensure_ascii, indent_step, new_indent);
13942 o->write_characters(",\n", 2);
13943 }
13944
13945 // last element
13946 assert(not val.m_value.array->empty());
13947 o->write_characters(indent_string.c_str(), new_indent);
13948 dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
13949
13950 o->write_character('\n');
13951 o->write_characters(indent_string.c_str(), current_indent);
13952 o->write_character(']');
13953 }
13954 else
13955 {
13956 o->write_character('[');
13957
13958 // first n-1 elements
13959 for (auto i = val.m_value.array->cbegin();
13960 i != val.m_value.array->cend() - 1; ++i)
13961 {
13962 dump(*i, false, ensure_ascii, indent_step, current_indent);
13963 o->write_character(',');
13964 }
13965
13966 // last element
13967 assert(not val.m_value.array->empty());
13968 dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
13969
13970 o->write_character(']');
13971 }
13972
13973 return;
13974 }
13975
13976 case value_t::string:
13977 {
13978 o->write_character('\"');
13979 dump_escaped(*val.m_value.string, ensure_ascii);
13980 o->write_character('\"');
13981 return;
13982 }
13983
13984 case value_t::boolean:
13985 {
13986 if (val.m_value.boolean)
13987 {
13988 o->write_characters("true", 4);
13989 }
13990 else
13991 {
13992 o->write_characters("false", 5);
13993 }
13994 return;
13995 }
13996
13997 case value_t::number_integer:
13998 {
13999 dump_integer(val.m_value.number_integer);
14000 return;
14001 }
14002
14003 case value_t::number_unsigned:
14004 {
14005 dump_integer(val.m_value.number_unsigned);
14006 return;
14007 }
14008
14009 case value_t::number_float:
14010 {
14011 dump_float(val.m_value.number_float);
14012 return;
14013 }
14014
14015 case value_t::discarded:
14016 {
14017 o->write_characters("<discarded>", 11);
14018 return;
14019 }
14020
14021 case value_t::null:
14022 {
14023 o->write_characters("null", 4);
14024 return;
14025 }
14026
14027 default: // LCOV_EXCL_LINE
14028 assert(false); // LCOV_EXCL_LINE
14029 }
14030 }
14031
14032 private:
14033 /*!
14034 @brief dump escaped string
14035
14036 Escape a string by replacing certain special characters by a sequence of an
14037 escape character (backslash) and another character and other control
14038 characters by a sequence of "\u" followed by a four-digit hex
14039 representation. The escaped string is written to output stream @a o.
14040
14041 @param[in] s the string to escape
14042 @param[in] ensure_ascii whether to escape non-ASCII characters with
14043 \uXXXX sequences
14044
14045 @complexity Linear in the length of string @a s.
14046 */
14047 void dump_escaped(const string_t& s, const bool ensure_ascii)
14048 {
14049 std::uint32_t codepoint;
14050 std::uint8_t state = UTF8_ACCEPT;
14051 std::size_t bytes = 0; // number of bytes written to string_buffer
14052
14053 // number of bytes written at the point of the last valid byte
14054 std::size_t bytes_after_last_accept = 0;
14055 std::size_t undumped_chars = 0;
14056
14057 for (std::size_t i = 0; i < s.size(); ++i)
14058 {
14059 const auto byte = static_cast<uint8_t>(s[i]);
14060
14061 switch (decode(state, codepoint, byte))
14062 {
14063 case UTF8_ACCEPT: // decode found a new code point
14064 {
14065 switch (codepoint)
14066 {
14067 case 0x08: // backspace
14068 {
14069 string_buffer[bytes++] = '\\';
14070 string_buffer[bytes++] = 'b';
14071 break;
14072 }
14073
14074 case 0x09: // horizontal tab
14075 {
14076 string_buffer[bytes++] = '\\';
14077 string_buffer[bytes++] = 't';
14078 break;
14079 }
14080
14081 case 0x0A: // newline
14082 {
14083 string_buffer[bytes++] = '\\';
14084 string_buffer[bytes++] = 'n';
14085 break;
14086 }
14087
14088 case 0x0C: // formfeed
14089 {
14090 string_buffer[bytes++] = '\\';
14091 string_buffer[bytes++] = 'f';
14092 break;
14093 }
14094
14095 case 0x0D: // carriage return
14096 {
14097 string_buffer[bytes++] = '\\';
14098 string_buffer[bytes++] = 'r';
14099 break;
14100 }
14101
14102 case 0x22: // quotation mark
14103 {
14104 string_buffer[bytes++] = '\\';
14105 string_buffer[bytes++] = '\"';
14106 break;
14107 }
14108
14109 case 0x5C: // reverse solidus
14110 {
14111 string_buffer[bytes++] = '\\';
14112 string_buffer[bytes++] = '\\';
14113 break;
14114 }
14115
14116 default:
14117 {
14118 // escape control characters (0x00..0x1F) or, if
14119 // ensure_ascii parameter is used, non-ASCII characters
14120 if ((codepoint <= 0x1F) or (ensure_ascii and (codepoint >= 0x7F)))
14121 {
14122 if (codepoint <= 0xFFFF)
14123 {
14124 (std::snprintf)(string_buffer.data() + bytes, 7, "\\u%04x",
14125 static_cast<std::uint16_t>(codepoint));
14126 bytes += 6;
14127 }
14128 else
14129 {
14130 (std::snprintf)(string_buffer.data() + bytes, 13, "\\u%04x\\u%04x",
14131 static_cast<std::uint16_t>(0xD7C0u + (codepoint >> 10u)),
14132 static_cast<std::uint16_t>(0xDC00u + (codepoint & 0x3FFu)));
14133 bytes += 12;
14134 }
14135 }
14136 else
14137 {
14138 // copy byte to buffer (all previous bytes
14139 // been copied have in default case above)
14140 string_buffer[bytes++] = s[i];
14141 }
14142 break;
14143 }
14144 }
14145
14146 // write buffer and reset index; there must be 13 bytes
14147 // left, as this is the maximal number of bytes to be
14148 // written ("\uxxxx\uxxxx\0") for one code point
14149 if (string_buffer.size() - bytes < 13)
14150 {
14151 o->write_characters(string_buffer.data(), bytes);
14152 bytes = 0;
14153 }
14154
14155 // remember the byte position of this accept
14156 bytes_after_last_accept = bytes;
14157 undumped_chars = 0;
14158 break;
14159 }
14160
14161 case UTF8_REJECT: // decode found invalid UTF-8 byte
14162 {
14163 switch (error_handler)
14164 {
14165 case error_handler_t::strict:
14166 {
14167 std::string sn(3, '\0');
14168 (std::snprintf)(&sn[0], sn.size(), "%.2X", byte);
14169 JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + sn));
14170 }
14171
14172 case error_handler_t::ignore:
14173 case error_handler_t::replace:
14174 {
14175 // in case we saw this character the first time, we
14176 // would like to read it again, because the byte
14177 // may be OK for itself, but just not OK for the
14178 // previous sequence
14179 if (undumped_chars > 0)
14180 {
14181 --i;
14182 }
14183
14184 // reset length buffer to the last accepted index;
14185 // thus removing/ignoring the invalid characters
14186 bytes = bytes_after_last_accept;
14187
14188 if (error_handler == error_handler_t::replace)
14189 {
14190 // add a replacement character
14191 if (ensure_ascii)
14192 {
14193 string_buffer[bytes++] = '\\';
14194 string_buffer[bytes++] = 'u';
14195 string_buffer[bytes++] = 'f';
14196 string_buffer[bytes++] = 'f';
14197 string_buffer[bytes++] = 'f';
14198 string_buffer[bytes++] = 'd';
14199 }
14200 else
14201 {
14202 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xEF');
14203 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBF');
14204 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBD');
14205 }
14206
14207 // write buffer and reset index; there must be 13 bytes
14208 // left, as this is the maximal number of bytes to be
14209 // written ("\uxxxx\uxxxx\0") for one code point
14210 if (string_buffer.size() - bytes < 13)
14211 {
14212 o->write_characters(string_buffer.data(), bytes);
14213 bytes = 0;
14214 }
14215
14216 bytes_after_last_accept = bytes;
14217 }
14218
14219 undumped_chars = 0;
14220
14221 // continue processing the string
14222 state = UTF8_ACCEPT;
14223 break;
14224 }
14225
14226 default: // LCOV_EXCL_LINE
14227 assert(false); // LCOV_EXCL_LINE
14228 }
14229 break;
14230 }
14231
14232 default: // decode found yet incomplete multi-byte code point
14233 {
14234 if (not ensure_ascii)
14235 {
14236 // code point will not be escaped - copy byte to buffer
14237 string_buffer[bytes++] = s[i];
14238 }
14239 ++undumped_chars;
14240 break;
14241 }
14242 }
14243 }
14244
14245 // we finished processing the string
14246 if (JSON_HEDLEY_LIKELY(state == UTF8_ACCEPT))
14247 {
14248 // write buffer
14249 if (bytes > 0)
14250 {
14251 o->write_characters(string_buffer.data(), bytes);
14252 }
14253 }
14254 else
14255 {
14256 // we finish reading, but do not accept: string was incomplete
14257 switch (error_handler)
14258 {
14259 case error_handler_t::strict:
14260 {
14261 std::string sn(3, '\0');
14262 (std::snprintf)(&sn[0], sn.size(), "%.2X", static_cast<std::uint8_t>(s.back()));
14263 JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + sn));
14264 }
14265
14266 case error_handler_t::ignore:
14267 {
14268 // write all accepted bytes
14269 o->write_characters(string_buffer.data(), bytes_after_last_accept);
14270 break;
14271 }
14272
14273 case error_handler_t::replace:
14274 {
14275 // write all accepted bytes
14276 o->write_characters(string_buffer.data(), bytes_after_last_accept);
14277 // add a replacement character
14278 if (ensure_ascii)
14279 {
14280 o->write_characters("\\ufffd", 6);
14281 }
14282 else
14283 {
14284 o->write_characters("\xEF\xBF\xBD", 3);
14285 }
14286 break;
14287 }
14288
14289 default: // LCOV_EXCL_LINE
14290 assert(false); // LCOV_EXCL_LINE
14291 }
14292 }
14293 }
14294
14295 /*!
14296 @brief count digits
14297
14298 Count the number of decimal (base 10) digits for an input unsigned integer.
14299
14300 @param[in] x unsigned integer number to count its digits
14301 @return number of decimal digits
14302 */
14303 inline unsigned int count_digits(number_unsigned_t x) noexcept
14304 {
14305 unsigned int n_digits = 1;
14306 for (;;)
14307 {
14308 if (x < 10)
14309 {
14310 return n_digits;
14311 }
14312 if (x < 100)
14313 {
14314 return n_digits + 1;
14315 }
14316 if (x < 1000)
14317 {
14318 return n_digits + 2;
14319 }
14320 if (x < 10000)
14321 {
14322 return n_digits + 3;
14323 }
14324 x = x / 10000u;
14325 n_digits += 4;
14326 }
14327 }
14328
14329 /*!
14330 @brief dump an integer
14331
14332 Dump a given integer to output stream @a o. Works internally with
14333 @a number_buffer.
14334
14335 @param[in] x integer number (signed or unsigned) to dump
14336 @tparam NumberType either @a number_integer_t or @a number_unsigned_t
14337 */
14338 template<typename NumberType, detail::enable_if_t<
14339 std::is_same<NumberType, number_unsigned_t>::value or
14340 std::is_same<NumberType, number_integer_t>::value,
14341 int> = 0>
14342 void dump_integer(NumberType x)
14343 {
14344 static constexpr std::array<std::array<char, 2>, 100> digits_to_99
14345 {
14346 {
14347 {{'0', '0'}}, {{'0', '1'}}, {{'0', '2'}}, {{'0', '3'}}, {{'0', '4'}}, {{'0', '5'}}, {{'0', '6'}}, {{'0', '7'}}, {{'0', '8'}}, {{'0', '9'}},
14348 {{'1', '0'}}, {{'1', '1'}}, {{'1', '2'}}, {{'1', '3'}}, {{'1', '4'}}, {{'1', '5'}}, {{'1', '6'}}, {{'1', '7'}}, {{'1', '8'}}, {{'1', '9'}},
14349 {{'2', '0'}}, {{'2', '1'}}, {{'2', '2'}}, {{'2', '3'}}, {{'2', '4'}}, {{'2', '5'}}, {{'2', '6'}}, {{'2', '7'}}, {{'2', '8'}}, {{'2', '9'}},
14350 {{'3', '0'}}, {{'3', '1'}}, {{'3', '2'}}, {{'3', '3'}}, {{'3', '4'}}, {{'3', '5'}}, {{'3', '6'}}, {{'3', '7'}}, {{'3', '8'}}, {{'3', '9'}},
14351 {{'4', '0'}}, {{'4', '1'}}, {{'4', '2'}}, {{'4', '3'}}, {{'4', '4'}}, {{'4', '5'}}, {{'4', '6'}}, {{'4', '7'}}, {{'4', '8'}}, {{'4', '9'}},
14352 {{'5', '0'}}, {{'5', '1'}}, {{'5', '2'}}, {{'5', '3'}}, {{'5', '4'}}, {{'5', '5'}}, {{'5', '6'}}, {{'5', '7'}}, {{'5', '8'}}, {{'5', '9'}},
14353 {{'6', '0'}}, {{'6', '1'}}, {{'6', '2'}}, {{'6', '3'}}, {{'6', '4'}}, {{'6', '5'}}, {{'6', '6'}}, {{'6', '7'}}, {{'6', '8'}}, {{'6', '9'}},
14354 {{'7', '0'}}, {{'7', '1'}}, {{'7', '2'}}, {{'7', '3'}}, {{'7', '4'}}, {{'7', '5'}}, {{'7', '6'}}, {{'7', '7'}}, {{'7', '8'}}, {{'7', '9'}},
14355 {{'8', '0'}}, {{'8', '1'}}, {{'8', '2'}}, {{'8', '3'}}, {{'8', '4'}}, {{'8', '5'}}, {{'8', '6'}}, {{'8', '7'}}, {{'8', '8'}}, {{'8', '9'}},
14356 {{'9', '0'}}, {{'9', '1'}}, {{'9', '2'}}, {{'9', '3'}}, {{'9', '4'}}, {{'9', '5'}}, {{'9', '6'}}, {{'9', '7'}}, {{'9', '8'}}, {{'9', '9'}},
14357 }
14358 };
14359
14360 // special case for "0"
14361 if (x == 0)
14362 {
14363 o->write_character('0');
14364 return;
14365 }
14366
14367 // use a pointer to fill the buffer
14368 auto buffer_ptr = number_buffer.begin();
14369
14370 const bool is_negative = std::is_same<NumberType, number_integer_t>::value and not(x >= 0); // see issue #755
14371 number_unsigned_t abs_value;
14372
14373 unsigned int n_chars;
14374
14375 if (is_negative)
14376 {
14377 *buffer_ptr = '-';
14378 abs_value = remove_sign(x);
14379
14380 // account one more byte for the minus sign
14381 n_chars = 1 + count_digits(abs_value);
14382 }
14383 else
14384 {
14385 abs_value = static_cast<number_unsigned_t>(x);
14386 n_chars = count_digits(abs_value);
14387 }
14388
14389 // spare 1 byte for '\0'
14390 assert(n_chars < number_buffer.size() - 1);
14391
14392 // jump to the end to generate the string from backward
14393 // so we later avoid reversing the result
14394 buffer_ptr += n_chars;
14395
14396 // Fast int2ascii implementation inspired by "Fastware" talk by Andrei Alexandrescu
14397 // See: https://www.youtube.com/watch?v=o4-CwDo2zpg
14398 while (abs_value >= 100)
14399 {
14400 const auto digits_index = static_cast<unsigned>((abs_value % 100));
14401 abs_value /= 100;
14402 *(--buffer_ptr) = digits_to_99[digits_index][1];
14403 *(--buffer_ptr) = digits_to_99[digits_index][0];
14404 }
14405
14406 if (abs_value >= 10)
14407 {
14408 const auto digits_index = static_cast<unsigned>(abs_value);
14409 *(--buffer_ptr) = digits_to_99[digits_index][1];
14410 *(--buffer_ptr) = digits_to_99[digits_index][0];
14411 }
14412 else
14413 {
14414 *(--buffer_ptr) = static_cast<char>('0' + abs_value);
14415 }
14416
14417 o->write_characters(number_buffer.data(), n_chars);
14418 }
14419
14420 /*!
14421 @brief dump a floating-point number
14422
14423 Dump a given floating-point number to output stream @a o. Works internally
14424 with @a number_buffer.
14425
14426 @param[in] x floating-point number to dump
14427 */
14428 void dump_float(number_float_t x)
14429 {
14430 // NaN / inf
14431 if (not std::isfinite(x))
14432 {
14433 o->write_characters("null", 4);
14434 return;
14435 }
14436
14437 // If number_float_t is an IEEE-754 single or double precision number,
14438 // use the Grisu2 algorithm to produce short numbers which are
14439 // guaranteed to round-trip, using strtof and strtod, resp.
14440 //
14441 // NB: The test below works if <long double> == <double>.
14442 static constexpr bool is_ieee_single_or_double
14443 = (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 24 and std::numeric_limits<number_float_t>::max_exponent == 128) or
14444 (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 53 and std::numeric_limits<number_float_t>::max_exponent == 1024);
14445
14446 dump_float(x, std::integral_constant<bool, is_ieee_single_or_double>());
14447 }
14448
14449 void dump_float(number_float_t x, std::true_type /*is_ieee_single_or_double*/)
14450 {
14451 char* begin = number_buffer.data();
14452 char* end = ::nlohmann::detail::to_chars(begin, begin + number_buffer.size(), x);
14453
14454 o->write_characters(begin, static_cast<size_t>(end - begin));
14455 }
14456
14457 void dump_float(number_float_t x, std::false_type /*is_ieee_single_or_double*/)
14458 {
14459 // get number of digits for a float -> text -> float round-trip
14460 static constexpr auto d = std::numeric_limits<number_float_t>::max_digits10;
14461
14462 // the actual conversion
14463 std::ptrdiff_t len = (std::snprintf)(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
14464
14465 // negative value indicates an error
14466 assert(len > 0);
14467 // check if buffer was large enough
14468 assert(static_cast<std::size_t>(len) < number_buffer.size());
14469
14470 // erase thousands separator
14471 if (thousands_sep != '\0')
14472 {
14473 const auto end = std::remove(number_buffer.begin(),
14474 number_buffer.begin() + len, thousands_sep);
14475 std::fill(end, number_buffer.end(), '\0');
14476 assert((end - number_buffer.begin()) <= len);
14477 len = (end - number_buffer.begin());
14478 }
14479
14480 // convert decimal point to '.'
14481 if (decimal_point != '\0' and decimal_point != '.')
14482 {
14483 const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
14484 if (dec_pos != number_buffer.end())
14485 {
14486 *dec_pos = '.';
14487 }
14488 }
14489
14490 o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
14491
14492 // determine if need to append ".0"
14493 const bool value_is_int_like =
14494 std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
14495 [](char c)
14496 {
14497 return c == '.' or c == 'e';
14498 });
14499
14500 if (value_is_int_like)
14501 {
14502 o->write_characters(".0", 2);
14503 }
14504 }
14505
14506 /*!
14507 @brief check whether a string is UTF-8 encoded
14508
14509 The function checks each byte of a string whether it is UTF-8 encoded. The
14510 result of the check is stored in the @a state parameter. The function must
14511 be called initially with state 0 (accept). State 1 means the string must
14512 be rejected, because the current byte is not allowed. If the string is
14513 completely processed, but the state is non-zero, the string ended
14514 prematurely; that is, the last byte indicated more bytes should have
14515 followed.
14516
14517 @param[in,out] state the state of the decoding
14518 @param[in,out] codep codepoint (valid only if resulting state is UTF8_ACCEPT)
14519 @param[in] byte next byte to decode
14520 @return new state
14521
14522 @note The function has been edited: a std::array is used.
14523
14524 @copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
14525 @sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
14526 */
14527 static std::uint8_t decode(std::uint8_t& state, std::uint32_t& codep, const std::uint8_t byte) noexcept
14528 {
14529 static const std::array<std::uint8_t, 400> utf8d =
14530 {
14531 {
14532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F
14533 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F
14534 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F
14535 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F
14536 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F
14537 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF
14538 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF
14539 0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF
14540 0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF
14541 0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0
14542 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2
14543 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4
14544 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6
14545 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8
14546 }
14547 };
14548
14549 const std::uint8_t type = utf8d[byte];
14550
14551 codep = (state != UTF8_ACCEPT)
14552 ? (byte & 0x3fu) | (codep << 6u)
14553 : (0xFFu >> type) & (byte);
14554
14555 state = utf8d[256u + state * 16u + type];
14556 return state;
14557 }
14558
14559 /*
14560 * Overload to make the compiler happy while it is instantiating
14561 * dump_integer for number_unsigned_t.
14562 * Must never be called.
14563 */
14564 number_unsigned_t remove_sign(number_unsigned_t x)
14565 {
14566 assert(false); // LCOV_EXCL_LINE
14567 return x; // LCOV_EXCL_LINE
14568 }
14569
14570 /*
14571 * Helper function for dump_integer
14572 *
14573 * This function takes a negative signed integer and returns its absolute
14574 * value as unsigned integer. The plus/minus shuffling is necessary as we can
14575 * not directly remove the sign of an arbitrary signed integer as the
14576 * absolute values of INT_MIN and INT_MAX are usually not the same. See
14577 * #1708 for details.
14578 */
14579 inline number_unsigned_t remove_sign(number_integer_t x) noexcept
14580 {
14581 assert(x < 0 and x < (std::numeric_limits<number_integer_t>::max)());
14582 return static_cast<number_unsigned_t>(-(x + 1)) + 1;
14583 }
14584
14585 private:
14586 /// the output of the serializer
14587 output_adapter_t<char> o = nullptr;
14588
14589 /// a (hopefully) large enough character buffer
14590 std::array<char, 64> number_buffer{{}};
14591
14592 /// the locale
14593 const std::lconv* loc = nullptr;
14594 /// the locale's thousand separator character
14595 const char thousands_sep = '\0';
14596 /// the locale's decimal point character
14597 const char decimal_point = '\0';
14598
14599 /// string buffer
14600 std::array<char, 512> string_buffer{{}};
14601
14602 /// the indentation character
14603 const char indent_char;
14604 /// the indentation string
14605 string_t indent_string;
14606
14607 /// error_handler how to react on decoding errors
14608 const error_handler_t error_handler;
14609};
14610} // namespace detail
14611} // namespace nlohmann
14612
14613// #include <nlohmann/detail/value_t.hpp>
14614
14615// #include <nlohmann/json_fwd.hpp>
14616
14617
14618/*!
14619@brief namespace for Niels Lohmann
14620@see https://github.com/nlohmann
14621@since version 1.0.0
14622*/
14623namespace nlohmann
14624{
14625
14626/*!
14627@brief a class to store JSON values
14628
14629@tparam ObjectType type for JSON objects (`std::map` by default; will be used
14630in @ref object_t)
14631@tparam ArrayType type for JSON arrays (`std::vector` by default; will be used
14632in @ref array_t)
14633@tparam StringType type for JSON strings and object keys (`std::string` by
14634default; will be used in @ref string_t)
14635@tparam BooleanType type for JSON booleans (`bool` by default; will be used
14636in @ref boolean_t)
14637@tparam NumberIntegerType type for JSON integer numbers (`int64_t` by
14638default; will be used in @ref number_integer_t)
14639@tparam NumberUnsignedType type for JSON unsigned integer numbers (@c
14640`uint64_t` by default; will be used in @ref number_unsigned_t)
14641@tparam NumberFloatType type for JSON floating-point numbers (`double` by
14642default; will be used in @ref number_float_t)
14643@tparam AllocatorType type of the allocator to use (`std::allocator` by
14644default)
14645@tparam JSONSerializer the serializer to resolve internal calls to `to_json()`
14646and `from_json()` (@ref adl_serializer by default)
14647
14648@requirement The class satisfies the following concept requirements:
14649- Basic
14650 - [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible):
14651 JSON values can be default constructed. The result will be a JSON null
14652 value.
14653 - [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible):
14654 A JSON value can be constructed from an rvalue argument.
14655 - [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible):
14656 A JSON value can be copy-constructed from an lvalue expression.
14657 - [MoveAssignable](https://en.cppreference.com/w/cpp/named_req/MoveAssignable):
14658 A JSON value van be assigned from an rvalue argument.
14659 - [CopyAssignable](https://en.cppreference.com/w/cpp/named_req/CopyAssignable):
14660 A JSON value can be copy-assigned from an lvalue expression.
14661 - [Destructible](https://en.cppreference.com/w/cpp/named_req/Destructible):
14662 JSON values can be destructed.
14663- Layout
14664 - [StandardLayoutType](https://en.cppreference.com/w/cpp/named_req/StandardLayoutType):
14665 JSON values have
14666 [standard layout](https://en.cppreference.com/w/cpp/language/data_members#Standard_layout):
14667 All non-static data members are private and standard layout types, the
14668 class has no virtual functions or (virtual) base classes.
14669- Library-wide
14670 - [EqualityComparable](https://en.cppreference.com/w/cpp/named_req/EqualityComparable):
14671 JSON values can be compared with `==`, see @ref
14672 operator==(const_reference,const_reference).
14673 - [LessThanComparable](https://en.cppreference.com/w/cpp/named_req/LessThanComparable):
14674 JSON values can be compared with `<`, see @ref
14675 operator<(const_reference,const_reference).
14676 - [Swappable](https://en.cppreference.com/w/cpp/named_req/Swappable):
14677 Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of
14678 other compatible types, using unqualified function call @ref swap().
14679 - [NullablePointer](https://en.cppreference.com/w/cpp/named_req/NullablePointer):
14680 JSON values can be compared against `std::nullptr_t` objects which are used
14681 to model the `null` value.
14682- Container
14683 - [Container](https://en.cppreference.com/w/cpp/named_req/Container):
14684 JSON values can be used like STL containers and provide iterator access.
14685 - [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer);
14686 JSON values can be used like STL containers and provide reverse iterator
14687 access.
14688
14689@invariant The member variables @a m_value and @a m_type have the following
14690relationship:
14691- If `m_type == value_t::object`, then `m_value.object != nullptr`.
14692- If `m_type == value_t::array`, then `m_value.array != nullptr`.
14693- If `m_type == value_t::string`, then `m_value.string != nullptr`.
14694The invariants are checked by member function assert_invariant().
14695
14696@internal
14697@note ObjectType trick from http://stackoverflow.com/a/9860911
14698@endinternal
14699
14700@see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
14701Format](http://rfc7159.net/rfc7159)
14702
14703@since version 1.0.0
14704
14705@nosubgrouping
14706*/
14707NLOHMANN_BASIC_JSON_TPL_DECLARATION
14708class basic_json
14709{
14710 private:
14711 template<detail::value_t> friend struct detail::external_constructor;
14712 friend ::nlohmann::json_pointer<basic_json>;
14713 friend ::nlohmann::detail::parser<basic_json>;
14714 friend ::nlohmann::detail::serializer<basic_json>;
14715 template<typename BasicJsonType>
14716 friend class ::nlohmann::detail::iter_impl;
14717 template<typename BasicJsonType, typename CharType>
14718 friend class ::nlohmann::detail::binary_writer;
14719 template<typename BasicJsonType, typename SAX>
14720 friend class ::nlohmann::detail::binary_reader;
14721 template<typename BasicJsonType>
14722 friend class ::nlohmann::detail::json_sax_dom_parser;
14723 template<typename BasicJsonType>
14724 friend class ::nlohmann::detail::json_sax_dom_callback_parser;
14725
14726 /// workaround type for MSVC
14727 using basic_json_t = NLOHMANN_BASIC_JSON_TPL;
14728
14729 // convenience aliases for types residing in namespace detail;
14730 using lexer = ::nlohmann::detail::lexer<basic_json>;
14731 using parser = ::nlohmann::detail::parser<basic_json>;
14732
14733 using primitive_iterator_t = ::nlohmann::detail::primitive_iterator_t;
14734 template<typename BasicJsonType>
14735 using internal_iterator = ::nlohmann::detail::internal_iterator<BasicJsonType>;
14736 template<typename BasicJsonType>
14737 using iter_impl = ::nlohmann::detail::iter_impl<BasicJsonType>;
14738 template<typename Iterator>
14739 using iteration_proxy = ::nlohmann::detail::iteration_proxy<Iterator>;
14740 template<typename Base> using json_reverse_iterator = ::nlohmann::detail::json_reverse_iterator<Base>;
14741
14742 template<typename CharType>
14743 using output_adapter_t = ::nlohmann::detail::output_adapter_t<CharType>;
14744
14745 using binary_reader = ::nlohmann::detail::binary_reader<basic_json>;
14746 template<typename CharType> using binary_writer = ::nlohmann::detail::binary_writer<basic_json, CharType>;
14747
14748 using serializer = ::nlohmann::detail::serializer<basic_json>;
14749
14750 public:
14751 using value_t = detail::value_t;
14752 /// JSON Pointer, see @ref nlohmann::json_pointer
14753 using json_pointer = ::nlohmann::json_pointer<basic_json>;
14754 template<typename T, typename SFINAE>
14755 using json_serializer = JSONSerializer<T, SFINAE>;
14756 /// how to treat decoding errors
14757 using error_handler_t = detail::error_handler_t;
14758 /// helper type for initializer lists of basic_json values
14759 using initializer_list_t = std::initializer_list<detail::json_ref<basic_json>>;
14760
14761 using input_format_t = detail::input_format_t;
14762 /// SAX interface type, see @ref nlohmann::json_sax
14763 using json_sax_t = json_sax<basic_json>;
14764
14765 ////////////////
14766 // exceptions //
14767 ////////////////
14768
14769 /// @name exceptions
14770 /// Classes to implement user-defined exceptions.
14771 /// @{
14772
14773 /// @copydoc detail::exception
14774 using exception = detail::exception;
14775 /// @copydoc detail::parse_error
14776 using parse_error = detail::parse_error;
14777 /// @copydoc detail::invalid_iterator
14778 using invalid_iterator = detail::invalid_iterator;
14779 /// @copydoc detail::type_error
14780 using type_error = detail::type_error;
14781 /// @copydoc detail::out_of_range
14782 using out_of_range = detail::out_of_range;
14783 /// @copydoc detail::other_error
14784 using other_error = detail::other_error;
14785
14786 /// @}
14787
14788
14789 /////////////////////
14790 // container types //
14791 /////////////////////
14792
14793 /// @name container types
14794 /// The canonic container types to use @ref basic_json like any other STL
14795 /// container.
14796 /// @{
14797
14798 /// the type of elements in a basic_json container
14799 using value_type = basic_json;
14800
14801 /// the type of an element reference
14802 using reference = value_type&;
14803 /// the type of an element const reference
14804 using const_reference = const value_type&;
14805
14806 /// a type to represent differences between iterators
14807 using difference_type = std::ptrdiff_t;
14808 /// a type to represent container sizes
14809 using size_type = std::size_t;
14810
14811 /// the allocator type
14812 using allocator_type = AllocatorType<basic_json>;
14813
14814 /// the type of an element pointer
14815 using pointer = typename std::allocator_traits<allocator_type>::pointer;
14816 /// the type of an element const pointer
14817 using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
14818
14819 /// an iterator for a basic_json container
14820 using iterator = iter_impl<basic_json>;
14821 /// a const iterator for a basic_json container
14822 using const_iterator = iter_impl<const basic_json>;
14823 /// a reverse iterator for a basic_json container
14824 using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>;
14825 /// a const reverse iterator for a basic_json container
14826 using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>;
14827
14828 /// @}
14829
14830
14831 /*!
14832 @brief returns the allocator associated with the container
14833 */
14834 static allocator_type get_allocator()
14835 {
14836 return allocator_type();
14837 }
14838
14839 /*!
14840 @brief returns version information on the library
14841
14842 This function returns a JSON object with information about the library,
14843 including the version number and information on the platform and compiler.
14844
14845 @return JSON object holding version information
14846 key | description
14847 ----------- | ---------------
14848 `compiler` | Information on the used compiler. It is an object with the following keys: `c++` (the used C++ standard), `family` (the compiler family; possible values are `clang`, `icc`, `gcc`, `ilecpp`, `msvc`, `pgcpp`, `sunpro`, and `unknown`), and `version` (the compiler version).
14849 `copyright` | The copyright line for the library as string.
14850 `name` | The name of the library as string.
14851 `platform` | The used platform as string. Possible values are `win32`, `linux`, `apple`, `unix`, and `unknown`.
14852 `url` | The URL of the project as string.
14853 `version` | The version of the library. It is an object with the following keys: `major`, `minor`, and `patch` as defined by [Semantic Versioning](http://semver.org), and `string` (the version string).
14854
14855 @liveexample{The following code shows an example output of the `meta()`
14856 function.,meta}
14857
14858 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
14859 changes to any JSON value.
14860
14861 @complexity Constant.
14862
14863 @since 2.1.0
14864 */
14865 JSON_HEDLEY_WARN_UNUSED_RESULT
14866 static basic_json meta()
14867 {
14868 basic_json result;
14869
14870 result["copyright"] = "(C) 2013-2017 Niels Lohmann";
14871 result["name"] = "JSON for Modern C++";
14872 result["url"] = "https://github.com/nlohmann/json";
14873 result["version"]["string"] =
14874 std::to_string(NLOHMANN_JSON_VERSION_MAJOR) + "." +
14875 std::to_string(NLOHMANN_JSON_VERSION_MINOR) + "." +
14876 std::to_string(NLOHMANN_JSON_VERSION_PATCH);
14877 result["version"]["major"] = NLOHMANN_JSON_VERSION_MAJOR;
14878 result["version"]["minor"] = NLOHMANN_JSON_VERSION_MINOR;
14879 result["version"]["patch"] = NLOHMANN_JSON_VERSION_PATCH;
14880
14881#ifdef _WIN32
14882 result["platform"] = "win32";
14883#elif defined __linux__
14884 result["platform"] = "linux";
14885#elif defined __APPLE__
14886 result["platform"] = "apple";
14887#elif defined __unix__
14888 result["platform"] = "unix";
14889#else
14890 result["platform"] = "unknown";
14891#endif
14892
14893#if defined(__ICC) || defined(__INTEL_COMPILER)
14894 result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}};
14895#elif defined(__clang__)
14896 result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}};
14897#elif defined(__GNUC__) || defined(__GNUG__)
14898 result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}};
14899#elif defined(__HP_cc) || defined(__HP_aCC)
14900 result["compiler"] = "hp"
14901#elif defined(__IBMCPP__)
14902 result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}};
14903#elif defined(_MSC_VER)
14904 result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}};
14905#elif defined(__PGI)
14906 result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}};
14907#elif defined(__SUNPRO_CC)
14908 result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}};
14909#else
14910 result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}};
14911#endif
14912
14913#ifdef __cplusplus
14914 result["compiler"]["c++"] = std::to_string(__cplusplus);
14915#else
14916 result["compiler"]["c++"] = "unknown";
14917#endif
14918 return result;
14919 }
14920
14921
14922 ///////////////////////////
14923 // JSON value data types //
14924 ///////////////////////////
14925
14926 /// @name JSON value data types
14927 /// The data types to store a JSON value. These types are derived from
14928 /// the template arguments passed to class @ref basic_json.
14929 /// @{
14930
14931#if defined(JSON_HAS_CPP_14)
14932 // Use transparent comparator if possible, combined with perfect forwarding
14933 // on find() and count() calls prevents unnecessary string construction.
14934 using object_comparator_t = std::less<>;
14935#else
14936 using object_comparator_t = std::less<StringType>;
14937#endif
14938
14939 /*!
14940 @brief a type for an object
14941
14942 [RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows:
14943 > An object is an unordered collection of zero or more name/value pairs,
14944 > where a name is a string and a value is a string, number, boolean, null,
14945 > object, or array.
14946
14947 To store objects in C++, a type is defined by the template parameters
14948 described below.
14949
14950 @tparam ObjectType the container to store objects (e.g., `std::map` or
14951 `std::unordered_map`)
14952 @tparam StringType the type of the keys or names (e.g., `std::string`).
14953 The comparison function `std::less<StringType>` is used to order elements
14954 inside the container.
14955 @tparam AllocatorType the allocator to use for objects (e.g.,
14956 `std::allocator`)
14957
14958 #### Default type
14959
14960 With the default values for @a ObjectType (`std::map`), @a StringType
14961 (`std::string`), and @a AllocatorType (`std::allocator`), the default
14962 value for @a object_t is:
14963
14964 @code {.cpp}
14965 std::map<
14966 std::string, // key_type
14967 basic_json, // value_type
14968 std::less<std::string>, // key_compare
14969 std::allocator<std::pair<const std::string, basic_json>> // allocator_type
14970 >
14971 @endcode
14972
14973 #### Behavior
14974
14975 The choice of @a object_t influences the behavior of the JSON class. With
14976 the default type, objects have the following behavior:
14977
14978 - When all names are unique, objects will be interoperable in the sense
14979 that all software implementations receiving that object will agree on
14980 the name-value mappings.
14981 - When the names within an object are not unique, it is unspecified which
14982 one of the values for a given key will be chosen. For instance,
14983 `{"key": 2, "key": 1}` could be equal to either `{"key": 1}` or
14984 `{"key": 2}`.
14985 - Internally, name/value pairs are stored in lexicographical order of the
14986 names. Objects will also be serialized (see @ref dump) in this order.
14987 For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored
14988 and serialized as `{"a": 2, "b": 1}`.
14989 - When comparing objects, the order of the name/value pairs is irrelevant.
14990 This makes objects interoperable in the sense that they will not be
14991 affected by these differences. For instance, `{"b": 1, "a": 2}` and
14992 `{"a": 2, "b": 1}` will be treated as equal.
14993
14994 #### Limits
14995
14996 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
14997 > An implementation may set limits on the maximum depth of nesting.
14998
14999 In this class, the object's limit of nesting is not explicitly constrained.
15000 However, a maximum depth of nesting may be introduced by the compiler or
15001 runtime environment. A theoretical limit can be queried by calling the
15002 @ref max_size function of a JSON object.
15003
15004 #### Storage
15005
15006 Objects are stored as pointers in a @ref basic_json type. That is, for any
15007 access to object values, a pointer of type `object_t*` must be
15008 dereferenced.
15009
15010 @sa @ref array_t -- type for an array value
15011
15012 @since version 1.0.0
15013
15014 @note The order name/value pairs are added to the object is *not*
15015 preserved by the library. Therefore, iterating an object may return
15016 name/value pairs in a different order than they were originally stored. In
15017 fact, keys will be traversed in alphabetical order as `std::map` with
15018 `std::less` is used by default. Please note this behavior conforms to [RFC
15019 7159](http://rfc7159.net/rfc7159), because any order implements the
15020 specified "unordered" nature of JSON objects.
15021 */
15022 using object_t = ObjectType<StringType,
15023 basic_json,
15024 object_comparator_t,
15025 AllocatorType<std::pair<const StringType,
15026 basic_json>>>;
15027
15028 /*!
15029 @brief a type for an array
15030
15031 [RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows:
15032 > An array is an ordered sequence of zero or more values.
15033
15034 To store objects in C++, a type is defined by the template parameters
15035 explained below.
15036
15037 @tparam ArrayType container type to store arrays (e.g., `std::vector` or
15038 `std::list`)
15039 @tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`)
15040
15041 #### Default type
15042
15043 With the default values for @a ArrayType (`std::vector`) and @a
15044 AllocatorType (`std::allocator`), the default value for @a array_t is:
15045
15046 @code {.cpp}
15047 std::vector<
15048 basic_json, // value_type
15049 std::allocator<basic_json> // allocator_type
15050 >
15051 @endcode
15052
15053 #### Limits
15054
15055 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
15056 > An implementation may set limits on the maximum depth of nesting.
15057
15058 In this class, the array's limit of nesting is not explicitly constrained.
15059 However, a maximum depth of nesting may be introduced by the compiler or
15060 runtime environment. A theoretical limit can be queried by calling the
15061 @ref max_size function of a JSON array.
15062
15063 #### Storage
15064
15065 Arrays are stored as pointers in a @ref basic_json type. That is, for any
15066 access to array values, a pointer of type `array_t*` must be dereferenced.
15067
15068 @sa @ref object_t -- type for an object value
15069
15070 @since version 1.0.0
15071 */
15072 using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
15073
15074 /*!
15075 @brief a type for a string
15076
15077 [RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows:
15078 > A string is a sequence of zero or more Unicode characters.
15079
15080 To store objects in C++, a type is defined by the template parameter
15081 described below. Unicode values are split by the JSON class into
15082 byte-sized characters during deserialization.
15083
15084 @tparam StringType the container to store strings (e.g., `std::string`).
15085 Note this container is used for keys/names in objects, see @ref object_t.
15086
15087 #### Default type
15088
15089 With the default values for @a StringType (`std::string`), the default
15090 value for @a string_t is:
15091
15092 @code {.cpp}
15093 std::string
15094 @endcode
15095
15096 #### Encoding
15097
15098 Strings are stored in UTF-8 encoding. Therefore, functions like
15099 `std::string::size()` or `std::string::length()` return the number of
15100 bytes in the string rather than the number of characters or glyphs.
15101
15102 #### String comparison
15103
15104 [RFC 7159](http://rfc7159.net/rfc7159) states:
15105 > Software implementations are typically required to test names of object
15106 > members for equality. Implementations that transform the textual
15107 > representation into sequences of Unicode code units and then perform the
15108 > comparison numerically, code unit by code unit, are interoperable in the
15109 > sense that implementations will agree in all cases on equality or
15110 > inequality of two strings. For example, implementations that compare
15111 > strings with escaped characters unconverted may incorrectly find that
15112 > `"a\\b"` and `"a\u005Cb"` are not equal.
15113
15114 This implementation is interoperable as it does compare strings code unit
15115 by code unit.
15116
15117 #### Storage
15118
15119 String values are stored as pointers in a @ref basic_json type. That is,
15120 for any access to string values, a pointer of type `string_t*` must be
15121 dereferenced.
15122
15123 @since version 1.0.0
15124 */
15125 using string_t = StringType;
15126
15127 /*!
15128 @brief a type for a boolean
15129
15130 [RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a
15131 type which differentiates the two literals `true` and `false`.
15132
15133 To store objects in C++, a type is defined by the template parameter @a
15134 BooleanType which chooses the type to use.
15135
15136 #### Default type
15137
15138 With the default values for @a BooleanType (`bool`), the default value for
15139 @a boolean_t is:
15140
15141 @code {.cpp}
15142 bool
15143 @endcode
15144
15145 #### Storage
15146
15147 Boolean values are stored directly inside a @ref basic_json type.
15148
15149 @since version 1.0.0
15150 */
15151 using boolean_t = BooleanType;
15152
15153 /*!
15154 @brief a type for a number (integer)
15155
15156 [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
15157 > The representation of numbers is similar to that used in most
15158 > programming languages. A number is represented in base 10 using decimal
15159 > digits. It contains an integer component that may be prefixed with an
15160 > optional minus sign, which may be followed by a fraction part and/or an
15161 > exponent part. Leading zeros are not allowed. (...) Numeric values that
15162 > cannot be represented in the grammar below (such as Infinity and NaN)
15163 > are not permitted.
15164
15165 This description includes both integer and floating-point numbers.
15166 However, C++ allows more precise storage if it is known whether the number
15167 is a signed integer, an unsigned integer or a floating-point number.
15168 Therefore, three different types, @ref number_integer_t, @ref
15169 number_unsigned_t and @ref number_float_t are used.
15170
15171 To store integer numbers in C++, a type is defined by the template
15172 parameter @a NumberIntegerType which chooses the type to use.
15173
15174 #### Default type
15175
15176 With the default values for @a NumberIntegerType (`int64_t`), the default
15177 value for @a number_integer_t is:
15178
15179 @code {.cpp}
15180 int64_t
15181 @endcode
15182
15183 #### Default behavior
15184
15185 - The restrictions about leading zeros is not enforced in C++. Instead,
15186 leading zeros in integer literals lead to an interpretation as octal
15187 number. Internally, the value will be stored as decimal number. For
15188 instance, the C++ integer literal `010` will be serialized to `8`.
15189 During deserialization, leading zeros yield an error.
15190 - Not-a-number (NaN) values will be serialized to `null`.
15191
15192 #### Limits
15193
15194 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
15195 > An implementation may set limits on the range and precision of numbers.
15196
15197 When the default type is used, the maximal integer number that can be
15198 stored is `9223372036854775807` (INT64_MAX) and the minimal integer number
15199 that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers
15200 that are out of range will yield over/underflow when used in a
15201 constructor. During deserialization, too large or small integer numbers
15202 will be automatically be stored as @ref number_unsigned_t or @ref
15203 number_float_t.
15204
15205 [RFC 7159](http://rfc7159.net/rfc7159) further states:
15206 > Note that when such software is used, numbers that are integers and are
15207 > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
15208 > that implementations will agree exactly on their numeric values.
15209
15210 As this range is a subrange of the exactly supported range [INT64_MIN,
15211 INT64_MAX], this class's integer type is interoperable.
15212
15213 #### Storage
15214
15215 Integer number values are stored directly inside a @ref basic_json type.
15216
15217 @sa @ref number_float_t -- type for number values (floating-point)
15218
15219 @sa @ref number_unsigned_t -- type for number values (unsigned integer)
15220
15221 @since version 1.0.0
15222 */
15223 using number_integer_t = NumberIntegerType;
15224
15225 /*!
15226 @brief a type for a number (unsigned)
15227
15228 [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
15229 > The representation of numbers is similar to that used in most
15230 > programming languages. A number is represented in base 10 using decimal
15231 > digits. It contains an integer component that may be prefixed with an
15232 > optional minus sign, which may be followed by a fraction part and/or an
15233 > exponent part. Leading zeros are not allowed. (...) Numeric values that
15234 > cannot be represented in the grammar below (such as Infinity and NaN)
15235 > are not permitted.
15236
15237 This description includes both integer and floating-point numbers.
15238 However, C++ allows more precise storage if it is known whether the number
15239 is a signed integer, an unsigned integer or a floating-point number.
15240 Therefore, three different types, @ref number_integer_t, @ref
15241 number_unsigned_t and @ref number_float_t are used.
15242
15243 To store unsigned integer numbers in C++, a type is defined by the
15244 template parameter @a NumberUnsignedType which chooses the type to use.
15245
15246 #### Default type
15247
15248 With the default values for @a NumberUnsignedType (`uint64_t`), the
15249 default value for @a number_unsigned_t is:
15250
15251 @code {.cpp}
15252 uint64_t
15253 @endcode
15254
15255 #### Default behavior
15256
15257 - The restrictions about leading zeros is not enforced in C++. Instead,
15258 leading zeros in integer literals lead to an interpretation as octal
15259 number. Internally, the value will be stored as decimal number. For
15260 instance, the C++ integer literal `010` will be serialized to `8`.
15261 During deserialization, leading zeros yield an error.
15262 - Not-a-number (NaN) values will be serialized to `null`.
15263
15264 #### Limits
15265
15266 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
15267 > An implementation may set limits on the range and precision of numbers.
15268
15269 When the default type is used, the maximal integer number that can be
15270 stored is `18446744073709551615` (UINT64_MAX) and the minimal integer
15271 number that can be stored is `0`. Integer numbers that are out of range
15272 will yield over/underflow when used in a constructor. During
15273 deserialization, too large or small integer numbers will be automatically
15274 be stored as @ref number_integer_t or @ref number_float_t.
15275
15276 [RFC 7159](http://rfc7159.net/rfc7159) further states:
15277 > Note that when such software is used, numbers that are integers and are
15278 > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
15279 > that implementations will agree exactly on their numeric values.
15280
15281 As this range is a subrange (when considered in conjunction with the
15282 number_integer_t type) of the exactly supported range [0, UINT64_MAX],
15283 this class's integer type is interoperable.
15284
15285 #### Storage
15286
15287 Integer number values are stored directly inside a @ref basic_json type.
15288
15289 @sa @ref number_float_t -- type for number values (floating-point)
15290 @sa @ref number_integer_t -- type for number values (integer)
15291
15292 @since version 2.0.0
15293 */
15294 using number_unsigned_t = NumberUnsignedType;
15295
15296 /*!
15297 @brief a type for a number (floating-point)
15298
15299 [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
15300 > The representation of numbers is similar to that used in most
15301 > programming languages. A number is represented in base 10 using decimal
15302 > digits. It contains an integer component that may be prefixed with an
15303 > optional minus sign, which may be followed by a fraction part and/or an
15304 > exponent part. Leading zeros are not allowed. (...) Numeric values that
15305 > cannot be represented in the grammar below (such as Infinity and NaN)
15306 > are not permitted.
15307
15308 This description includes both integer and floating-point numbers.
15309 However, C++ allows more precise storage if it is known whether the number
15310 is a signed integer, an unsigned integer or a floating-point number.
15311 Therefore, three different types, @ref number_integer_t, @ref
15312 number_unsigned_t and @ref number_float_t are used.
15313
15314 To store floating-point numbers in C++, a type is defined by the template
15315 parameter @a NumberFloatType which chooses the type to use.
15316
15317 #### Default type
15318
15319 With the default values for @a NumberFloatType (`double`), the default
15320 value for @a number_float_t is:
15321
15322 @code {.cpp}
15323 double
15324 @endcode
15325
15326 #### Default behavior
15327
15328 - The restrictions about leading zeros is not enforced in C++. Instead,
15329 leading zeros in floating-point literals will be ignored. Internally,
15330 the value will be stored as decimal number. For instance, the C++
15331 floating-point literal `01.2` will be serialized to `1.2`. During
15332 deserialization, leading zeros yield an error.
15333 - Not-a-number (NaN) values will be serialized to `null`.
15334
15335 #### Limits
15336
15337 [RFC 7159](http://rfc7159.net/rfc7159) states:
15338 > This specification allows implementations to set limits on the range and
15339 > precision of numbers accepted. Since software that implements IEEE
15340 > 754-2008 binary64 (double precision) numbers is generally available and
15341 > widely used, good interoperability can be achieved by implementations
15342 > that expect no more precision or range than these provide, in the sense
15343 > that implementations will approximate JSON numbers within the expected
15344 > precision.
15345
15346 This implementation does exactly follow this approach, as it uses double
15347 precision floating-point numbers. Note values smaller than
15348 `-1.79769313486232e+308` and values greater than `1.79769313486232e+308`
15349 will be stored as NaN internally and be serialized to `null`.
15350
15351 #### Storage
15352
15353 Floating-point number values are stored directly inside a @ref basic_json
15354 type.
15355
15356 @sa @ref number_integer_t -- type for number values (integer)
15357
15358 @sa @ref number_unsigned_t -- type for number values (unsigned integer)
15359
15360 @since version 1.0.0
15361 */
15362 using number_float_t = NumberFloatType;
15363
15364 /// @}
15365
15366 private:
15367
15368 /// helper for exception-safe object creation
15369 template<typename T, typename... Args>
15370 JSON_HEDLEY_RETURNS_NON_NULL
15371 static T* create(Args&& ... args)
15372 {
15373 AllocatorType<T> alloc;
15374 using AllocatorTraits = std::allocator_traits<AllocatorType<T>>;
15375
15376 auto deleter = [&](T * object)
15377 {
15378 AllocatorTraits::deallocate(alloc, object, 1);
15379 };
15380 std::unique_ptr<T, decltype(deleter)> object(AllocatorTraits::allocate(alloc, 1), deleter);
15381 AllocatorTraits::construct(alloc, object.get(), std::forward<Args>(args)...);
15382 assert(object != nullptr);
15383 return object.release();
15384 }
15385
15386 ////////////////////////
15387 // JSON value storage //
15388 ////////////////////////
15389
15390 /*!
15391 @brief a JSON value
15392
15393 The actual storage for a JSON value of the @ref basic_json class. This
15394 union combines the different storage types for the JSON value types
15395 defined in @ref value_t.
15396
15397 JSON type | value_t type | used type
15398 --------- | --------------- | ------------------------
15399 object | object | pointer to @ref object_t
15400 array | array | pointer to @ref array_t
15401 string | string | pointer to @ref string_t
15402 boolean | boolean | @ref boolean_t
15403 number | number_integer | @ref number_integer_t
15404 number | number_unsigned | @ref number_unsigned_t
15405 number | number_float | @ref number_float_t
15406 null | null | *no value is stored*
15407
15408 @note Variable-length types (objects, arrays, and strings) are stored as
15409 pointers. The size of the union should not exceed 64 bits if the default
15410 value types are used.
15411
15412 @since version 1.0.0
15413 */
15414 union json_value
15415 {
15416 /// object (stored with pointer to save storage)
15417 object_t* object;
15418 /// array (stored with pointer to save storage)
15419 array_t* array;
15420 /// string (stored with pointer to save storage)
15421 string_t* string;
15422 /// boolean
15423 boolean_t boolean;
15424 /// number (integer)
15425 number_integer_t number_integer;
15426 /// number (unsigned integer)
15427 number_unsigned_t number_unsigned;
15428 /// number (floating-point)
15429 number_float_t number_float;
15430
15431 /// default constructor (for null values)
15432 json_value() = default;
15433 /// constructor for booleans
15434 json_value(boolean_t v) noexcept : boolean(v) {}
15435 /// constructor for numbers (integer)
15436 json_value(number_integer_t v) noexcept : number_integer(v) {}
15437 /// constructor for numbers (unsigned)
15438 json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
15439 /// constructor for numbers (floating-point)
15440 json_value(number_float_t v) noexcept : number_float(v) {}
15441 /// constructor for empty values of a given type
15442 json_value(value_t t)
15443 {
15444 switch (t)
15445 {
15446 case value_t::object:
15447 {
15448 object = create<object_t>();
15449 break;
15450 }
15451
15452 case value_t::array:
15453 {
15454 array = create<array_t>();
15455 break;
15456 }
15457
15458 case value_t::string:
15459 {
15460 string = create<string_t>("");
15461 break;
15462 }
15463
15464 case value_t::boolean:
15465 {
15466 boolean = boolean_t(false);
15467 break;
15468 }
15469
15470 case value_t::number_integer:
15471 {
15472 number_integer = number_integer_t(0);
15473 break;
15474 }
15475
15476 case value_t::number_unsigned:
15477 {
15478 number_unsigned = number_unsigned_t(0);
15479 break;
15480 }
15481
15482 case value_t::number_float:
15483 {
15484 number_float = number_float_t(0.0);
15485 break;
15486 }
15487
15488 case value_t::null:
15489 {
15490 object = nullptr; // silence warning, see #821
15491 break;
15492 }
15493
15494 default:
15495 {
15496 object = nullptr; // silence warning, see #821
15497 if (JSON_HEDLEY_UNLIKELY(t == value_t::null))
15498 {
15499 JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.7.3")); // LCOV_EXCL_LINE
15500 }
15501 break;
15502 }
15503 }
15504 }
15505
15506 /// constructor for strings
15507 json_value(const string_t& value)
15508 {
15509 string = create<string_t>(value);
15510 }
15511
15512 /// constructor for rvalue strings
15513 json_value(string_t&& value)
15514 {
15515 string = create<string_t>(std::move(value));
15516 }
15517
15518 /// constructor for objects
15519 json_value(const object_t& value)
15520 {
15521 object = create<object_t>(value);
15522 }
15523
15524 /// constructor for rvalue objects
15525 json_value(object_t&& value)
15526 {
15527 object = create<object_t>(std::move(value));
15528 }
15529
15530 /// constructor for arrays
15531 json_value(const array_t& value)
15532 {
15533 array = create<array_t>(value);
15534 }
15535
15536 /// constructor for rvalue arrays
15537 json_value(array_t&& value)
15538 {
15539 array = create<array_t>(std::move(value));
15540 }
15541
15542 void destroy(value_t t) noexcept
15543 {
15544 // flatten the current json_value to a heap-allocated stack
15545 std::vector<basic_json> stack;
15546
15547 // move the top-level items to stack
15548 if (t == value_t::array)
15549 {
15550 stack.reserve(array->size());
15551 std::move(array->begin(), array->end(), std::back_inserter(stack));
15552 }
15553 else if (t == value_t::object)
15554 {
15555 stack.reserve(object->size());
15556 for (auto&& it : *object)
15557 {
15558 stack.push_back(std::move(it.second));
15559 }
15560 }
15561
15562 while (not stack.empty())
15563 {
15564 // move the last item to local variable to be processed
15565 basic_json current_item(std::move(stack.back()));
15566 stack.pop_back();
15567
15568 // if current_item is array/object, move
15569 // its children to the stack to be processed later
15570 if (current_item.is_array())
15571 {
15572 std::move(current_item.m_value.array->begin(), current_item.m_value.array->end(),
15573 std::back_inserter(stack));
15574
15575 current_item.m_value.array->clear();
15576 }
15577 else if (current_item.is_object())
15578 {
15579 for (auto&& it : *current_item.m_value.object)
15580 {
15581 stack.push_back(std::move(it.second));
15582 }
15583
15584 current_item.m_value.object->clear();
15585 }
15586
15587 // it's now safe that current_item get destructed
15588 // since it doesn't have any children
15589 }
15590
15591 switch (t)
15592 {
15593 case value_t::object:
15594 {
15595 AllocatorType<object_t> alloc;
15596 std::allocator_traits<decltype(alloc)>::destroy(alloc, object);
15597 std::allocator_traits<decltype(alloc)>::deallocate(alloc, object, 1);
15598 break;
15599 }
15600
15601 case value_t::array:
15602 {
15603 AllocatorType<array_t> alloc;
15604 std::allocator_traits<decltype(alloc)>::destroy(alloc, array);
15605 std::allocator_traits<decltype(alloc)>::deallocate(alloc, array, 1);
15606 break;
15607 }
15608
15609 case value_t::string:
15610 {
15611 AllocatorType<string_t> alloc;
15612 std::allocator_traits<decltype(alloc)>::destroy(alloc, string);
15613 std::allocator_traits<decltype(alloc)>::deallocate(alloc, string, 1);
15614 break;
15615 }
15616
15617 default:
15618 {
15619 break;
15620 }
15621 }
15622 }
15623 };
15624
15625 /*!
15626 @brief checks the class invariants
15627
15628 This function asserts the class invariants. It needs to be called at the
15629 end of every constructor to make sure that created objects respect the
15630 invariant. Furthermore, it has to be called each time the type of a JSON
15631 value is changed, because the invariant expresses a relationship between
15632 @a m_type and @a m_value.
15633 */
15634 void assert_invariant() const noexcept
15635 {
15636 assert(m_type != value_t::object or m_value.object != nullptr);
15637 assert(m_type != value_t::array or m_value.array != nullptr);
15638 assert(m_type != value_t::string or m_value.string != nullptr);
15639 }
15640
15641 public:
15642 //////////////////////////
15643 // JSON parser callback //
15644 //////////////////////////
15645
15646 /*!
15647 @brief parser event types
15648
15649 The parser callback distinguishes the following events:
15650 - `object_start`: the parser read `{` and started to process a JSON object
15651 - `key`: the parser read a key of a value in an object
15652 - `object_end`: the parser read `}` and finished processing a JSON object
15653 - `array_start`: the parser read `[` and started to process a JSON array
15654 - `array_end`: the parser read `]` and finished processing a JSON array
15655 - `value`: the parser finished reading a JSON value
15656
15657 @image html callback_events.png "Example when certain parse events are triggered"
15658
15659 @sa @ref parser_callback_t for more information and examples
15660 */
15661 using parse_event_t = typename parser::parse_event_t;
15662
15663 /*!
15664 @brief per-element parser callback type
15665
15666 With a parser callback function, the result of parsing a JSON text can be
15667 influenced. When passed to @ref parse, it is called on certain events
15668 (passed as @ref parse_event_t via parameter @a event) with a set recursion
15669 depth @a depth and context JSON value @a parsed. The return value of the
15670 callback function is a boolean indicating whether the element that emitted
15671 the callback shall be kept or not.
15672
15673 We distinguish six scenarios (determined by the event type) in which the
15674 callback function can be called. The following table describes the values
15675 of the parameters @a depth, @a event, and @a parsed.
15676
15677 parameter @a event | description | parameter @a depth | parameter @a parsed
15678 ------------------ | ----------- | ------------------ | -------------------
15679 parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded
15680 parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key
15681 parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object
15682 parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded
15683 parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array
15684 parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value
15685
15686 @image html callback_events.png "Example when certain parse events are triggered"
15687
15688 Discarding a value (i.e., returning `false`) has different effects
15689 depending on the context in which function was called:
15690
15691 - Discarded values in structured types are skipped. That is, the parser
15692 will behave as if the discarded value was never read.
15693 - In case a value outside a structured type is skipped, it is replaced
15694 with `null`. This case happens if the top-level element is skipped.
15695
15696 @param[in] depth the depth of the recursion during parsing
15697
15698 @param[in] event an event of type parse_event_t indicating the context in
15699 the callback function has been called
15700
15701 @param[in,out] parsed the current intermediate parse result; note that
15702 writing to this value has no effect for parse_event_t::key events
15703
15704 @return Whether the JSON value which called the function during parsing
15705 should be kept (`true`) or not (`false`). In the latter case, it is either
15706 skipped completely or replaced by an empty discarded object.
15707
15708 @sa @ref parse for examples
15709
15710 @since version 1.0.0
15711 */
15712 using parser_callback_t = typename parser::parser_callback_t;
15713
15714 //////////////////
15715 // constructors //
15716 //////////////////
15717
15718 /// @name constructors and destructors
15719 /// Constructors of class @ref basic_json, copy/move constructor, copy
15720 /// assignment, static functions creating objects, and the destructor.
15721 /// @{
15722
15723 /*!
15724 @brief create an empty value with a given type
15725
15726 Create an empty JSON value with a given type. The value will be default
15727 initialized with an empty value which depends on the type:
15728
15729 Value type | initial value
15730 ----------- | -------------
15731 null | `null`
15732 boolean | `false`
15733 string | `""`
15734 number | `0`
15735 object | `{}`
15736 array | `[]`
15737
15738 @param[in] v the type of the value to create
15739
15740 @complexity Constant.
15741
15742 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15743 changes to any JSON value.
15744
15745 @liveexample{The following code shows the constructor for different @ref
15746 value_t values,basic_json__value_t}
15747
15748 @sa @ref clear() -- restores the postcondition of this constructor
15749
15750 @since version 1.0.0
15751 */
15752 basic_json(const value_t v)
15753 : m_type(v), m_value(v)
15754 {
15755 assert_invariant();
15756 }
15757
15758 /*!
15759 @brief create a null object
15760
15761 Create a `null` JSON value. It either takes a null pointer as parameter
15762 (explicitly creating `null`) or no parameter (implicitly creating `null`).
15763 The passed null pointer itself is not read -- it is only used to choose
15764 the right constructor.
15765
15766 @complexity Constant.
15767
15768 @exceptionsafety No-throw guarantee: this constructor never throws
15769 exceptions.
15770
15771 @liveexample{The following code shows the constructor with and without a
15772 null pointer parameter.,basic_json__nullptr_t}
15773
15774 @since version 1.0.0
15775 */
15776 basic_json(std::nullptr_t = nullptr) noexcept
15777 : basic_json(value_t::null)
15778 {
15779 assert_invariant();
15780 }
15781
15782 /*!
15783 @brief create a JSON value
15784
15785 This is a "catch all" constructor for all compatible JSON types; that is,
15786 types for which a `to_json()` method exists. The constructor forwards the
15787 parameter @a val to that method (to `json_serializer<U>::to_json` method
15788 with `U = uncvref_t<CompatibleType>`, to be exact).
15789
15790 Template type @a CompatibleType includes, but is not limited to, the
15791 following types:
15792 - **arrays**: @ref array_t and all kinds of compatible containers such as
15793 `std::vector`, `std::deque`, `std::list`, `std::forward_list`,
15794 `std::array`, `std::valarray`, `std::set`, `std::unordered_set`,
15795 `std::multiset`, and `std::unordered_multiset` with a `value_type` from
15796 which a @ref basic_json value can be constructed.
15797 - **objects**: @ref object_t and all kinds of compatible associative
15798 containers such as `std::map`, `std::unordered_map`, `std::multimap`,
15799 and `std::unordered_multimap` with a `key_type` compatible to
15800 @ref string_t and a `value_type` from which a @ref basic_json value can
15801 be constructed.
15802 - **strings**: @ref string_t, string literals, and all compatible string
15803 containers can be used.
15804 - **numbers**: @ref number_integer_t, @ref number_unsigned_t,
15805 @ref number_float_t, and all convertible number types such as `int`,
15806 `size_t`, `int64_t`, `float` or `double` can be used.
15807 - **boolean**: @ref boolean_t / `bool` can be used.
15808
15809 See the examples below.
15810
15811 @tparam CompatibleType a type such that:
15812 - @a CompatibleType is not derived from `std::istream`,
15813 - @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move
15814 constructors),
15815 - @a CompatibleType is not a different @ref basic_json type (i.e. with different template arguments)
15816 - @a CompatibleType is not a @ref basic_json nested type (e.g.,
15817 @ref json_pointer, @ref iterator, etc ...)
15818 - @ref @ref json_serializer<U> has a
15819 `to_json(basic_json_t&, CompatibleType&&)` method
15820
15821 @tparam U = `uncvref_t<CompatibleType>`
15822
15823 @param[in] val the value to be forwarded to the respective constructor
15824
15825 @complexity Usually linear in the size of the passed @a val, also
15826 depending on the implementation of the called `to_json()`
15827 method.
15828
15829 @exceptionsafety Depends on the called constructor. For types directly
15830 supported by the library (i.e., all types for which no `to_json()` function
15831 was provided), strong guarantee holds: if an exception is thrown, there are
15832 no changes to any JSON value.
15833
15834 @liveexample{The following code shows the constructor with several
15835 compatible types.,basic_json__CompatibleType}
15836
15837 @since version 2.1.0
15838 */
15839 template <typename CompatibleType,
15840 typename U = detail::uncvref_t<CompatibleType>,
15841 detail::enable_if_t<
15842 not detail::is_basic_json<U>::value and detail::is_compatible_type<basic_json_t, U>::value, int> = 0>
15843 basic_json(CompatibleType && val) noexcept(noexcept(
15844 JSONSerializer<U>::to_json(std::declval<basic_json_t&>(),
15845 std::forward<CompatibleType>(val))))
15846 {
15847 JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
15848 assert_invariant();
15849 }
15850
15851 /*!
15852 @brief create a JSON value from an existing one
15853
15854 This is a constructor for existing @ref basic_json types.
15855 It does not hijack copy/move constructors, since the parameter has different
15856 template arguments than the current ones.
15857
15858 The constructor tries to convert the internal @ref m_value of the parameter.
15859
15860 @tparam BasicJsonType a type such that:
15861 - @a BasicJsonType is a @ref basic_json type.
15862 - @a BasicJsonType has different template arguments than @ref basic_json_t.
15863
15864 @param[in] val the @ref basic_json value to be converted.
15865
15866 @complexity Usually linear in the size of the passed @a val, also
15867 depending on the implementation of the called `to_json()`
15868 method.
15869
15870 @exceptionsafety Depends on the called constructor. For types directly
15871 supported by the library (i.e., all types for which no `to_json()` function
15872 was provided), strong guarantee holds: if an exception is thrown, there are
15873 no changes to any JSON value.
15874
15875 @since version 3.2.0
15876 */
15877 template <typename BasicJsonType,
15878 detail::enable_if_t<
15879 detail::is_basic_json<BasicJsonType>::value and not std::is_same<basic_json, BasicJsonType>::value, int> = 0>
15880 basic_json(const BasicJsonType& val)
15881 {
15882 using other_boolean_t = typename BasicJsonType::boolean_t;
15883 using other_number_float_t = typename BasicJsonType::number_float_t;
15884 using other_number_integer_t = typename BasicJsonType::number_integer_t;
15885 using other_number_unsigned_t = typename BasicJsonType::number_unsigned_t;
15886 using other_string_t = typename BasicJsonType::string_t;
15887 using other_object_t = typename BasicJsonType::object_t;
15888 using other_array_t = typename BasicJsonType::array_t;
15889
15890 switch (val.type())
15891 {
15892 case value_t::boolean:
15893 JSONSerializer<other_boolean_t>::to_json(*this, val.template get<other_boolean_t>());
15894 break;
15895 case value_t::number_float:
15896 JSONSerializer<other_number_float_t>::to_json(*this, val.template get<other_number_float_t>());
15897 break;
15898 case value_t::number_integer:
15899 JSONSerializer<other_number_integer_t>::to_json(*this, val.template get<other_number_integer_t>());
15900 break;
15901 case value_t::number_unsigned:
15902 JSONSerializer<other_number_unsigned_t>::to_json(*this, val.template get<other_number_unsigned_t>());
15903 break;
15904 case value_t::string:
15905 JSONSerializer<other_string_t>::to_json(*this, val.template get_ref<const other_string_t&>());
15906 break;
15907 case value_t::object:
15908 JSONSerializer<other_object_t>::to_json(*this, val.template get_ref<const other_object_t&>());
15909 break;
15910 case value_t::array:
15911 JSONSerializer<other_array_t>::to_json(*this, val.template get_ref<const other_array_t&>());
15912 break;
15913 case value_t::null:
15914 *this = nullptr;
15915 break;
15916 case value_t::discarded:
15917 m_type = value_t::discarded;
15918 break;
15919 default: // LCOV_EXCL_LINE
15920 assert(false); // LCOV_EXCL_LINE
15921 }
15922 assert_invariant();
15923 }
15924
15925 /*!
15926 @brief create a container (array or object) from an initializer list
15927
15928 Creates a JSON value of type array or object from the passed initializer
15929 list @a init. In case @a type_deduction is `true` (default), the type of
15930 the JSON value to be created is deducted from the initializer list @a init
15931 according to the following rules:
15932
15933 1. If the list is empty, an empty JSON object value `{}` is created.
15934 2. If the list consists of pairs whose first element is a string, a JSON
15935 object value is created where the first elements of the pairs are
15936 treated as keys and the second elements are as values.
15937 3. In all other cases, an array is created.
15938
15939 The rules aim to create the best fit between a C++ initializer list and
15940 JSON values. The rationale is as follows:
15941
15942 1. The empty initializer list is written as `{}` which is exactly an empty
15943 JSON object.
15944 2. C++ has no way of describing mapped types other than to list a list of
15945 pairs. As JSON requires that keys must be of type string, rule 2 is the
15946 weakest constraint one can pose on initializer lists to interpret them
15947 as an object.
15948 3. In all other cases, the initializer list could not be interpreted as
15949 JSON object type, so interpreting it as JSON array type is safe.
15950
15951 With the rules described above, the following JSON values cannot be
15952 expressed by an initializer list:
15953
15954 - the empty array (`[]`): use @ref array(initializer_list_t)
15955 with an empty initializer list in this case
15956 - arrays whose elements satisfy rule 2: use @ref
15957 array(initializer_list_t) with the same initializer list
15958 in this case
15959
15960 @note When used without parentheses around an empty initializer list, @ref
15961 basic_json() is called instead of this function, yielding the JSON null
15962 value.
15963
15964 @param[in] init initializer list with JSON values
15965
15966 @param[in] type_deduction internal parameter; when set to `true`, the type
15967 of the JSON value is deducted from the initializer list @a init; when set
15968 to `false`, the type provided via @a manual_type is forced. This mode is
15969 used by the functions @ref array(initializer_list_t) and
15970 @ref object(initializer_list_t).
15971
15972 @param[in] manual_type internal parameter; when @a type_deduction is set
15973 to `false`, the created JSON value will use the provided type (only @ref
15974 value_t::array and @ref value_t::object are valid); when @a type_deduction
15975 is set to `true`, this parameter has no effect
15976
15977 @throw type_error.301 if @a type_deduction is `false`, @a manual_type is
15978 `value_t::object`, but @a init contains an element which is not a pair
15979 whose first element is a string. In this case, the constructor could not
15980 create an object. If @a type_deduction would have be `true`, an array
15981 would have been created. See @ref object(initializer_list_t)
15982 for an example.
15983
15984 @complexity Linear in the size of the initializer list @a init.
15985
15986 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15987 changes to any JSON value.
15988
15989 @liveexample{The example below shows how JSON values are created from
15990 initializer lists.,basic_json__list_init_t}
15991
15992 @sa @ref array(initializer_list_t) -- create a JSON array
15993 value from an initializer list
15994 @sa @ref object(initializer_list_t) -- create a JSON object
15995 value from an initializer list
15996
15997 @since version 1.0.0
15998 */
15999 basic_json(initializer_list_t init,
16000 bool type_deduction = true,
16001 value_t manual_type = value_t::array)
16002 {
16003 // check if each element is an array with two elements whose first
16004 // element is a string
16005 bool is_an_object = std::all_of(init.begin(), init.end(),
16006 [](const detail::json_ref<basic_json>& element_ref)
16007 {
16008 return element_ref->is_array() and element_ref->size() == 2 and (*element_ref)[0].is_string();
16009 });
16010
16011 // adjust type if type deduction is not wanted
16012 if (not type_deduction)
16013 {
16014 // if array is wanted, do not create an object though possible
16015 if (manual_type == value_t::array)
16016 {
16017 is_an_object = false;
16018 }
16019
16020 // if object is wanted but impossible, throw an exception
16021 if (JSON_HEDLEY_UNLIKELY(manual_type == value_t::object and not is_an_object))
16022 {
16023 JSON_THROW(type_error::create(301, "cannot create object from initializer list"));
16024 }
16025 }
16026
16027 if (is_an_object)
16028 {
16029 // the initializer list is a list of pairs -> create object
16030 m_type = value_t::object;
16031 m_value = value_t::object;
16032
16033 std::for_each(init.begin(), init.end(), [this](const detail::json_ref<basic_json>& element_ref)
16034 {
16035 auto element = element_ref.moved_or_copied();
16036 m_value.object->emplace(
16037 std::move(*((*element.m_value.array)[0].m_value.string)),
16038 std::move((*element.m_value.array)[1]));
16039 });
16040 }
16041 else
16042 {
16043 // the initializer list describes an array -> create array
16044 m_type = value_t::array;
16045 m_value.array = create<array_t>(init.begin(), init.end());
16046 }
16047
16048 assert_invariant();
16049 }
16050
16051 /*!
16052 @brief explicitly create an array from an initializer list
16053
16054 Creates a JSON array value from a given initializer list. That is, given a
16055 list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the
16056 initializer list is empty, the empty array `[]` is created.
16057
16058 @note This function is only needed to express two edge cases that cannot
16059 be realized with the initializer list constructor (@ref
16060 basic_json(initializer_list_t, bool, value_t)). These cases
16061 are:
16062 1. creating an array whose elements are all pairs whose first element is a
16063 string -- in this case, the initializer list constructor would create an
16064 object, taking the first elements as keys
16065 2. creating an empty array -- passing the empty initializer list to the
16066 initializer list constructor yields an empty object
16067
16068 @param[in] init initializer list with JSON values to create an array from
16069 (optional)
16070
16071 @return JSON array value
16072
16073 @complexity Linear in the size of @a init.
16074
16075 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16076 changes to any JSON value.
16077
16078 @liveexample{The following code shows an example for the `array`
16079 function.,array}
16080
16081 @sa @ref basic_json(initializer_list_t, bool, value_t) --
16082 create a JSON value from an initializer list
16083 @sa @ref object(initializer_list_t) -- create a JSON object
16084 value from an initializer list
16085
16086 @since version 1.0.0
16087 */
16088 JSON_HEDLEY_WARN_UNUSED_RESULT
16089 static basic_json array(initializer_list_t init = {})
16090 {
16091 return basic_json(init, false, value_t::array);
16092 }
16093
16094 /*!
16095 @brief explicitly create an object from an initializer list
16096
16097 Creates a JSON object value from a given initializer list. The initializer
16098 lists elements must be pairs, and their first elements must be strings. If
16099 the initializer list is empty, the empty object `{}` is created.
16100
16101 @note This function is only added for symmetry reasons. In contrast to the
16102 related function @ref array(initializer_list_t), there are
16103 no cases which can only be expressed by this function. That is, any
16104 initializer list @a init can also be passed to the initializer list
16105 constructor @ref basic_json(initializer_list_t, bool, value_t).
16106
16107 @param[in] init initializer list to create an object from (optional)
16108
16109 @return JSON object value
16110
16111 @throw type_error.301 if @a init is not a list of pairs whose first
16112 elements are strings. In this case, no object can be created. When such a
16113 value is passed to @ref basic_json(initializer_list_t, bool, value_t),
16114 an array would have been created from the passed initializer list @a init.
16115 See example below.
16116
16117 @complexity Linear in the size of @a init.
16118
16119 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16120 changes to any JSON value.
16121
16122 @liveexample{The following code shows an example for the `object`
16123 function.,object}
16124
16125 @sa @ref basic_json(initializer_list_t, bool, value_t) --
16126 create a JSON value from an initializer list
16127 @sa @ref array(initializer_list_t) -- create a JSON array
16128 value from an initializer list
16129
16130 @since version 1.0.0
16131 */
16132 JSON_HEDLEY_WARN_UNUSED_RESULT
16133 static basic_json object(initializer_list_t init = {})
16134 {
16135 return basic_json(init, false, value_t::object);
16136 }
16137
16138 /*!
16139 @brief construct an array with count copies of given value
16140
16141 Constructs a JSON array value by creating @a cnt copies of a passed value.
16142 In case @a cnt is `0`, an empty array is created.
16143
16144 @param[in] cnt the number of JSON copies of @a val to create
16145 @param[in] val the JSON value to copy
16146
16147 @post `std::distance(begin(),end()) == cnt` holds.
16148
16149 @complexity Linear in @a cnt.
16150
16151 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16152 changes to any JSON value.
16153
16154 @liveexample{The following code shows examples for the @ref
16155 basic_json(size_type\, const basic_json&)
16156 constructor.,basic_json__size_type_basic_json}
16157
16158 @since version 1.0.0
16159 */
16160 basic_json(size_type cnt, const basic_json& val)
16161 : m_type(value_t::array)
16162 {
16163 m_value.array = create<array_t>(cnt, val);
16164 assert_invariant();
16165 }
16166
16167 /*!
16168 @brief construct a JSON container given an iterator range
16169
16170 Constructs the JSON value with the contents of the range `[first, last)`.
16171 The semantics depends on the different types a JSON value can have:
16172 - In case of a null type, invalid_iterator.206 is thrown.
16173 - In case of other primitive types (number, boolean, or string), @a first
16174 must be `begin()` and @a last must be `end()`. In this case, the value is
16175 copied. Otherwise, invalid_iterator.204 is thrown.
16176 - In case of structured types (array, object), the constructor behaves as
16177 similar versions for `std::vector` or `std::map`; that is, a JSON array
16178 or object is constructed from the values in the range.
16179
16180 @tparam InputIT an input iterator type (@ref iterator or @ref
16181 const_iterator)
16182
16183 @param[in] first begin of the range to copy from (included)
16184 @param[in] last end of the range to copy from (excluded)
16185
16186 @pre Iterators @a first and @a last must be initialized. **This
16187 precondition is enforced with an assertion (see warning).** If
16188 assertions are switched off, a violation of this precondition yields
16189 undefined behavior.
16190
16191 @pre Range `[first, last)` is valid. Usually, this precondition cannot be
16192 checked efficiently. Only certain edge cases are detected; see the
16193 description of the exceptions below. A violation of this precondition
16194 yields undefined behavior.
16195
16196 @warning A precondition is enforced with a runtime assertion that will
16197 result in calling `std::abort` if this precondition is not met.
16198 Assertions can be disabled by defining `NDEBUG` at compile time.
16199 See https://en.cppreference.com/w/cpp/error/assert for more
16200 information.
16201
16202 @throw invalid_iterator.201 if iterators @a first and @a last are not
16203 compatible (i.e., do not belong to the same JSON value). In this case,
16204 the range `[first, last)` is undefined.
16205 @throw invalid_iterator.204 if iterators @a first and @a last belong to a
16206 primitive type (number, boolean, or string), but @a first does not point
16207 to the first element any more. In this case, the range `[first, last)` is
16208 undefined. See example code below.
16209 @throw invalid_iterator.206 if iterators @a first and @a last belong to a
16210 null value. In this case, the range `[first, last)` is undefined.
16211
16212 @complexity Linear in distance between @a first and @a last.
16213
16214 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16215 changes to any JSON value.
16216
16217 @liveexample{The example below shows several ways to create JSON values by
16218 specifying a subrange with iterators.,basic_json__InputIt_InputIt}
16219
16220 @since version 1.0.0
16221 */
16222 template<class InputIT, typename std::enable_if<
16223 std::is_same<InputIT, typename basic_json_t::iterator>::value or
16224 std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0>
16225 basic_json(InputIT first, InputIT last)
16226 {
16227 assert(first.m_object != nullptr);
16228 assert(last.m_object != nullptr);
16229
16230 // make sure iterator fits the current value
16231 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
16232 {
16233 JSON_THROW(invalid_iterator::create(201, "iterators are not compatible"));
16234 }
16235
16236 // copy type from first iterator
16237 m_type = first.m_object->m_type;
16238
16239 // check if iterator range is complete for primitive values
16240 switch (m_type)
16241 {
16242 case value_t::boolean:
16243 case value_t::number_float:
16244 case value_t::number_integer:
16245 case value_t::number_unsigned:
16246 case value_t::string:
16247 {
16248 if (JSON_HEDLEY_UNLIKELY(not first.m_it.primitive_iterator.is_begin()
16249 or not last.m_it.primitive_iterator.is_end()))
16250 {
16251 JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
16252 }
16253 break;
16254 }
16255
16256 default:
16257 break;
16258 }
16259
16260 switch (m_type)
16261 {
16262 case value_t::number_integer:
16263 {
16264 m_value.number_integer = first.m_object->m_value.number_integer;
16265 break;
16266 }
16267
16268 case value_t::number_unsigned:
16269 {
16270 m_value.number_unsigned = first.m_object->m_value.number_unsigned;
16271 break;
16272 }
16273
16274 case value_t::number_float:
16275 {
16276 m_value.number_float = first.m_object->m_value.number_float;
16277 break;
16278 }
16279
16280 case value_t::boolean:
16281 {
16282 m_value.boolean = first.m_object->m_value.boolean;
16283 break;
16284 }
16285
16286 case value_t::string:
16287 {
16288 m_value = *first.m_object->m_value.string;
16289 break;
16290 }
16291
16292 case value_t::object:
16293 {
16294 m_value.object = create<object_t>(first.m_it.object_iterator,
16295 last.m_it.object_iterator);
16296 break;
16297 }
16298
16299 case value_t::array:
16300 {
16301 m_value.array = create<array_t>(first.m_it.array_iterator,
16302 last.m_it.array_iterator);
16303 break;
16304 }
16305
16306 default:
16307 JSON_THROW(invalid_iterator::create(206, "cannot construct with iterators from " +
16308 std::string(first.m_object->type_name())));
16309 }
16310
16311 assert_invariant();
16312 }
16313
16314
16315 ///////////////////////////////////////
16316 // other constructors and destructor //
16317 ///////////////////////////////////////
16318
16319 /// @private
16320 basic_json(const detail::json_ref<basic_json>& ref)
16321 : basic_json(ref.moved_or_copied())
16322 {}
16323
16324 /*!
16325 @brief copy constructor
16326
16327 Creates a copy of a given JSON value.
16328
16329 @param[in] other the JSON value to copy
16330
16331 @post `*this == other`
16332
16333 @complexity Linear in the size of @a other.
16334
16335 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16336 changes to any JSON value.
16337
16338 @requirement This function helps `basic_json` satisfying the
16339 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
16340 requirements:
16341 - The complexity is linear.
16342 - As postcondition, it holds: `other == basic_json(other)`.
16343
16344 @liveexample{The following code shows an example for the copy
16345 constructor.,basic_json__basic_json}
16346
16347 @since version 1.0.0
16348 */
16349 basic_json(const basic_json& other)
16350 : m_type(other.m_type)
16351 {
16352 // check of passed value is valid
16353 other.assert_invariant();
16354
16355 switch (m_type)
16356 {
16357 case value_t::object:
16358 {
16359 m_value = *other.m_value.object;
16360 break;
16361 }
16362
16363 case value_t::array:
16364 {
16365 m_value = *other.m_value.array;
16366 break;
16367 }
16368
16369 case value_t::string:
16370 {
16371 m_value = *other.m_value.string;
16372 break;
16373 }
16374
16375 case value_t::boolean:
16376 {
16377 m_value = other.m_value.boolean;
16378 break;
16379 }
16380
16381 case value_t::number_integer:
16382 {
16383 m_value = other.m_value.number_integer;
16384 break;
16385 }
16386
16387 case value_t::number_unsigned:
16388 {
16389 m_value = other.m_value.number_unsigned;
16390 break;
16391 }
16392
16393 case value_t::number_float:
16394 {
16395 m_value = other.m_value.number_float;
16396 break;
16397 }
16398
16399 default:
16400 break;
16401 }
16402
16403 assert_invariant();
16404 }
16405
16406 /*!
16407 @brief move constructor
16408
16409 Move constructor. Constructs a JSON value with the contents of the given
16410 value @a other using move semantics. It "steals" the resources from @a
16411 other and leaves it as JSON null value.
16412
16413 @param[in,out] other value to move to this object
16414
16415 @post `*this` has the same value as @a other before the call.
16416 @post @a other is a JSON null value.
16417
16418 @complexity Constant.
16419
16420 @exceptionsafety No-throw guarantee: this constructor never throws
16421 exceptions.
16422
16423 @requirement This function helps `basic_json` satisfying the
16424 [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible)
16425 requirements.
16426
16427 @liveexample{The code below shows the move constructor explicitly called
16428 via std::move.,basic_json__moveconstructor}
16429
16430 @since version 1.0.0
16431 */
16432 basic_json(basic_json&& other) noexcept
16433 : m_type(std::move(other.m_type)),
16434 m_value(std::move(other.m_value))
16435 {
16436 // check that passed value is valid
16437 other.assert_invariant();
16438
16439 // invalidate payload
16440 other.m_type = value_t::null;
16441 other.m_value = {};
16442
16443 assert_invariant();
16444 }
16445
16446 /*!
16447 @brief copy assignment
16448
16449 Copy assignment operator. Copies a JSON value via the "copy and swap"
16450 strategy: It is expressed in terms of the copy constructor, destructor,
16451 and the `swap()` member function.
16452
16453 @param[in] other value to copy from
16454
16455 @complexity Linear.
16456
16457 @requirement This function helps `basic_json` satisfying the
16458 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
16459 requirements:
16460 - The complexity is linear.
16461
16462 @liveexample{The code below shows and example for the copy assignment. It
16463 creates a copy of value `a` which is then swapped with `b`. Finally\, the
16464 copy of `a` (which is the null value after the swap) is
16465 destroyed.,basic_json__copyassignment}
16466
16467 @since version 1.0.0
16468 */
16469 basic_json& operator=(basic_json other) noexcept (
16470 std::is_nothrow_move_constructible<value_t>::value and
16471 std::is_nothrow_move_assignable<value_t>::value and
16472 std::is_nothrow_move_constructible<json_value>::value and
16473 std::is_nothrow_move_assignable<json_value>::value
16474 )
16475 {
16476 // check that passed value is valid
16477 other.assert_invariant();
16478
16479 using std::swap;
16480 swap(m_type, other.m_type);
16481 swap(m_value, other.m_value);
16482
16483 assert_invariant();
16484 return *this;
16485 }
16486
16487 /*!
16488 @brief destructor
16489
16490 Destroys the JSON value and frees all allocated memory.
16491
16492 @complexity Linear.
16493
16494 @requirement This function helps `basic_json` satisfying the
16495 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
16496 requirements:
16497 - The complexity is linear.
16498 - All stored elements are destroyed and all memory is freed.
16499
16500 @since version 1.0.0
16501 */
16502 ~basic_json() noexcept
16503 {
16504 assert_invariant();
16505 m_value.destroy(m_type);
16506 }
16507
16508 /// @}
16509
16510 public:
16511 ///////////////////////
16512 // object inspection //
16513 ///////////////////////
16514
16515 /// @name object inspection
16516 /// Functions to inspect the type of a JSON value.
16517 /// @{
16518
16519 /*!
16520 @brief serialization
16521
16522 Serialization function for JSON values. The function tries to mimic
16523 Python's `json.dumps()` function, and currently supports its @a indent
16524 and @a ensure_ascii parameters.
16525
16526 @param[in] indent If indent is nonnegative, then array elements and object
16527 members will be pretty-printed with that indent level. An indent level of
16528 `0` will only insert newlines. `-1` (the default) selects the most compact
16529 representation.
16530 @param[in] indent_char The character to use for indentation if @a indent is
16531 greater than `0`. The default is ` ` (space).
16532 @param[in] ensure_ascii If @a ensure_ascii is true, all non-ASCII characters
16533 in the output are escaped with `\uXXXX` sequences, and the result consists
16534 of ASCII characters only.
16535 @param[in] error_handler how to react on decoding errors; there are three
16536 possible values: `strict` (throws and exception in case a decoding error
16537 occurs; default), `replace` (replace invalid UTF-8 sequences with U+FFFD),
16538 and `ignore` (ignore invalid UTF-8 sequences during serialization).
16539
16540 @return string containing the serialization of the JSON value
16541
16542 @throw type_error.316 if a string stored inside the JSON value is not
16543 UTF-8 encoded
16544
16545 @complexity Linear.
16546
16547 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16548 changes in the JSON value.
16549
16550 @liveexample{The following example shows the effect of different @a indent\,
16551 @a indent_char\, and @a ensure_ascii parameters to the result of the
16552 serialization.,dump}
16553
16554 @see https://docs.python.org/2/library/json.html#json.dump
16555
16556 @since version 1.0.0; indentation character @a indent_char, option
16557 @a ensure_ascii and exceptions added in version 3.0.0; error
16558 handlers added in version 3.4.0.
16559 */
16560 string_t dump(const int indent = -1,
16561 const char indent_char = ' ',
16562 const bool ensure_ascii = false,
16563 const error_handler_t error_handler = error_handler_t::strict) const
16564 {
16565 string_t result;
16566 serializer s(detail::output_adapter<char, string_t>(result), indent_char, error_handler);
16567
16568 if (indent >= 0)
16569 {
16570 s.dump(*this, true, ensure_ascii, static_cast<unsigned int>(indent));
16571 }
16572 else
16573 {
16574 s.dump(*this, false, ensure_ascii, 0);
16575 }
16576
16577 return result;
16578 }
16579
16580 /*!
16581 @brief return the type of the JSON value (explicit)
16582
16583 Return the type of the JSON value as a value from the @ref value_t
16584 enumeration.
16585
16586 @return the type of the JSON value
16587 Value type | return value
16588 ------------------------- | -------------------------
16589 null | value_t::null
16590 boolean | value_t::boolean
16591 string | value_t::string
16592 number (integer) | value_t::number_integer
16593 number (unsigned integer) | value_t::number_unsigned
16594 number (floating-point) | value_t::number_float
16595 object | value_t::object
16596 array | value_t::array
16597 discarded | value_t::discarded
16598
16599 @complexity Constant.
16600
16601 @exceptionsafety No-throw guarantee: this member function never throws
16602 exceptions.
16603
16604 @liveexample{The following code exemplifies `type()` for all JSON
16605 types.,type}
16606
16607 @sa @ref operator value_t() -- return the type of the JSON value (implicit)
16608 @sa @ref type_name() -- return the type as string
16609
16610 @since version 1.0.0
16611 */
16612 constexpr value_t type() const noexcept
16613 {
16614 return m_type;
16615 }
16616
16617 /*!
16618 @brief return whether type is primitive
16619
16620 This function returns true if and only if the JSON type is primitive
16621 (string, number, boolean, or null).
16622
16623 @return `true` if type is primitive (string, number, boolean, or null),
16624 `false` otherwise.
16625
16626 @complexity Constant.
16627
16628 @exceptionsafety No-throw guarantee: this member function never throws
16629 exceptions.
16630
16631 @liveexample{The following code exemplifies `is_primitive()` for all JSON
16632 types.,is_primitive}
16633
16634 @sa @ref is_structured() -- returns whether JSON value is structured
16635 @sa @ref is_null() -- returns whether JSON value is `null`
16636 @sa @ref is_string() -- returns whether JSON value is a string
16637 @sa @ref is_boolean() -- returns whether JSON value is a boolean
16638 @sa @ref is_number() -- returns whether JSON value is a number
16639
16640 @since version 1.0.0
16641 */
16642 constexpr bool is_primitive() const noexcept
16643 {
16644 return is_null() or is_string() or is_boolean() or is_number();
16645 }
16646
16647 /*!
16648 @brief return whether type is structured
16649
16650 This function returns true if and only if the JSON type is structured
16651 (array or object).
16652
16653 @return `true` if type is structured (array or object), `false` otherwise.
16654
16655 @complexity Constant.
16656
16657 @exceptionsafety No-throw guarantee: this member function never throws
16658 exceptions.
16659
16660 @liveexample{The following code exemplifies `is_structured()` for all JSON
16661 types.,is_structured}
16662
16663 @sa @ref is_primitive() -- returns whether value is primitive
16664 @sa @ref is_array() -- returns whether value is an array
16665 @sa @ref is_object() -- returns whether value is an object
16666
16667 @since version 1.0.0
16668 */
16669 constexpr bool is_structured() const noexcept
16670 {
16671 return is_array() or is_object();
16672 }
16673
16674 /*!
16675 @brief return whether value is null
16676
16677 This function returns true if and only if the JSON value is null.
16678
16679 @return `true` if type is null, `false` otherwise.
16680
16681 @complexity Constant.
16682
16683 @exceptionsafety No-throw guarantee: this member function never throws
16684 exceptions.
16685
16686 @liveexample{The following code exemplifies `is_null()` for all JSON
16687 types.,is_null}
16688
16689 @since version 1.0.0
16690 */
16691 constexpr bool is_null() const noexcept
16692 {
16693 return m_type == value_t::null;
16694 }
16695
16696 /*!
16697 @brief return whether value is a boolean
16698
16699 This function returns true if and only if the JSON value is a boolean.
16700
16701 @return `true` if type is boolean, `false` otherwise.
16702
16703 @complexity Constant.
16704
16705 @exceptionsafety No-throw guarantee: this member function never throws
16706 exceptions.
16707
16708 @liveexample{The following code exemplifies `is_boolean()` for all JSON
16709 types.,is_boolean}
16710
16711 @since version 1.0.0
16712 */
16713 constexpr bool is_boolean() const noexcept
16714 {
16715 return m_type == value_t::boolean;
16716 }
16717
16718 /*!
16719 @brief return whether value is a number
16720
16721 This function returns true if and only if the JSON value is a number. This
16722 includes both integer (signed and unsigned) and floating-point values.
16723
16724 @return `true` if type is number (regardless whether integer, unsigned
16725 integer or floating-type), `false` otherwise.
16726
16727 @complexity Constant.
16728
16729 @exceptionsafety No-throw guarantee: this member function never throws
16730 exceptions.
16731
16732 @liveexample{The following code exemplifies `is_number()` for all JSON
16733 types.,is_number}
16734
16735 @sa @ref is_number_integer() -- check if value is an integer or unsigned
16736 integer number
16737 @sa @ref is_number_unsigned() -- check if value is an unsigned integer
16738 number
16739 @sa @ref is_number_float() -- check if value is a floating-point number
16740
16741 @since version 1.0.0
16742 */
16743 constexpr bool is_number() const noexcept
16744 {
16745 return is_number_integer() or is_number_float();
16746 }
16747
16748 /*!
16749 @brief return whether value is an integer number
16750
16751 This function returns true if and only if the JSON value is a signed or
16752 unsigned integer number. This excludes floating-point values.
16753
16754 @return `true` if type is an integer or unsigned integer number, `false`
16755 otherwise.
16756
16757 @complexity Constant.
16758
16759 @exceptionsafety No-throw guarantee: this member function never throws
16760 exceptions.
16761
16762 @liveexample{The following code exemplifies `is_number_integer()` for all
16763 JSON types.,is_number_integer}
16764
16765 @sa @ref is_number() -- check if value is a number
16766 @sa @ref is_number_unsigned() -- check if value is an unsigned integer
16767 number
16768 @sa @ref is_number_float() -- check if value is a floating-point number
16769
16770 @since version 1.0.0
16771 */
16772 constexpr bool is_number_integer() const noexcept
16773 {
16774 return m_type == value_t::number_integer or m_type == value_t::number_unsigned;
16775 }
16776
16777 /*!
16778 @brief return whether value is an unsigned integer number
16779
16780 This function returns true if and only if the JSON value is an unsigned
16781 integer number. This excludes floating-point and signed integer values.
16782
16783 @return `true` if type is an unsigned integer number, `false` otherwise.
16784
16785 @complexity Constant.
16786
16787 @exceptionsafety No-throw guarantee: this member function never throws
16788 exceptions.
16789
16790 @liveexample{The following code exemplifies `is_number_unsigned()` for all
16791 JSON types.,is_number_unsigned}
16792
16793 @sa @ref is_number() -- check if value is a number
16794 @sa @ref is_number_integer() -- check if value is an integer or unsigned
16795 integer number
16796 @sa @ref is_number_float() -- check if value is a floating-point number
16797
16798 @since version 2.0.0
16799 */
16800 constexpr bool is_number_unsigned() const noexcept
16801 {
16802 return m_type == value_t::number_unsigned;
16803 }
16804
16805 /*!
16806 @brief return whether value is a floating-point number
16807
16808 This function returns true if and only if the JSON value is a
16809 floating-point number. This excludes signed and unsigned integer values.
16810
16811 @return `true` if type is a floating-point number, `false` otherwise.
16812
16813 @complexity Constant.
16814
16815 @exceptionsafety No-throw guarantee: this member function never throws
16816 exceptions.
16817
16818 @liveexample{The following code exemplifies `is_number_float()` for all
16819 JSON types.,is_number_float}
16820
16821 @sa @ref is_number() -- check if value is number
16822 @sa @ref is_number_integer() -- check if value is an integer number
16823 @sa @ref is_number_unsigned() -- check if value is an unsigned integer
16824 number
16825
16826 @since version 1.0.0
16827 */
16828 constexpr bool is_number_float() const noexcept
16829 {
16830 return m_type == value_t::number_float;
16831 }
16832
16833 /*!
16834 @brief return whether value is an object
16835
16836 This function returns true if and only if the JSON value is an object.
16837
16838 @return `true` if type is object, `false` otherwise.
16839
16840 @complexity Constant.
16841
16842 @exceptionsafety No-throw guarantee: this member function never throws
16843 exceptions.
16844
16845 @liveexample{The following code exemplifies `is_object()` for all JSON
16846 types.,is_object}
16847
16848 @since version 1.0.0
16849 */
16850 constexpr bool is_object() const noexcept
16851 {
16852 return m_type == value_t::object;
16853 }
16854
16855 /*!
16856 @brief return whether value is an array
16857
16858 This function returns true if and only if the JSON value is an array.
16859
16860 @return `true` if type is array, `false` otherwise.
16861
16862 @complexity Constant.
16863
16864 @exceptionsafety No-throw guarantee: this member function never throws
16865 exceptions.
16866
16867 @liveexample{The following code exemplifies `is_array()` for all JSON
16868 types.,is_array}
16869
16870 @since version 1.0.0
16871 */
16872 constexpr bool is_array() const noexcept
16873 {
16874 return m_type == value_t::array;
16875 }
16876
16877 /*!
16878 @brief return whether value is a string
16879
16880 This function returns true if and only if the JSON value is a string.
16881
16882 @return `true` if type is string, `false` otherwise.
16883
16884 @complexity Constant.
16885
16886 @exceptionsafety No-throw guarantee: this member function never throws
16887 exceptions.
16888
16889 @liveexample{The following code exemplifies `is_string()` for all JSON
16890 types.,is_string}
16891
16892 @since version 1.0.0
16893 */
16894 constexpr bool is_string() const noexcept
16895 {
16896 return m_type == value_t::string;
16897 }
16898
16899 /*!
16900 @brief return whether value is discarded
16901
16902 This function returns true if and only if the JSON value was discarded
16903 during parsing with a callback function (see @ref parser_callback_t).
16904
16905 @note This function will always be `false` for JSON values after parsing.
16906 That is, discarded values can only occur during parsing, but will be
16907 removed when inside a structured value or replaced by null in other cases.
16908
16909 @return `true` if type is discarded, `false` otherwise.
16910
16911 @complexity Constant.
16912
16913 @exceptionsafety No-throw guarantee: this member function never throws
16914 exceptions.
16915
16916 @liveexample{The following code exemplifies `is_discarded()` for all JSON
16917 types.,is_discarded}
16918
16919 @since version 1.0.0
16920 */
16921 constexpr bool is_discarded() const noexcept
16922 {
16923 return m_type == value_t::discarded;
16924 }
16925
16926 /*!
16927 @brief return the type of the JSON value (implicit)
16928
16929 Implicitly return the type of the JSON value as a value from the @ref
16930 value_t enumeration.
16931
16932 @return the type of the JSON value
16933
16934 @complexity Constant.
16935
16936 @exceptionsafety No-throw guarantee: this member function never throws
16937 exceptions.
16938
16939 @liveexample{The following code exemplifies the @ref value_t operator for
16940 all JSON types.,operator__value_t}
16941
16942 @sa @ref type() -- return the type of the JSON value (explicit)
16943 @sa @ref type_name() -- return the type as string
16944
16945 @since version 1.0.0
16946 */
16947 constexpr operator value_t() const noexcept
16948 {
16949 return m_type;
16950 }
16951
16952 /// @}
16953
16954 private:
16955 //////////////////
16956 // value access //
16957 //////////////////
16958
16959 /// get a boolean (explicit)
16960 boolean_t get_impl(boolean_t* /*unused*/) const
16961 {
16962 if (JSON_HEDLEY_LIKELY(is_boolean()))
16963 {
16964 return m_value.boolean;
16965 }
16966
16967 JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(type_name())));
16968 }
16969
16970 /// get a pointer to the value (object)
16971 object_t* get_impl_ptr(object_t* /*unused*/) noexcept
16972 {
16973 return is_object() ? m_value.object : nullptr;
16974 }
16975
16976 /// get a pointer to the value (object)
16977 constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept
16978 {
16979 return is_object() ? m_value.object : nullptr;
16980 }
16981
16982 /// get a pointer to the value (array)
16983 array_t* get_impl_ptr(array_t* /*unused*/) noexcept
16984 {
16985 return is_array() ? m_value.array : nullptr;
16986 }
16987
16988 /// get a pointer to the value (array)
16989 constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept
16990 {
16991 return is_array() ? m_value.array : nullptr;
16992 }
16993
16994 /// get a pointer to the value (string)
16995 string_t* get_impl_ptr(string_t* /*unused*/) noexcept
16996 {
16997 return is_string() ? m_value.string : nullptr;
16998 }
16999
17000 /// get a pointer to the value (string)
17001 constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept
17002 {
17003 return is_string() ? m_value.string : nullptr;
17004 }
17005
17006 /// get a pointer to the value (boolean)
17007 boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept
17008 {
17009 return is_boolean() ? &m_value.boolean : nullptr;
17010 }
17011
17012 /// get a pointer to the value (boolean)
17013 constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept
17014 {
17015 return is_boolean() ? &m_value.boolean : nullptr;
17016 }
17017
17018 /// get a pointer to the value (integer number)
17019 number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept
17020 {
17021 return is_number_integer() ? &m_value.number_integer : nullptr;
17022 }
17023
17024 /// get a pointer to the value (integer number)
17025 constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept
17026 {
17027 return is_number_integer() ? &m_value.number_integer : nullptr;
17028 }
17029
17030 /// get a pointer to the value (unsigned number)
17031 number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept
17032 {
17033 return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
17034 }
17035
17036 /// get a pointer to the value (unsigned number)
17037 constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept
17038 {
17039 return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
17040 }
17041
17042 /// get a pointer to the value (floating-point number)
17043 number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept
17044 {
17045 return is_number_float() ? &m_value.number_float : nullptr;
17046 }
17047
17048 /// get a pointer to the value (floating-point number)
17049 constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept
17050 {
17051 return is_number_float() ? &m_value.number_float : nullptr;
17052 }
17053
17054 /*!
17055 @brief helper function to implement get_ref()
17056
17057 This function helps to implement get_ref() without code duplication for
17058 const and non-const overloads
17059
17060 @tparam ThisType will be deduced as `basic_json` or `const basic_json`
17061
17062 @throw type_error.303 if ReferenceType does not match underlying value
17063 type of the current JSON
17064 */
17065 template<typename ReferenceType, typename ThisType>
17066 static ReferenceType get_ref_impl(ThisType& obj)
17067 {
17068 // delegate the call to get_ptr<>()
17069 auto ptr = obj.template get_ptr<typename std::add_pointer<ReferenceType>::type>();
17070
17071 if (JSON_HEDLEY_LIKELY(ptr != nullptr))
17072 {
17073 return *ptr;
17074 }
17075
17076 JSON_THROW(type_error::create(303, "incompatible ReferenceType for get_ref, actual type is " + std::string(obj.type_name())));
17077 }
17078
17079 public:
17080 /// @name value access
17081 /// Direct access to the stored value of a JSON value.
17082 /// @{
17083
17084 /*!
17085 @brief get special-case overload
17086
17087 This overloads avoids a lot of template boilerplate, it can be seen as the
17088 identity method
17089
17090 @tparam BasicJsonType == @ref basic_json
17091
17092 @return a copy of *this
17093
17094 @complexity Constant.
17095
17096 @since version 2.1.0
17097 */
17098 template<typename BasicJsonType, detail::enable_if_t<
17099 std::is_same<typename std::remove_const<BasicJsonType>::type, basic_json_t>::value,
17100 int> = 0>
17101 basic_json get() const
17102 {
17103 return *this;
17104 }
17105
17106 /*!
17107 @brief get special-case overload
17108
17109 This overloads converts the current @ref basic_json in a different
17110 @ref basic_json type
17111
17112 @tparam BasicJsonType == @ref basic_json
17113
17114 @return a copy of *this, converted into @tparam BasicJsonType
17115
17116 @complexity Depending on the implementation of the called `from_json()`
17117 method.
17118
17119 @since version 3.2.0
17120 */
17121 template<typename BasicJsonType, detail::enable_if_t<
17122 not std::is_same<BasicJsonType, basic_json>::value and
17123 detail::is_basic_json<BasicJsonType>::value, int> = 0>
17124 BasicJsonType get() const
17125 {
17126 return *this;
17127 }
17128
17129 /*!
17130 @brief get a value (explicit)
17131
17132 Explicit type conversion between the JSON value and a compatible value
17133 which is [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
17134 and [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
17135 The value is converted by calling the @ref json_serializer<ValueType>
17136 `from_json()` method.
17137
17138 The function is equivalent to executing
17139 @code {.cpp}
17140 ValueType ret;
17141 JSONSerializer<ValueType>::from_json(*this, ret);
17142 return ret;
17143 @endcode
17144
17145 This overloads is chosen if:
17146 - @a ValueType is not @ref basic_json,
17147 - @ref json_serializer<ValueType> has a `from_json()` method of the form
17148 `void from_json(const basic_json&, ValueType&)`, and
17149 - @ref json_serializer<ValueType> does not have a `from_json()` method of
17150 the form `ValueType from_json(const basic_json&)`
17151
17152 @tparam ValueTypeCV the provided value type
17153 @tparam ValueType the returned value type
17154
17155 @return copy of the JSON value, converted to @a ValueType
17156
17157 @throw what @ref json_serializer<ValueType> `from_json()` method throws
17158
17159 @liveexample{The example below shows several conversions from JSON values
17160 to other types. There a few things to note: (1) Floating-point numbers can
17161 be converted to integers\, (2) A JSON array can be converted to a standard
17162 `std::vector<short>`\, (3) A JSON object can be converted to C++
17163 associative containers such as `std::unordered_map<std::string\,
17164 json>`.,get__ValueType_const}
17165
17166 @since version 2.1.0
17167 */
17168 template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
17169 detail::enable_if_t <
17170 not detail::is_basic_json<ValueType>::value and
17171 detail::has_from_json<basic_json_t, ValueType>::value and
17172 not detail::has_non_default_from_json<basic_json_t, ValueType>::value,
17173 int> = 0>
17174 ValueType get() const noexcept(noexcept(
17175 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
17176 {
17177 // we cannot static_assert on ValueTypeCV being non-const, because
17178 // there is support for get<const basic_json_t>(), which is why we
17179 // still need the uncvref
17180 static_assert(not std::is_reference<ValueTypeCV>::value,
17181 "get() cannot be used with reference types, you might want to use get_ref()");
17182 static_assert(std::is_default_constructible<ValueType>::value,
17183 "types must be DefaultConstructible when used with get()");
17184
17185 ValueType ret;
17186 JSONSerializer<ValueType>::from_json(*this, ret);
17187 return ret;
17188 }
17189
17190 /*!
17191 @brief get a value (explicit); special case
17192
17193 Explicit type conversion between the JSON value and a compatible value
17194 which is **not** [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
17195 and **not** [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
17196 The value is converted by calling the @ref json_serializer<ValueType>
17197 `from_json()` method.
17198
17199 The function is equivalent to executing
17200 @code {.cpp}
17201 return JSONSerializer<ValueTypeCV>::from_json(*this);
17202 @endcode
17203
17204 This overloads is chosen if:
17205 - @a ValueType is not @ref basic_json and
17206 - @ref json_serializer<ValueType> has a `from_json()` method of the form
17207 `ValueType from_json(const basic_json&)`
17208
17209 @note If @ref json_serializer<ValueType> has both overloads of
17210 `from_json()`, this one is chosen.
17211
17212 @tparam ValueTypeCV the provided value type
17213 @tparam ValueType the returned value type
17214
17215 @return copy of the JSON value, converted to @a ValueType
17216
17217 @throw what @ref json_serializer<ValueType> `from_json()` method throws
17218
17219 @since version 2.1.0
17220 */
17221 template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
17222 detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and
17223 detail::has_non_default_from_json<basic_json_t, ValueType>::value,
17224 int> = 0>
17225 ValueType get() const noexcept(noexcept(
17226 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>())))
17227 {
17228 static_assert(not std::is_reference<ValueTypeCV>::value,
17229 "get() cannot be used with reference types, you might want to use get_ref()");
17230 return JSONSerializer<ValueType>::from_json(*this);
17231 }
17232
17233 /*!
17234 @brief get a value (explicit)
17235
17236 Explicit type conversion between the JSON value and a compatible value.
17237 The value is filled into the input parameter by calling the @ref json_serializer<ValueType>
17238 `from_json()` method.
17239
17240 The function is equivalent to executing
17241 @code {.cpp}
17242 ValueType v;
17243 JSONSerializer<ValueType>::from_json(*this, v);
17244 @endcode
17245
17246 This overloads is chosen if:
17247 - @a ValueType is not @ref basic_json,
17248 - @ref json_serializer<ValueType> has a `from_json()` method of the form
17249 `void from_json(const basic_json&, ValueType&)`, and
17250
17251 @tparam ValueType the input parameter type.
17252
17253 @return the input parameter, allowing chaining calls.
17254
17255 @throw what @ref json_serializer<ValueType> `from_json()` method throws
17256
17257 @liveexample{The example below shows several conversions from JSON values
17258 to other types. There a few things to note: (1) Floating-point numbers can
17259 be converted to integers\, (2) A JSON array can be converted to a standard
17260 `std::vector<short>`\, (3) A JSON object can be converted to C++
17261 associative containers such as `std::unordered_map<std::string\,
17262 json>`.,get_to}
17263
17264 @since version 3.3.0
17265 */
17266 template<typename ValueType,
17267 detail::enable_if_t <
17268 not detail::is_basic_json<ValueType>::value and
17269 detail::has_from_json<basic_json_t, ValueType>::value,
17270 int> = 0>
17271 ValueType & get_to(ValueType& v) const noexcept(noexcept(
17272 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), v)))
17273 {
17274 JSONSerializer<ValueType>::from_json(*this, v);
17275 return v;
17276 }
17277
17278 template <
17279 typename T, std::size_t N,
17280 typename Array = T (&)[N],
17281 detail::enable_if_t <
17282 detail::has_from_json<basic_json_t, Array>::value, int > = 0 >
17283 Array get_to(T (&v)[N]) const
17284 noexcept(noexcept(JSONSerializer<Array>::from_json(
17285 std::declval<const basic_json_t&>(), v)))
17286 {
17287 JSONSerializer<Array>::from_json(*this, v);
17288 return v;
17289 }
17290
17291
17292 /*!
17293 @brief get a pointer value (implicit)
17294
17295 Implicit pointer access to the internally stored JSON value. No copies are
17296 made.
17297
17298 @warning Writing data to the pointee of the result yields an undefined
17299 state.
17300
17301 @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
17302 object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
17303 @ref number_unsigned_t, or @ref number_float_t. Enforced by a static
17304 assertion.
17305
17306 @return pointer to the internally stored JSON value if the requested
17307 pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
17308
17309 @complexity Constant.
17310
17311 @liveexample{The example below shows how pointers to internal values of a
17312 JSON value can be requested. Note that no type conversions are made and a
17313 `nullptr` is returned if the value and the requested pointer type does not
17314 match.,get_ptr}
17315
17316 @since version 1.0.0
17317 */
17318 template<typename PointerType, typename std::enable_if<
17319 std::is_pointer<PointerType>::value, int>::type = 0>
17320 auto get_ptr() noexcept -> decltype(std::declval<basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
17321 {
17322 // delegate the call to get_impl_ptr<>()
17323 return get_impl_ptr(static_cast<PointerType>(nullptr));
17324 }
17325
17326 /*!
17327 @brief get a pointer value (implicit)
17328 @copydoc get_ptr()
17329 */
17330 template<typename PointerType, typename std::enable_if<
17331 std::is_pointer<PointerType>::value and
17332 std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0>
17333 constexpr auto get_ptr() const noexcept -> decltype(std::declval<const basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
17334 {
17335 // delegate the call to get_impl_ptr<>() const
17336 return get_impl_ptr(static_cast<PointerType>(nullptr));
17337 }
17338
17339 /*!
17340 @brief get a pointer value (explicit)
17341
17342 Explicit pointer access to the internally stored JSON value. No copies are
17343 made.
17344
17345 @warning The pointer becomes invalid if the underlying JSON object
17346 changes.
17347
17348 @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
17349 object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
17350 @ref number_unsigned_t, or @ref number_float_t.
17351
17352 @return pointer to the internally stored JSON value if the requested
17353 pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
17354
17355 @complexity Constant.
17356
17357 @liveexample{The example below shows how pointers to internal values of a
17358 JSON value can be requested. Note that no type conversions are made and a
17359 `nullptr` is returned if the value and the requested pointer type does not
17360 match.,get__PointerType}
17361
17362 @sa @ref get_ptr() for explicit pointer-member access
17363
17364 @since version 1.0.0
17365 */
17366 template<typename PointerType, typename std::enable_if<
17367 std::is_pointer<PointerType>::value, int>::type = 0>
17368 auto get() noexcept -> decltype(std::declval<basic_json_t&>().template get_ptr<PointerType>())
17369 {
17370 // delegate the call to get_ptr
17371 return get_ptr<PointerType>();
17372 }
17373
17374 /*!
17375 @brief get a pointer value (explicit)
17376 @copydoc get()
17377 */
17378 template<typename PointerType, typename std::enable_if<
17379 std::is_pointer<PointerType>::value, int>::type = 0>
17380 constexpr auto get() const noexcept -> decltype(std::declval<const basic_json_t&>().template get_ptr<PointerType>())
17381 {
17382 // delegate the call to get_ptr
17383 return get_ptr<PointerType>();
17384 }
17385
17386 /*!
17387 @brief get a reference value (implicit)
17388
17389 Implicit reference access to the internally stored JSON value. No copies
17390 are made.
17391
17392 @warning Writing data to the referee of the result yields an undefined
17393 state.
17394
17395 @tparam ReferenceType reference type; must be a reference to @ref array_t,
17396 @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or
17397 @ref number_float_t. Enforced by static assertion.
17398
17399 @return reference to the internally stored JSON value if the requested
17400 reference type @a ReferenceType fits to the JSON value; throws
17401 type_error.303 otherwise
17402
17403 @throw type_error.303 in case passed type @a ReferenceType is incompatible
17404 with the stored JSON value; see example below
17405
17406 @complexity Constant.
17407
17408 @liveexample{The example shows several calls to `get_ref()`.,get_ref}
17409
17410 @since version 1.1.0
17411 */
17412 template<typename ReferenceType, typename std::enable_if<
17413 std::is_reference<ReferenceType>::value, int>::type = 0>
17414 ReferenceType get_ref()
17415 {
17416 // delegate call to get_ref_impl
17417 return get_ref_impl<ReferenceType>(*this);
17418 }
17419
17420 /*!
17421 @brief get a reference value (implicit)
17422 @copydoc get_ref()
17423 */
17424 template<typename ReferenceType, typename std::enable_if<
17425 std::is_reference<ReferenceType>::value and
17426 std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0>
17427 ReferenceType get_ref() const
17428 {
17429 // delegate call to get_ref_impl
17430 return get_ref_impl<ReferenceType>(*this);
17431 }
17432
17433 /*!
17434 @brief get a value (implicit)
17435
17436 Implicit type conversion between the JSON value and a compatible value.
17437 The call is realized by calling @ref get() const.
17438
17439 @tparam ValueType non-pointer type compatible to the JSON value, for
17440 instance `int` for JSON integer numbers, `bool` for JSON booleans, or
17441 `std::vector` types for JSON arrays. The character type of @ref string_t
17442 as well as an initializer list of this type is excluded to avoid
17443 ambiguities as these types implicitly convert to `std::string`.
17444
17445 @return copy of the JSON value, converted to type @a ValueType
17446
17447 @throw type_error.302 in case passed type @a ValueType is incompatible
17448 to the JSON value type (e.g., the JSON value is of type boolean, but a
17449 string is requested); see example below
17450
17451 @complexity Linear in the size of the JSON value.
17452
17453 @liveexample{The example below shows several conversions from JSON values
17454 to other types. There a few things to note: (1) Floating-point numbers can
17455 be converted to integers\, (2) A JSON array can be converted to a standard
17456 `std::vector<short>`\, (3) A JSON object can be converted to C++
17457 associative containers such as `std::unordered_map<std::string\,
17458 json>`.,operator__ValueType}
17459
17460 @since version 1.0.0
17461 */
17462 template < typename ValueType, typename std::enable_if <
17463 not std::is_pointer<ValueType>::value and
17464 not std::is_same<ValueType, detail::json_ref<basic_json>>::value and
17465 not std::is_same<ValueType, typename string_t::value_type>::value and
17466 not detail::is_basic_json<ValueType>::value
17467
17468#ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015
17469 and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value
17470#if defined(JSON_HAS_CPP_17) && (defined(__GNUC__) || (defined(_MSC_VER) and _MSC_VER <= 1914))
17471 and not std::is_same<ValueType, typename std::string_view>::value
17472#endif
17473#endif
17474 and detail::is_detected<detail::get_template_function, const basic_json_t&, ValueType>::value
17475 , int >::type = 0 >
17476 operator ValueType() const
17477 {
17478 // delegate the call to get<>() const
17479 return get<ValueType>();
17480 }
17481
17482 /// @}
17483
17484
17485 ////////////////////
17486 // element access //
17487 ////////////////////
17488
17489 /// @name element access
17490 /// Access to the JSON value.
17491 /// @{
17492
17493 /*!
17494 @brief access specified array element with bounds checking
17495
17496 Returns a reference to the element at specified location @a idx, with
17497 bounds checking.
17498
17499 @param[in] idx index of the element to access
17500
17501 @return reference to the element at index @a idx
17502
17503 @throw type_error.304 if the JSON value is not an array; in this case,
17504 calling `at` with an index makes no sense. See example below.
17505 @throw out_of_range.401 if the index @a idx is out of range of the array;
17506 that is, `idx >= size()`. See example below.
17507
17508 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17509 changes in the JSON value.
17510
17511 @complexity Constant.
17512
17513 @since version 1.0.0
17514
17515 @liveexample{The example below shows how array elements can be read and
17516 written using `at()`. It also demonstrates the different exceptions that
17517 can be thrown.,at__size_type}
17518 */
17519 reference at(size_type idx)
17520 {
17521 // at only works for arrays
17522 if (JSON_HEDLEY_LIKELY(is_array()))
17523 {
17524 JSON_TRY
17525 {
17526 return m_value.array->at(idx);
17527 }
17528 JSON_CATCH (std::out_of_range&)
17529 {
17530 // create better exception explanation
17531 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
17532 }
17533 }
17534 else
17535 {
17536 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17537 }
17538 }
17539
17540 /*!
17541 @brief access specified array element with bounds checking
17542
17543 Returns a const reference to the element at specified location @a idx,
17544 with bounds checking.
17545
17546 @param[in] idx index of the element to access
17547
17548 @return const reference to the element at index @a idx
17549
17550 @throw type_error.304 if the JSON value is not an array; in this case,
17551 calling `at` with an index makes no sense. See example below.
17552 @throw out_of_range.401 if the index @a idx is out of range of the array;
17553 that is, `idx >= size()`. See example below.
17554
17555 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17556 changes in the JSON value.
17557
17558 @complexity Constant.
17559
17560 @since version 1.0.0
17561
17562 @liveexample{The example below shows how array elements can be read using
17563 `at()`. It also demonstrates the different exceptions that can be thrown.,
17564 at__size_type_const}
17565 */
17566 const_reference at(size_type idx) const
17567 {
17568 // at only works for arrays
17569 if (JSON_HEDLEY_LIKELY(is_array()))
17570 {
17571 JSON_TRY
17572 {
17573 return m_value.array->at(idx);
17574 }
17575 JSON_CATCH (std::out_of_range&)
17576 {
17577 // create better exception explanation
17578 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
17579 }
17580 }
17581 else
17582 {
17583 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17584 }
17585 }
17586
17587 /*!
17588 @brief access specified object element with bounds checking
17589
17590 Returns a reference to the element at with specified key @a key, with
17591 bounds checking.
17592
17593 @param[in] key key of the element to access
17594
17595 @return reference to the element at key @a key
17596
17597 @throw type_error.304 if the JSON value is not an object; in this case,
17598 calling `at` with a key makes no sense. See example below.
17599 @throw out_of_range.403 if the key @a key is is not stored in the object;
17600 that is, `find(key) == end()`. See example below.
17601
17602 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17603 changes in the JSON value.
17604
17605 @complexity Logarithmic in the size of the container.
17606
17607 @sa @ref operator[](const typename object_t::key_type&) for unchecked
17608 access by reference
17609 @sa @ref value() for access by value with a default value
17610
17611 @since version 1.0.0
17612
17613 @liveexample{The example below shows how object elements can be read and
17614 written using `at()`. It also demonstrates the different exceptions that
17615 can be thrown.,at__object_t_key_type}
17616 */
17617 reference at(const typename object_t::key_type& key)
17618 {
17619 // at only works for objects
17620 if (JSON_HEDLEY_LIKELY(is_object()))
17621 {
17622 JSON_TRY
17623 {
17624 return m_value.object->at(key);
17625 }
17626 JSON_CATCH (std::out_of_range&)
17627 {
17628 // create better exception explanation
17629 JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
17630 }
17631 }
17632 else
17633 {
17634 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17635 }
17636 }
17637
17638 /*!
17639 @brief access specified object element with bounds checking
17640
17641 Returns a const reference to the element at with specified key @a key,
17642 with bounds checking.
17643
17644 @param[in] key key of the element to access
17645
17646 @return const reference to the element at key @a key
17647
17648 @throw type_error.304 if the JSON value is not an object; in this case,
17649 calling `at` with a key makes no sense. See example below.
17650 @throw out_of_range.403 if the key @a key is is not stored in the object;
17651 that is, `find(key) == end()`. See example below.
17652
17653 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
17654 changes in the JSON value.
17655
17656 @complexity Logarithmic in the size of the container.
17657
17658 @sa @ref operator[](const typename object_t::key_type&) for unchecked
17659 access by reference
17660 @sa @ref value() for access by value with a default value
17661
17662 @since version 1.0.0
17663
17664 @liveexample{The example below shows how object elements can be read using
17665 `at()`. It also demonstrates the different exceptions that can be thrown.,
17666 at__object_t_key_type_const}
17667 */
17668 const_reference at(const typename object_t::key_type& key) const
17669 {
17670 // at only works for objects
17671 if (JSON_HEDLEY_LIKELY(is_object()))
17672 {
17673 JSON_TRY
17674 {
17675 return m_value.object->at(key);
17676 }
17677 JSON_CATCH (std::out_of_range&)
17678 {
17679 // create better exception explanation
17680 JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
17681 }
17682 }
17683 else
17684 {
17685 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
17686 }
17687 }
17688
17689 /*!
17690 @brief access specified array element
17691
17692 Returns a reference to the element at specified location @a idx.
17693
17694 @note If @a idx is beyond the range of the array (i.e., `idx >= size()`),
17695 then the array is silently filled up with `null` values to make `idx` a
17696 valid reference to the last stored element.
17697
17698 @param[in] idx index of the element to access
17699
17700 @return reference to the element at index @a idx
17701
17702 @throw type_error.305 if the JSON value is not an array or null; in that
17703 cases, using the [] operator with an index makes no sense.
17704
17705 @complexity Constant if @a idx is in the range of the array. Otherwise
17706 linear in `idx - size()`.
17707
17708 @liveexample{The example below shows how array elements can be read and
17709 written using `[]` operator. Note the addition of `null`
17710 values.,operatorarray__size_type}
17711
17712 @since version 1.0.0
17713 */
17714 reference operator[](size_type idx)
17715 {
17716 // implicitly convert null value to an empty array
17717 if (is_null())
17718 {
17719 m_type = value_t::array;
17720 m_value.array = create<array_t>();
17721 assert_invariant();
17722 }
17723
17724 // operator[] only works for arrays
17725 if (JSON_HEDLEY_LIKELY(is_array()))
17726 {
17727 // fill up array with null values if given idx is outside range
17728 if (idx >= m_value.array->size())
17729 {
17730 m_value.array->insert(m_value.array->end(),
17731 idx - m_value.array->size() + 1,
17732 basic_json());
17733 }
17734
17735 return m_value.array->operator[](idx);
17736 }
17737
17738 JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
17739 }
17740
17741 /*!
17742 @brief access specified array element
17743
17744 Returns a const reference to the element at specified location @a idx.
17745
17746 @param[in] idx index of the element to access
17747
17748 @return const reference to the element at index @a idx
17749
17750 @throw type_error.305 if the JSON value is not an array; in that case,
17751 using the [] operator with an index makes no sense.
17752
17753 @complexity Constant.
17754
17755 @liveexample{The example below shows how array elements can be read using
17756 the `[]` operator.,operatorarray__size_type_const}
17757
17758 @since version 1.0.0
17759 */
17760 const_reference operator[](size_type idx) const
17761 {
17762 // const operator[] only works for arrays
17763 if (JSON_HEDLEY_LIKELY(is_array()))
17764 {
17765 return m_value.array->operator[](idx);
17766 }
17767
17768 JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
17769 }
17770
17771 /*!
17772 @brief access specified object element
17773
17774 Returns a reference to the element at with specified key @a key.
17775
17776 @note If @a key is not found in the object, then it is silently added to
17777 the object and filled with a `null` value to make `key` a valid reference.
17778 In case the value was `null` before, it is converted to an object.
17779
17780 @param[in] key key of the element to access
17781
17782 @return reference to the element at key @a key
17783
17784 @throw type_error.305 if the JSON value is not an object or null; in that
17785 cases, using the [] operator with a key makes no sense.
17786
17787 @complexity Logarithmic in the size of the container.
17788
17789 @liveexample{The example below shows how object elements can be read and
17790 written using the `[]` operator.,operatorarray__key_type}
17791
17792 @sa @ref at(const typename object_t::key_type&) for access by reference
17793 with range checking
17794 @sa @ref value() for access by value with a default value
17795
17796 @since version 1.0.0
17797 */
17798 reference operator[](const typename object_t::key_type& key)
17799 {
17800 // implicitly convert null value to an empty object
17801 if (is_null())
17802 {
17803 m_type = value_t::object;
17804 m_value.object = create<object_t>();
17805 assert_invariant();
17806 }
17807
17808 // operator[] only works for objects
17809 if (JSON_HEDLEY_LIKELY(is_object()))
17810 {
17811 return m_value.object->operator[](key);
17812 }
17813
17814 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17815 }
17816
17817 /*!
17818 @brief read-only access specified object element
17819
17820 Returns a const reference to the element at with specified key @a key. No
17821 bounds checking is performed.
17822
17823 @warning If the element with key @a key does not exist, the behavior is
17824 undefined.
17825
17826 @param[in] key key of the element to access
17827
17828 @return const reference to the element at key @a key
17829
17830 @pre The element with key @a key must exist. **This precondition is
17831 enforced with an assertion.**
17832
17833 @throw type_error.305 if the JSON value is not an object; in that case,
17834 using the [] operator with a key makes no sense.
17835
17836 @complexity Logarithmic in the size of the container.
17837
17838 @liveexample{The example below shows how object elements can be read using
17839 the `[]` operator.,operatorarray__key_type_const}
17840
17841 @sa @ref at(const typename object_t::key_type&) for access by reference
17842 with range checking
17843 @sa @ref value() for access by value with a default value
17844
17845 @since version 1.0.0
17846 */
17847 const_reference operator[](const typename object_t::key_type& key) const
17848 {
17849 // const operator[] only works for objects
17850 if (JSON_HEDLEY_LIKELY(is_object()))
17851 {
17852 assert(m_value.object->find(key) != m_value.object->end());
17853 return m_value.object->find(key)->second;
17854 }
17855
17856 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17857 }
17858
17859 /*!
17860 @brief access specified object element
17861
17862 Returns a reference to the element at with specified key @a key.
17863
17864 @note If @a key is not found in the object, then it is silently added to
17865 the object and filled with a `null` value to make `key` a valid reference.
17866 In case the value was `null` before, it is converted to an object.
17867
17868 @param[in] key key of the element to access
17869
17870 @return reference to the element at key @a key
17871
17872 @throw type_error.305 if the JSON value is not an object or null; in that
17873 cases, using the [] operator with a key makes no sense.
17874
17875 @complexity Logarithmic in the size of the container.
17876
17877 @liveexample{The example below shows how object elements can be read and
17878 written using the `[]` operator.,operatorarray__key_type}
17879
17880 @sa @ref at(const typename object_t::key_type&) for access by reference
17881 with range checking
17882 @sa @ref value() for access by value with a default value
17883
17884 @since version 1.1.0
17885 */
17886 template<typename T>
17887 JSON_HEDLEY_NON_NULL(2)
17888 reference operator[](T* key)
17889 {
17890 // implicitly convert null to object
17891 if (is_null())
17892 {
17893 m_type = value_t::object;
17894 m_value = value_t::object;
17895 assert_invariant();
17896 }
17897
17898 // at only works for objects
17899 if (JSON_HEDLEY_LIKELY(is_object()))
17900 {
17901 return m_value.object->operator[](key);
17902 }
17903
17904 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17905 }
17906
17907 /*!
17908 @brief read-only access specified object element
17909
17910 Returns a const reference to the element at with specified key @a key. No
17911 bounds checking is performed.
17912
17913 @warning If the element with key @a key does not exist, the behavior is
17914 undefined.
17915
17916 @param[in] key key of the element to access
17917
17918 @return const reference to the element at key @a key
17919
17920 @pre The element with key @a key must exist. **This precondition is
17921 enforced with an assertion.**
17922
17923 @throw type_error.305 if the JSON value is not an object; in that case,
17924 using the [] operator with a key makes no sense.
17925
17926 @complexity Logarithmic in the size of the container.
17927
17928 @liveexample{The example below shows how object elements can be read using
17929 the `[]` operator.,operatorarray__key_type_const}
17930
17931 @sa @ref at(const typename object_t::key_type&) for access by reference
17932 with range checking
17933 @sa @ref value() for access by value with a default value
17934
17935 @since version 1.1.0
17936 */
17937 template<typename T>
17938 JSON_HEDLEY_NON_NULL(2)
17939 const_reference operator[](T* key) const
17940 {
17941 // at only works for objects
17942 if (JSON_HEDLEY_LIKELY(is_object()))
17943 {
17944 assert(m_value.object->find(key) != m_value.object->end());
17945 return m_value.object->find(key)->second;
17946 }
17947
17948 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
17949 }
17950
17951 /*!
17952 @brief access specified object element with default value
17953
17954 Returns either a copy of an object's element at the specified key @a key
17955 or a given default value if no element with key @a key exists.
17956
17957 The function is basically equivalent to executing
17958 @code {.cpp}
17959 try {
17960 return at(key);
17961 } catch(out_of_range) {
17962 return default_value;
17963 }
17964 @endcode
17965
17966 @note Unlike @ref at(const typename object_t::key_type&), this function
17967 does not throw if the given key @a key was not found.
17968
17969 @note Unlike @ref operator[](const typename object_t::key_type& key), this
17970 function does not implicitly add an element to the position defined by @a
17971 key. This function is furthermore also applicable to const objects.
17972
17973 @param[in] key key of the element to access
17974 @param[in] default_value the value to return if @a key is not found
17975
17976 @tparam ValueType type compatible to JSON values, for instance `int` for
17977 JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
17978 JSON arrays. Note the type of the expected value at @a key and the default
17979 value @a default_value must be compatible.
17980
17981 @return copy of the element at key @a key or @a default_value if @a key
17982 is not found
17983
17984 @throw type_error.302 if @a default_value does not match the type of the
17985 value at @a key
17986 @throw type_error.306 if the JSON value is not an object; in that case,
17987 using `value()` with a key makes no sense.
17988
17989 @complexity Logarithmic in the size of the container.
17990
17991 @liveexample{The example below shows how object elements can be queried
17992 with a default value.,basic_json__value}
17993
17994 @sa @ref at(const typename object_t::key_type&) for access by reference
17995 with range checking
17996 @sa @ref operator[](const typename object_t::key_type&) for unchecked
17997 access by reference
17998
17999 @since version 1.0.0
18000 */
18001 template<class ValueType, typename std::enable_if<
18002 std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
18003 ValueType value(const typename object_t::key_type& key, const ValueType& default_value) const
18004 {
18005 // at only works for objects
18006 if (JSON_HEDLEY_LIKELY(is_object()))
18007 {
18008 // if key is found, return value and given default value otherwise
18009 const auto it = find(key);
18010 if (it != end())
18011 {
18012 return *it;
18013 }
18014
18015 return default_value;
18016 }
18017
18018 JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
18019 }
18020
18021 /*!
18022 @brief overload for a default value of type const char*
18023 @copydoc basic_json::value(const typename object_t::key_type&, const ValueType&) const
18024 */
18025 string_t value(const typename object_t::key_type& key, const char* default_value) const
18026 {
18027 return value(key, string_t(default_value));
18028 }
18029
18030 /*!
18031 @brief access specified object element via JSON Pointer with default value
18032
18033 Returns either a copy of an object's element at the specified key @a key
18034 or a given default value if no element with key @a key exists.
18035
18036 The function is basically equivalent to executing
18037 @code {.cpp}
18038 try {
18039 return at(ptr);
18040 } catch(out_of_range) {
18041 return default_value;
18042 }
18043 @endcode
18044
18045 @note Unlike @ref at(const json_pointer&), this function does not throw
18046 if the given key @a key was not found.
18047
18048 @param[in] ptr a JSON pointer to the element to access
18049 @param[in] default_value the value to return if @a ptr found no value
18050
18051 @tparam ValueType type compatible to JSON values, for instance `int` for
18052 JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
18053 JSON arrays. Note the type of the expected value at @a key and the default
18054 value @a default_value must be compatible.
18055
18056 @return copy of the element at key @a key or @a default_value if @a key
18057 is not found
18058
18059 @throw type_error.302 if @a default_value does not match the type of the
18060 value at @a ptr
18061 @throw type_error.306 if the JSON value is not an object; in that case,
18062 using `value()` with a key makes no sense.
18063
18064 @complexity Logarithmic in the size of the container.
18065
18066 @liveexample{The example below shows how object elements can be queried
18067 with a default value.,basic_json__value_ptr}
18068
18069 @sa @ref operator[](const json_pointer&) for unchecked access by reference
18070
18071 @since version 2.0.2
18072 */
18073 template<class ValueType, typename std::enable_if<
18074 std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
18075 ValueType value(const json_pointer& ptr, const ValueType& default_value) const
18076 {
18077 // at only works for objects
18078 if (JSON_HEDLEY_LIKELY(is_object()))
18079 {
18080 // if pointer resolves a value, return it or use default value
18081 JSON_TRY
18082 {
18083 return ptr.get_checked(this);
18084 }
18085 JSON_INTERNAL_CATCH (out_of_range&)
18086 {
18087 return default_value;
18088 }
18089 }
18090
18091 JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
18092 }
18093
18094 /*!
18095 @brief overload for a default value of type const char*
18096 @copydoc basic_json::value(const json_pointer&, ValueType) const
18097 */
18098 JSON_HEDLEY_NON_NULL(3)
18099 string_t value(const json_pointer& ptr, const char* default_value) const
18100 {
18101 return value(ptr, string_t(default_value));
18102 }
18103
18104 /*!
18105 @brief access the first element
18106
18107 Returns a reference to the first element in the container. For a JSON
18108 container `c`, the expression `c.front()` is equivalent to `*c.begin()`.
18109
18110 @return In case of a structured type (array or object), a reference to the
18111 first element is returned. In case of number, string, or boolean values, a
18112 reference to the value is returned.
18113
18114 @complexity Constant.
18115
18116 @pre The JSON value must not be `null` (would throw `std::out_of_range`)
18117 or an empty array or object (undefined behavior, **guarded by
18118 assertions**).
18119 @post The JSON value remains unchanged.
18120
18121 @throw invalid_iterator.214 when called on `null` value
18122
18123 @liveexample{The following code shows an example for `front()`.,front}
18124
18125 @sa @ref back() -- access the last element
18126
18127 @since version 1.0.0
18128 */
18129 reference front()
18130 {
18131 return *begin();
18132 }
18133
18134 /*!
18135 @copydoc basic_json::front()
18136 */
18137 const_reference front() const
18138 {
18139 return *cbegin();
18140 }
18141
18142 /*!
18143 @brief access the last element
18144
18145 Returns a reference to the last element in the container. For a JSON
18146 container `c`, the expression `c.back()` is equivalent to
18147 @code {.cpp}
18148 auto tmp = c.end();
18149 --tmp;
18150 return *tmp;
18151 @endcode
18152
18153 @return In case of a structured type (array or object), a reference to the
18154 last element is returned. In case of number, string, or boolean values, a
18155 reference to the value is returned.
18156
18157 @complexity Constant.
18158
18159 @pre The JSON value must not be `null` (would throw `std::out_of_range`)
18160 or an empty array or object (undefined behavior, **guarded by
18161 assertions**).
18162 @post The JSON value remains unchanged.
18163
18164 @throw invalid_iterator.214 when called on a `null` value. See example
18165 below.
18166
18167 @liveexample{The following code shows an example for `back()`.,back}
18168
18169 @sa @ref front() -- access the first element
18170
18171 @since version 1.0.0
18172 */
18173 reference back()
18174 {
18175 auto tmp = end();
18176 --tmp;
18177 return *tmp;
18178 }
18179
18180 /*!
18181 @copydoc basic_json::back()
18182 */
18183 const_reference back() const
18184 {
18185 auto tmp = cend();
18186 --tmp;
18187 return *tmp;
18188 }
18189
18190 /*!
18191 @brief remove element given an iterator
18192
18193 Removes the element specified by iterator @a pos. The iterator @a pos must
18194 be valid and dereferenceable. Thus the `end()` iterator (which is valid,
18195 but is not dereferenceable) cannot be used as a value for @a pos.
18196
18197 If called on a primitive type other than `null`, the resulting JSON value
18198 will be `null`.
18199
18200 @param[in] pos iterator to the element to remove
18201 @return Iterator following the last removed element. If the iterator @a
18202 pos refers to the last element, the `end()` iterator is returned.
18203
18204 @tparam IteratorType an @ref iterator or @ref const_iterator
18205
18206 @post Invalidates iterators and references at or after the point of the
18207 erase, including the `end()` iterator.
18208
18209 @throw type_error.307 if called on a `null` value; example: `"cannot use
18210 erase() with null"`
18211 @throw invalid_iterator.202 if called on an iterator which does not belong
18212 to the current JSON value; example: `"iterator does not fit current
18213 value"`
18214 @throw invalid_iterator.205 if called on a primitive type with invalid
18215 iterator (i.e., any iterator which is not `begin()`); example: `"iterator
18216 out of range"`
18217
18218 @complexity The complexity depends on the type:
18219 - objects: amortized constant
18220 - arrays: linear in distance between @a pos and the end of the container
18221 - strings: linear in the length of the string
18222 - other types: constant
18223
18224 @liveexample{The example shows the result of `erase()` for different JSON
18225 types.,erase__IteratorType}
18226
18227 @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
18228 the given range
18229 @sa @ref erase(const typename object_t::key_type&) -- removes the element
18230 from an object at the given key
18231 @sa @ref erase(const size_type) -- removes the element from an array at
18232 the given index
18233
18234 @since version 1.0.0
18235 */
18236 template<class IteratorType, typename std::enable_if<
18237 std::is_same<IteratorType, typename basic_json_t::iterator>::value or
18238 std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
18239 = 0>
18240 IteratorType erase(IteratorType pos)
18241 {
18242 // make sure iterator fits the current value
18243 if (JSON_HEDLEY_UNLIKELY(this != pos.m_object))
18244 {
18245 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
18246 }
18247
18248 IteratorType result = end();
18249
18250 switch (m_type)
18251 {
18252 case value_t::boolean:
18253 case value_t::number_float:
18254 case value_t::number_integer:
18255 case value_t::number_unsigned:
18256 case value_t::string:
18257 {
18258 if (JSON_HEDLEY_UNLIKELY(not pos.m_it.primitive_iterator.is_begin()))
18259 {
18260 JSON_THROW(invalid_iterator::create(205, "iterator out of range"));
18261 }
18262
18263 if (is_string())
18264 {
18265 AllocatorType<string_t> alloc;
18266 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
18267 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
18268 m_value.string = nullptr;
18269 }
18270
18271 m_type = value_t::null;
18272 assert_invariant();
18273 break;
18274 }
18275
18276 case value_t::object:
18277 {
18278 result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator);
18279 break;
18280 }
18281
18282 case value_t::array:
18283 {
18284 result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator);
18285 break;
18286 }
18287
18288 default:
18289 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18290 }
18291
18292 return result;
18293 }
18294
18295 /*!
18296 @brief remove elements given an iterator range
18297
18298 Removes the element specified by the range `[first; last)`. The iterator
18299 @a first does not need to be dereferenceable if `first == last`: erasing
18300 an empty range is a no-op.
18301
18302 If called on a primitive type other than `null`, the resulting JSON value
18303 will be `null`.
18304
18305 @param[in] first iterator to the beginning of the range to remove
18306 @param[in] last iterator past the end of the range to remove
18307 @return Iterator following the last removed element. If the iterator @a
18308 second refers to the last element, the `end()` iterator is returned.
18309
18310 @tparam IteratorType an @ref iterator or @ref const_iterator
18311
18312 @post Invalidates iterators and references at or after the point of the
18313 erase, including the `end()` iterator.
18314
18315 @throw type_error.307 if called on a `null` value; example: `"cannot use
18316 erase() with null"`
18317 @throw invalid_iterator.203 if called on iterators which does not belong
18318 to the current JSON value; example: `"iterators do not fit current value"`
18319 @throw invalid_iterator.204 if called on a primitive type with invalid
18320 iterators (i.e., if `first != begin()` and `last != end()`); example:
18321 `"iterators out of range"`
18322
18323 @complexity The complexity depends on the type:
18324 - objects: `log(size()) + std::distance(first, last)`
18325 - arrays: linear in the distance between @a first and @a last, plus linear
18326 in the distance between @a last and end of the container
18327 - strings: linear in the length of the string
18328 - other types: constant
18329
18330 @liveexample{The example shows the result of `erase()` for different JSON
18331 types.,erase__IteratorType_IteratorType}
18332
18333 @sa @ref erase(IteratorType) -- removes the element at a given position
18334 @sa @ref erase(const typename object_t::key_type&) -- removes the element
18335 from an object at the given key
18336 @sa @ref erase(const size_type) -- removes the element from an array at
18337 the given index
18338
18339 @since version 1.0.0
18340 */
18341 template<class IteratorType, typename std::enable_if<
18342 std::is_same<IteratorType, typename basic_json_t::iterator>::value or
18343 std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
18344 = 0>
18345 IteratorType erase(IteratorType first, IteratorType last)
18346 {
18347 // make sure iterator fits the current value
18348 if (JSON_HEDLEY_UNLIKELY(this != first.m_object or this != last.m_object))
18349 {
18350 JSON_THROW(invalid_iterator::create(203, "iterators do not fit current value"));
18351 }
18352
18353 IteratorType result = end();
18354
18355 switch (m_type)
18356 {
18357 case value_t::boolean:
18358 case value_t::number_float:
18359 case value_t::number_integer:
18360 case value_t::number_unsigned:
18361 case value_t::string:
18362 {
18363 if (JSON_HEDLEY_LIKELY(not first.m_it.primitive_iterator.is_begin()
18364 or not last.m_it.primitive_iterator.is_end()))
18365 {
18366 JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
18367 }
18368
18369 if (is_string())
18370 {
18371 AllocatorType<string_t> alloc;
18372 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
18373 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
18374 m_value.string = nullptr;
18375 }
18376
18377 m_type = value_t::null;
18378 assert_invariant();
18379 break;
18380 }
18381
18382 case value_t::object:
18383 {
18384 result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator,
18385 last.m_it.object_iterator);
18386 break;
18387 }
18388
18389 case value_t::array:
18390 {
18391 result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator,
18392 last.m_it.array_iterator);
18393 break;
18394 }
18395
18396 default:
18397 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18398 }
18399
18400 return result;
18401 }
18402
18403 /*!
18404 @brief remove element from a JSON object given a key
18405
18406 Removes elements from a JSON object with the key value @a key.
18407
18408 @param[in] key value of the elements to remove
18409
18410 @return Number of elements removed. If @a ObjectType is the default
18411 `std::map` type, the return value will always be `0` (@a key was not
18412 found) or `1` (@a key was found).
18413
18414 @post References and iterators to the erased elements are invalidated.
18415 Other references and iterators are not affected.
18416
18417 @throw type_error.307 when called on a type other than JSON object;
18418 example: `"cannot use erase() with null"`
18419
18420 @complexity `log(size()) + count(key)`
18421
18422 @liveexample{The example shows the effect of `erase()`.,erase__key_type}
18423
18424 @sa @ref erase(IteratorType) -- removes the element at a given position
18425 @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
18426 the given range
18427 @sa @ref erase(const size_type) -- removes the element from an array at
18428 the given index
18429
18430 @since version 1.0.0
18431 */
18432 size_type erase(const typename object_t::key_type& key)
18433 {
18434 // this erase only works for objects
18435 if (JSON_HEDLEY_LIKELY(is_object()))
18436 {
18437 return m_value.object->erase(key);
18438 }
18439
18440 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18441 }
18442
18443 /*!
18444 @brief remove element from a JSON array given an index
18445
18446 Removes element from a JSON array at the index @a idx.
18447
18448 @param[in] idx index of the element to remove
18449
18450 @throw type_error.307 when called on a type other than JSON object;
18451 example: `"cannot use erase() with null"`
18452 @throw out_of_range.401 when `idx >= size()`; example: `"array index 17
18453 is out of range"`
18454
18455 @complexity Linear in distance between @a idx and the end of the container.
18456
18457 @liveexample{The example shows the effect of `erase()`.,erase__size_type}
18458
18459 @sa @ref erase(IteratorType) -- removes the element at a given position
18460 @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
18461 the given range
18462 @sa @ref erase(const typename object_t::key_type&) -- removes the element
18463 from an object at the given key
18464
18465 @since version 1.0.0
18466 */
18467 void erase(const size_type idx)
18468 {
18469 // this erase only works for arrays
18470 if (JSON_HEDLEY_LIKELY(is_array()))
18471 {
18472 if (JSON_HEDLEY_UNLIKELY(idx >= size()))
18473 {
18474 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
18475 }
18476
18477 m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx));
18478 }
18479 else
18480 {
18481 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
18482 }
18483 }
18484
18485 /// @}
18486
18487
18488 ////////////
18489 // lookup //
18490 ////////////
18491
18492 /// @name lookup
18493 /// @{
18494
18495 /*!
18496 @brief find an element in a JSON object
18497
18498 Finds an element in a JSON object with key equivalent to @a key. If the
18499 element is not found or the JSON value is not an object, end() is
18500 returned.
18501
18502 @note This method always returns @ref end() when executed on a JSON type
18503 that is not an object.
18504
18505 @param[in] key key value of the element to search for.
18506
18507 @return Iterator to an element with key equivalent to @a key. If no such
18508 element is found or the JSON value is not an object, past-the-end (see
18509 @ref end()) iterator is returned.
18510
18511 @complexity Logarithmic in the size of the JSON object.
18512
18513 @liveexample{The example shows how `find()` is used.,find__key_type}
18514
18515 @sa @ref contains(KeyT&&) const -- checks whether a key exists
18516
18517 @since version 1.0.0
18518 */
18519 template<typename KeyT>
18520 iterator find(KeyT&& key)
18521 {
18522 auto result = end();
18523
18524 if (is_object())
18525 {
18526 result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
18527 }
18528
18529 return result;
18530 }
18531
18532 /*!
18533 @brief find an element in a JSON object
18534 @copydoc find(KeyT&&)
18535 */
18536 template<typename KeyT>
18537 const_iterator find(KeyT&& key) const
18538 {
18539 auto result = cend();
18540
18541 if (is_object())
18542 {
18543 result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
18544 }
18545
18546 return result;
18547 }
18548
18549 /*!
18550 @brief returns the number of occurrences of a key in a JSON object
18551
18552 Returns the number of elements with key @a key. If ObjectType is the
18553 default `std::map` type, the return value will always be `0` (@a key was
18554 not found) or `1` (@a key was found).
18555
18556 @note This method always returns `0` when executed on a JSON type that is
18557 not an object.
18558
18559 @param[in] key key value of the element to count
18560
18561 @return Number of elements with key @a key. If the JSON value is not an
18562 object, the return value will be `0`.
18563
18564 @complexity Logarithmic in the size of the JSON object.
18565
18566 @liveexample{The example shows how `count()` is used.,count}
18567
18568 @since version 1.0.0
18569 */
18570 template<typename KeyT>
18571 size_type count(KeyT&& key) const
18572 {
18573 // return 0 for all nonobject types
18574 return is_object() ? m_value.object->count(std::forward<KeyT>(key)) : 0;
18575 }
18576
18577 /*!
18578 @brief check the existence of an element in a JSON object
18579
18580 Check whether an element exists in a JSON object with key equivalent to
18581 @a key. If the element is not found or the JSON value is not an object,
18582 false is returned.
18583
18584 @note This method always returns false when executed on a JSON type
18585 that is not an object.
18586
18587 @param[in] key key value to check its existence.
18588
18589 @return true if an element with specified @a key exists. If no such
18590 element with such key is found or the JSON value is not an object,
18591 false is returned.
18592
18593 @complexity Logarithmic in the size of the JSON object.
18594
18595 @liveexample{The following code shows an example for `contains()`.,contains}
18596
18597 @sa @ref find(KeyT&&) -- returns an iterator to an object element
18598 @sa @ref contains(const json_pointer&) const -- checks the existence for a JSON pointer
18599
18600 @since version 3.6.0
18601 */
18602 template<typename KeyT, typename std::enable_if<
18603 not std::is_same<typename std::decay<KeyT>::type, json_pointer>::value, int>::type = 0>
18604 bool contains(KeyT && key) const
18605 {
18606 return is_object() and m_value.object->find(std::forward<KeyT>(key)) != m_value.object->end();
18607 }
18608
18609 /*!
18610 @brief check the existence of an element in a JSON object given a JSON pointer
18611
18612 Check whether the given JSON pointer @a ptr can be resolved in the current
18613 JSON value.
18614
18615 @note This method can be executed on any JSON value type.
18616
18617 @param[in] ptr JSON pointer to check its existence.
18618
18619 @return true if the JSON pointer can be resolved to a stored value, false
18620 otherwise.
18621
18622 @post If `j.contains(ptr)` returns true, it is safe to call `j[ptr]`.
18623
18624 @throw parse_error.106 if an array index begins with '0'
18625 @throw parse_error.109 if an array index was not a number
18626
18627 @complexity Logarithmic in the size of the JSON object.
18628
18629 @liveexample{The following code shows an example for `contains()`.,contains_json_pointer}
18630
18631 @sa @ref contains(KeyT &&) const -- checks the existence of a key
18632
18633 @since version 3.7.0
18634 */
18635 bool contains(const json_pointer& ptr) const
18636 {
18637 return ptr.contains(this);
18638 }
18639
18640 /// @}
18641
18642
18643 ///////////////
18644 // iterators //
18645 ///////////////
18646
18647 /// @name iterators
18648 /// @{
18649
18650 /*!
18651 @brief returns an iterator to the first element
18652
18653 Returns an iterator to the first element.
18654
18655 @image html range-begin-end.svg "Illustration from cppreference.com"
18656
18657 @return iterator to the first element
18658
18659 @complexity Constant.
18660
18661 @requirement This function helps `basic_json` satisfying the
18662 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18663 requirements:
18664 - The complexity is constant.
18665
18666 @liveexample{The following code shows an example for `begin()`.,begin}
18667
18668 @sa @ref cbegin() -- returns a const iterator to the beginning
18669 @sa @ref end() -- returns an iterator to the end
18670 @sa @ref cend() -- returns a const iterator to the end
18671
18672 @since version 1.0.0
18673 */
18674 iterator begin() noexcept
18675 {
18676 iterator result(this);
18677 result.set_begin();
18678 return result;
18679 }
18680
18681 /*!
18682 @copydoc basic_json::cbegin()
18683 */
18684 const_iterator begin() const noexcept
18685 {
18686 return cbegin();
18687 }
18688
18689 /*!
18690 @brief returns a const iterator to the first element
18691
18692 Returns a const iterator to the first element.
18693
18694 @image html range-begin-end.svg "Illustration from cppreference.com"
18695
18696 @return const iterator to the first element
18697
18698 @complexity Constant.
18699
18700 @requirement This function helps `basic_json` satisfying the
18701 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18702 requirements:
18703 - The complexity is constant.
18704 - Has the semantics of `const_cast<const basic_json&>(*this).begin()`.
18705
18706 @liveexample{The following code shows an example for `cbegin()`.,cbegin}
18707
18708 @sa @ref begin() -- returns an iterator to the beginning
18709 @sa @ref end() -- returns an iterator to the end
18710 @sa @ref cend() -- returns a const iterator to the end
18711
18712 @since version 1.0.0
18713 */
18714 const_iterator cbegin() const noexcept
18715 {
18716 const_iterator result(this);
18717 result.set_begin();
18718 return result;
18719 }
18720
18721 /*!
18722 @brief returns an iterator to one past the last element
18723
18724 Returns an iterator to one past the last element.
18725
18726 @image html range-begin-end.svg "Illustration from cppreference.com"
18727
18728 @return iterator one past the last element
18729
18730 @complexity Constant.
18731
18732 @requirement This function helps `basic_json` satisfying the
18733 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18734 requirements:
18735 - The complexity is constant.
18736
18737 @liveexample{The following code shows an example for `end()`.,end}
18738
18739 @sa @ref cend() -- returns a const iterator to the end
18740 @sa @ref begin() -- returns an iterator to the beginning
18741 @sa @ref cbegin() -- returns a const iterator to the beginning
18742
18743 @since version 1.0.0
18744 */
18745 iterator end() noexcept
18746 {
18747 iterator result(this);
18748 result.set_end();
18749 return result;
18750 }
18751
18752 /*!
18753 @copydoc basic_json::cend()
18754 */
18755 const_iterator end() const noexcept
18756 {
18757 return cend();
18758 }
18759
18760 /*!
18761 @brief returns a const iterator to one past the last element
18762
18763 Returns a const iterator to one past the last element.
18764
18765 @image html range-begin-end.svg "Illustration from cppreference.com"
18766
18767 @return const iterator one past the last element
18768
18769 @complexity Constant.
18770
18771 @requirement This function helps `basic_json` satisfying the
18772 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
18773 requirements:
18774 - The complexity is constant.
18775 - Has the semantics of `const_cast<const basic_json&>(*this).end()`.
18776
18777 @liveexample{The following code shows an example for `cend()`.,cend}
18778
18779 @sa @ref end() -- returns an iterator to the end
18780 @sa @ref begin() -- returns an iterator to the beginning
18781 @sa @ref cbegin() -- returns a const iterator to the beginning
18782
18783 @since version 1.0.0
18784 */
18785 const_iterator cend() const noexcept
18786 {
18787 const_iterator result(this);
18788 result.set_end();
18789 return result;
18790 }
18791
18792 /*!
18793 @brief returns an iterator to the reverse-beginning
18794
18795 Returns an iterator to the reverse-beginning; that is, the last element.
18796
18797 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18798
18799 @complexity Constant.
18800
18801 @requirement This function helps `basic_json` satisfying the
18802 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18803 requirements:
18804 - The complexity is constant.
18805 - Has the semantics of `reverse_iterator(end())`.
18806
18807 @liveexample{The following code shows an example for `rbegin()`.,rbegin}
18808
18809 @sa @ref crbegin() -- returns a const reverse iterator to the beginning
18810 @sa @ref rend() -- returns a reverse iterator to the end
18811 @sa @ref crend() -- returns a const reverse iterator to the end
18812
18813 @since version 1.0.0
18814 */
18815 reverse_iterator rbegin() noexcept
18816 {
18817 return reverse_iterator(end());
18818 }
18819
18820 /*!
18821 @copydoc basic_json::crbegin()
18822 */
18823 const_reverse_iterator rbegin() const noexcept
18824 {
18825 return crbegin();
18826 }
18827
18828 /*!
18829 @brief returns an iterator to the reverse-end
18830
18831 Returns an iterator to the reverse-end; that is, one before the first
18832 element.
18833
18834 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18835
18836 @complexity Constant.
18837
18838 @requirement This function helps `basic_json` satisfying the
18839 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18840 requirements:
18841 - The complexity is constant.
18842 - Has the semantics of `reverse_iterator(begin())`.
18843
18844 @liveexample{The following code shows an example for `rend()`.,rend}
18845
18846 @sa @ref crend() -- returns a const reverse iterator to the end
18847 @sa @ref rbegin() -- returns a reverse iterator to the beginning
18848 @sa @ref crbegin() -- returns a const reverse iterator to the beginning
18849
18850 @since version 1.0.0
18851 */
18852 reverse_iterator rend() noexcept
18853 {
18854 return reverse_iterator(begin());
18855 }
18856
18857 /*!
18858 @copydoc basic_json::crend()
18859 */
18860 const_reverse_iterator rend() const noexcept
18861 {
18862 return crend();
18863 }
18864
18865 /*!
18866 @brief returns a const reverse iterator to the last element
18867
18868 Returns a const iterator to the reverse-beginning; that is, the last
18869 element.
18870
18871 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18872
18873 @complexity Constant.
18874
18875 @requirement This function helps `basic_json` satisfying the
18876 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18877 requirements:
18878 - The complexity is constant.
18879 - Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`.
18880
18881 @liveexample{The following code shows an example for `crbegin()`.,crbegin}
18882
18883 @sa @ref rbegin() -- returns a reverse iterator to the beginning
18884 @sa @ref rend() -- returns a reverse iterator to the end
18885 @sa @ref crend() -- returns a const reverse iterator to the end
18886
18887 @since version 1.0.0
18888 */
18889 const_reverse_iterator crbegin() const noexcept
18890 {
18891 return const_reverse_iterator(cend());
18892 }
18893
18894 /*!
18895 @brief returns a const reverse iterator to one before the first
18896
18897 Returns a const reverse iterator to the reverse-end; that is, one before
18898 the first element.
18899
18900 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
18901
18902 @complexity Constant.
18903
18904 @requirement This function helps `basic_json` satisfying the
18905 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
18906 requirements:
18907 - The complexity is constant.
18908 - Has the semantics of `const_cast<const basic_json&>(*this).rend()`.
18909
18910 @liveexample{The following code shows an example for `crend()`.,crend}
18911
18912 @sa @ref rend() -- returns a reverse iterator to the end
18913 @sa @ref rbegin() -- returns a reverse iterator to the beginning
18914 @sa @ref crbegin() -- returns a const reverse iterator to the beginning
18915
18916 @since version 1.0.0
18917 */
18918 const_reverse_iterator crend() const noexcept
18919 {
18920 return const_reverse_iterator(cbegin());
18921 }
18922
18923 public:
18924 /*!
18925 @brief wrapper to access iterator member functions in range-based for
18926
18927 This function allows to access @ref iterator::key() and @ref
18928 iterator::value() during range-based for loops. In these loops, a
18929 reference to the JSON values is returned, so there is no access to the
18930 underlying iterator.
18931
18932 For loop without iterator_wrapper:
18933
18934 @code{cpp}
18935 for (auto it = j_object.begin(); it != j_object.end(); ++it)
18936 {
18937 std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
18938 }
18939 @endcode
18940
18941 Range-based for loop without iterator proxy:
18942
18943 @code{cpp}
18944 for (auto it : j_object)
18945 {
18946 // "it" is of type json::reference and has no key() member
18947 std::cout << "value: " << it << '\n';
18948 }
18949 @endcode
18950
18951 Range-based for loop with iterator proxy:
18952
18953 @code{cpp}
18954 for (auto it : json::iterator_wrapper(j_object))
18955 {
18956 std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
18957 }
18958 @endcode
18959
18960 @note When iterating over an array, `key()` will return the index of the
18961 element as string (see example).
18962
18963 @param[in] ref reference to a JSON value
18964 @return iteration proxy object wrapping @a ref with an interface to use in
18965 range-based for loops
18966
18967 @liveexample{The following code shows how the wrapper is used,iterator_wrapper}
18968
18969 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
18970 changes in the JSON value.
18971
18972 @complexity Constant.
18973
18974 @note The name of this function is not yet final and may change in the
18975 future.
18976
18977 @deprecated This stream operator is deprecated and will be removed in
18978 future 4.0.0 of the library. Please use @ref items() instead;
18979 that is, replace `json::iterator_wrapper(j)` with `j.items()`.
18980 */
18981 JSON_HEDLEY_DEPRECATED(3.1.0)
18982 static iteration_proxy<iterator> iterator_wrapper(reference ref) noexcept
18983 {
18984 return ref.items();
18985 }
18986
18987 /*!
18988 @copydoc iterator_wrapper(reference)
18989 */
18990 JSON_HEDLEY_DEPRECATED(3.1.0)
18991 static iteration_proxy<const_iterator> iterator_wrapper(const_reference ref) noexcept
18992 {
18993 return ref.items();
18994 }
18995
18996 /*!
18997 @brief helper to access iterator member functions in range-based for
18998
18999 This function allows to access @ref iterator::key() and @ref
19000 iterator::value() during range-based for loops. In these loops, a
19001 reference to the JSON values is returned, so there is no access to the
19002 underlying iterator.
19003
19004 For loop without `items()` function:
19005
19006 @code{cpp}
19007 for (auto it = j_object.begin(); it != j_object.end(); ++it)
19008 {
19009 std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
19010 }
19011 @endcode
19012
19013 Range-based for loop without `items()` function:
19014
19015 @code{cpp}
19016 for (auto it : j_object)
19017 {
19018 // "it" is of type json::reference and has no key() member
19019 std::cout << "value: " << it << '\n';
19020 }
19021 @endcode
19022
19023 Range-based for loop with `items()` function:
19024
19025 @code{cpp}
19026 for (auto& el : j_object.items())
19027 {
19028 std::cout << "key: " << el.key() << ", value:" << el.value() << '\n';
19029 }
19030 @endcode
19031
19032 The `items()` function also allows to use
19033 [structured bindings](https://en.cppreference.com/w/cpp/language/structured_binding)
19034 (C++17):
19035
19036 @code{cpp}
19037 for (auto& [key, val] : j_object.items())
19038 {
19039 std::cout << "key: " << key << ", value:" << val << '\n';
19040 }
19041 @endcode
19042
19043 @note When iterating over an array, `key()` will return the index of the
19044 element as string (see example). For primitive types (e.g., numbers),
19045 `key()` returns an empty string.
19046
19047 @return iteration proxy object wrapping @a ref with an interface to use in
19048 range-based for loops
19049
19050 @liveexample{The following code shows how the function is used.,items}
19051
19052 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
19053 changes in the JSON value.
19054
19055 @complexity Constant.
19056
19057 @since version 3.1.0, structured bindings support since 3.5.0.
19058 */
19059 iteration_proxy<iterator> items() noexcept
19060 {
19061 return iteration_proxy<iterator>(*this);
19062 }
19063
19064 /*!
19065 @copydoc items()
19066 */
19067 iteration_proxy<const_iterator> items() const noexcept
19068 {
19069 return iteration_proxy<const_iterator>(*this);
19070 }
19071
19072 /// @}
19073
19074
19075 //////////////
19076 // capacity //
19077 //////////////
19078
19079 /// @name capacity
19080 /// @{
19081
19082 /*!
19083 @brief checks whether the container is empty.
19084
19085 Checks if a JSON value has no elements (i.e. whether its @ref size is `0`).
19086
19087 @return The return value depends on the different types and is
19088 defined as follows:
19089 Value type | return value
19090 ----------- | -------------
19091 null | `true`
19092 boolean | `false`
19093 string | `false`
19094 number | `false`
19095 object | result of function `object_t::empty()`
19096 array | result of function `array_t::empty()`
19097
19098 @liveexample{The following code uses `empty()` to check if a JSON
19099 object contains any elements.,empty}
19100
19101 @complexity Constant, as long as @ref array_t and @ref object_t satisfy
19102 the Container concept; that is, their `empty()` functions have constant
19103 complexity.
19104
19105 @iterators No changes.
19106
19107 @exceptionsafety No-throw guarantee: this function never throws exceptions.
19108
19109 @note This function does not return whether a string stored as JSON value
19110 is empty - it returns whether the JSON container itself is empty which is
19111 false in the case of a string.
19112
19113 @requirement This function helps `basic_json` satisfying the
19114 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
19115 requirements:
19116 - The complexity is constant.
19117 - Has the semantics of `begin() == end()`.
19118
19119 @sa @ref size() -- returns the number of elements
19120
19121 @since version 1.0.0
19122 */
19123 bool empty() const noexcept
19124 {
19125 switch (m_type)
19126 {
19127 case value_t::null:
19128 {
19129 // null values are empty
19130 return true;
19131 }
19132
19133 case value_t::array:
19134 {
19135 // delegate call to array_t::empty()
19136 return m_value.array->empty();
19137 }
19138
19139 case value_t::object:
19140 {
19141 // delegate call to object_t::empty()
19142 return m_value.object->empty();
19143 }
19144
19145 default:
19146 {
19147 // all other types are nonempty
19148 return false;
19149 }
19150 }
19151 }
19152
19153 /*!
19154 @brief returns the number of elements
19155
19156 Returns the number of elements in a JSON value.
19157
19158 @return The return value depends on the different types and is
19159 defined as follows:
19160 Value type | return value
19161 ----------- | -------------
19162 null | `0`
19163 boolean | `1`
19164 string | `1`
19165 number | `1`
19166 object | result of function object_t::size()
19167 array | result of function array_t::size()
19168
19169 @liveexample{The following code calls `size()` on the different value
19170 types.,size}
19171
19172 @complexity Constant, as long as @ref array_t and @ref object_t satisfy
19173 the Container concept; that is, their size() functions have constant
19174 complexity.
19175
19176 @iterators No changes.
19177
19178 @exceptionsafety No-throw guarantee: this function never throws exceptions.
19179
19180 @note This function does not return the length of a string stored as JSON
19181 value - it returns the number of elements in the JSON value which is 1 in
19182 the case of a string.
19183
19184 @requirement This function helps `basic_json` satisfying the
19185 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
19186 requirements:
19187 - The complexity is constant.
19188 - Has the semantics of `std::distance(begin(), end())`.
19189
19190 @sa @ref empty() -- checks whether the container is empty
19191 @sa @ref max_size() -- returns the maximal number of elements
19192
19193 @since version 1.0.0
19194 */
19195 size_type size() const noexcept
19196 {
19197 switch (m_type)
19198 {
19199 case value_t::null:
19200 {
19201 // null values are empty
19202 return 0;
19203 }
19204
19205 case value_t::array:
19206 {
19207 // delegate call to array_t::size()
19208 return m_value.array->size();
19209 }
19210
19211 case value_t::object:
19212 {
19213 // delegate call to object_t::size()
19214 return m_value.object->size();
19215 }
19216
19217 default:
19218 {
19219 // all other types have size 1
19220 return 1;
19221 }
19222 }
19223 }
19224
19225 /*!
19226 @brief returns the maximum possible number of elements
19227
19228 Returns the maximum number of elements a JSON value is able to hold due to
19229 system or library implementation limitations, i.e. `std::distance(begin(),
19230 end())` for the JSON value.
19231
19232 @return The return value depends on the different types and is
19233 defined as follows:
19234 Value type | return value
19235 ----------- | -------------
19236 null | `0` (same as `size()`)
19237 boolean | `1` (same as `size()`)
19238 string | `1` (same as `size()`)
19239 number | `1` (same as `size()`)
19240 object | result of function `object_t::max_size()`
19241 array | result of function `array_t::max_size()`
19242
19243 @liveexample{The following code calls `max_size()` on the different value
19244 types. Note the output is implementation specific.,max_size}
19245
19246 @complexity Constant, as long as @ref array_t and @ref object_t satisfy
19247 the Container concept; that is, their `max_size()` functions have constant
19248 complexity.
19249
19250 @iterators No changes.
19251
19252 @exceptionsafety No-throw guarantee: this function never throws exceptions.
19253
19254 @requirement This function helps `basic_json` satisfying the
19255 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
19256 requirements:
19257 - The complexity is constant.
19258 - Has the semantics of returning `b.size()` where `b` is the largest
19259 possible JSON value.
19260
19261 @sa @ref size() -- returns the number of elements
19262
19263 @since version 1.0.0
19264 */
19265 size_type max_size() const noexcept
19266 {
19267 switch (m_type)
19268 {
19269 case value_t::array:
19270 {
19271 // delegate call to array_t::max_size()
19272 return m_value.array->max_size();
19273 }
19274
19275 case value_t::object:
19276 {
19277 // delegate call to object_t::max_size()
19278 return m_value.object->max_size();
19279 }
19280
19281 default:
19282 {
19283 // all other types have max_size() == size()
19284 return size();
19285 }
19286 }
19287 }
19288
19289 /// @}
19290
19291
19292 ///////////////
19293 // modifiers //
19294 ///////////////
19295
19296 /// @name modifiers
19297 /// @{
19298
19299 /*!
19300 @brief clears the contents
19301
19302 Clears the content of a JSON value and resets it to the default value as
19303 if @ref basic_json(value_t) would have been called with the current value
19304 type from @ref type():
19305
19306 Value type | initial value
19307 ----------- | -------------
19308 null | `null`
19309 boolean | `false`
19310 string | `""`
19311 number | `0`
19312 object | `{}`
19313 array | `[]`
19314
19315 @post Has the same effect as calling
19316 @code {.cpp}
19317 *this = basic_json(type());
19318 @endcode
19319
19320 @liveexample{The example below shows the effect of `clear()` to different
19321 JSON types.,clear}
19322
19323 @complexity Linear in the size of the JSON value.
19324
19325 @iterators All iterators, pointers and references related to this container
19326 are invalidated.
19327
19328 @exceptionsafety No-throw guarantee: this function never throws exceptions.
19329
19330 @sa @ref basic_json(value_t) -- constructor that creates an object with the
19331 same value than calling `clear()`
19332
19333 @since version 1.0.0
19334 */
19335 void clear() noexcept
19336 {
19337 switch (m_type)
19338 {
19339 case value_t::number_integer:
19340 {
19341 m_value.number_integer = 0;
19342 break;
19343 }
19344
19345 case value_t::number_unsigned:
19346 {
19347 m_value.number_unsigned = 0;
19348 break;
19349 }
19350
19351 case value_t::number_float:
19352 {
19353 m_value.number_float = 0.0;
19354 break;
19355 }
19356
19357 case value_t::boolean:
19358 {
19359 m_value.boolean = false;
19360 break;
19361 }
19362
19363 case value_t::string:
19364 {
19365 m_value.string->clear();
19366 break;
19367 }
19368
19369 case value_t::array:
19370 {
19371 m_value.array->clear();
19372 break;
19373 }
19374
19375 case value_t::object:
19376 {
19377 m_value.object->clear();
19378 break;
19379 }
19380
19381 default:
19382 break;
19383 }
19384 }
19385
19386 /*!
19387 @brief add an object to an array
19388
19389 Appends the given element @a val to the end of the JSON value. If the
19390 function is called on a JSON null value, an empty array is created before
19391 appending @a val.
19392
19393 @param[in] val the value to add to the JSON array
19394
19395 @throw type_error.308 when called on a type other than JSON array or
19396 null; example: `"cannot use push_back() with number"`
19397
19398 @complexity Amortized constant.
19399
19400 @liveexample{The example shows how `push_back()` and `+=` can be used to
19401 add elements to a JSON array. Note how the `null` value was silently
19402 converted to a JSON array.,push_back}
19403
19404 @since version 1.0.0
19405 */
19406 void push_back(basic_json&& val)
19407 {
19408 // push_back only works for null objects or arrays
19409 if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
19410 {
19411 JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
19412 }
19413
19414 // transform null object into an array
19415 if (is_null())
19416 {
19417 m_type = value_t::array;
19418 m_value = value_t::array;
19419 assert_invariant();
19420 }
19421
19422 // add element to array (move semantics)
19423 m_value.array->push_back(std::move(val));
19424 // invalidate object: mark it null so we do not call the destructor
19425 // cppcheck-suppress accessMoved
19426 val.m_type = value_t::null;
19427 }
19428
19429 /*!
19430 @brief add an object to an array
19431 @copydoc push_back(basic_json&&)
19432 */
19433 reference operator+=(basic_json&& val)
19434 {
19435 push_back(std::move(val));
19436 return *this;
19437 }
19438
19439 /*!
19440 @brief add an object to an array
19441 @copydoc push_back(basic_json&&)
19442 */
19443 void push_back(const basic_json& val)
19444 {
19445 // push_back only works for null objects or arrays
19446 if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
19447 {
19448 JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
19449 }
19450
19451 // transform null object into an array
19452 if (is_null())
19453 {
19454 m_type = value_t::array;
19455 m_value = value_t::array;
19456 assert_invariant();
19457 }
19458
19459 // add element to array
19460 m_value.array->push_back(val);
19461 }
19462
19463 /*!
19464 @brief add an object to an array
19465 @copydoc push_back(basic_json&&)
19466 */
19467 reference operator+=(const basic_json& val)
19468 {
19469 push_back(val);
19470 return *this;
19471 }
19472
19473 /*!
19474 @brief add an object to an object
19475
19476 Inserts the given element @a val to the JSON object. If the function is
19477 called on a JSON null value, an empty object is created before inserting
19478 @a val.
19479
19480 @param[in] val the value to add to the JSON object
19481
19482 @throw type_error.308 when called on a type other than JSON object or
19483 null; example: `"cannot use push_back() with number"`
19484
19485 @complexity Logarithmic in the size of the container, O(log(`size()`)).
19486
19487 @liveexample{The example shows how `push_back()` and `+=` can be used to
19488 add elements to a JSON object. Note how the `null` value was silently
19489 converted to a JSON object.,push_back__object_t__value}
19490
19491 @since version 1.0.0
19492 */
19493 void push_back(const typename object_t::value_type& val)
19494 {
19495 // push_back only works for null objects or objects
19496 if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_object())))
19497 {
19498 JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
19499 }
19500
19501 // transform null object into an object
19502 if (is_null())
19503 {
19504 m_type = value_t::object;
19505 m_value = value_t::object;
19506 assert_invariant();
19507 }
19508
19509 // add element to array
19510 m_value.object->insert(val);
19511 }
19512
19513 /*!
19514 @brief add an object to an object
19515 @copydoc push_back(const typename object_t::value_type&)
19516 */
19517 reference operator+=(const typename object_t::value_type& val)
19518 {
19519 push_back(val);
19520 return *this;
19521 }
19522
19523 /*!
19524 @brief add an object to an object
19525
19526 This function allows to use `push_back` with an initializer list. In case
19527
19528 1. the current value is an object,
19529 2. the initializer list @a init contains only two elements, and
19530 3. the first element of @a init is a string,
19531
19532 @a init is converted into an object element and added using
19533 @ref push_back(const typename object_t::value_type&). Otherwise, @a init
19534 is converted to a JSON value and added using @ref push_back(basic_json&&).
19535
19536 @param[in] init an initializer list
19537
19538 @complexity Linear in the size of the initializer list @a init.
19539
19540 @note This function is required to resolve an ambiguous overload error,
19541 because pairs like `{"key", "value"}` can be both interpreted as
19542 `object_t::value_type` or `std::initializer_list<basic_json>`, see
19543 https://github.com/nlohmann/json/issues/235 for more information.
19544
19545 @liveexample{The example shows how initializer lists are treated as
19546 objects when possible.,push_back__initializer_list}
19547 */
19548 void push_back(initializer_list_t init)
19549 {
19550 if (is_object() and init.size() == 2 and (*init.begin())->is_string())
19551 {
19552 basic_json&& key = init.begin()->moved_or_copied();
19553 push_back(typename object_t::value_type(
19554 std::move(key.get_ref<string_t&>()), (init.begin() + 1)->moved_or_copied()));
19555 }
19556 else
19557 {
19558 push_back(basic_json(init));
19559 }
19560 }
19561
19562 /*!
19563 @brief add an object to an object
19564 @copydoc push_back(initializer_list_t)
19565 */
19566 reference operator+=(initializer_list_t init)
19567 {
19568 push_back(init);
19569 return *this;
19570 }
19571
19572 /*!
19573 @brief add an object to an array
19574
19575 Creates a JSON value from the passed parameters @a args to the end of the
19576 JSON value. If the function is called on a JSON null value, an empty array
19577 is created before appending the value created from @a args.
19578
19579 @param[in] args arguments to forward to a constructor of @ref basic_json
19580 @tparam Args compatible types to create a @ref basic_json object
19581
19582 @return reference to the inserted element
19583
19584 @throw type_error.311 when called on a type other than JSON array or
19585 null; example: `"cannot use emplace_back() with number"`
19586
19587 @complexity Amortized constant.
19588
19589 @liveexample{The example shows how `push_back()` can be used to add
19590 elements to a JSON array. Note how the `null` value was silently converted
19591 to a JSON array.,emplace_back}
19592
19593 @since version 2.0.8, returns reference since 3.7.0
19594 */
19595 template<class... Args>
19596 reference emplace_back(Args&& ... args)
19597 {
19598 // emplace_back only works for null objects or arrays
19599 if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_array())))
19600 {
19601 JSON_THROW(type_error::create(311, "cannot use emplace_back() with " + std::string(type_name())));
19602 }
19603
19604 // transform null object into an array
19605 if (is_null())
19606 {
19607 m_type = value_t::array;
19608 m_value = value_t::array;
19609 assert_invariant();
19610 }
19611
19612 // add element to array (perfect forwarding)
19613#ifdef JSON_HAS_CPP_17
19614 return m_value.array->emplace_back(std::forward<Args>(args)...);
19615#else
19616 m_value.array->emplace_back(std::forward<Args>(args)...);
19617 return m_value.array->back();
19618#endif
19619 }
19620
19621 /*!
19622 @brief add an object to an object if key does not exist
19623
19624 Inserts a new element into a JSON object constructed in-place with the
19625 given @a args if there is no element with the key in the container. If the
19626 function is called on a JSON null value, an empty object is created before
19627 appending the value created from @a args.
19628
19629 @param[in] args arguments to forward to a constructor of @ref basic_json
19630 @tparam Args compatible types to create a @ref basic_json object
19631
19632 @return a pair consisting of an iterator to the inserted element, or the
19633 already-existing element if no insertion happened, and a bool
19634 denoting whether the insertion took place.
19635
19636 @throw type_error.311 when called on a type other than JSON object or
19637 null; example: `"cannot use emplace() with number"`
19638
19639 @complexity Logarithmic in the size of the container, O(log(`size()`)).
19640
19641 @liveexample{The example shows how `emplace()` can be used to add elements
19642 to a JSON object. Note how the `null` value was silently converted to a
19643 JSON object. Further note how no value is added if there was already one
19644 value stored with the same key.,emplace}
19645
19646 @since version 2.0.8
19647 */
19648 template<class... Args>
19649 std::pair<iterator, bool> emplace(Args&& ... args)
19650 {
19651 // emplace only works for null objects or arrays
19652 if (JSON_HEDLEY_UNLIKELY(not(is_null() or is_object())))
19653 {
19654 JSON_THROW(type_error::create(311, "cannot use emplace() with " + std::string(type_name())));
19655 }
19656
19657 // transform null object into an object
19658 if (is_null())
19659 {
19660 m_type = value_t::object;
19661 m_value = value_t::object;
19662 assert_invariant();
19663 }
19664
19665 // add element to array (perfect forwarding)
19666 auto res = m_value.object->emplace(std::forward<Args>(args)...);
19667 // create result iterator and set iterator to the result of emplace
19668 auto it = begin();
19669 it.m_it.object_iterator = res.first;
19670
19671 // return pair of iterator and boolean
19672 return {it, res.second};
19673 }
19674
19675 /// Helper for insertion of an iterator
19676 /// @note: This uses std::distance to support GCC 4.8,
19677 /// see https://github.com/nlohmann/json/pull/1257
19678 template<typename... Args>
19679 iterator insert_iterator(const_iterator pos, Args&& ... args)
19680 {
19681 iterator result(this);
19682 assert(m_value.array != nullptr);
19683
19684 auto insert_pos = std::distance(m_value.array->begin(), pos.m_it.array_iterator);
19685 m_value.array->insert(pos.m_it.array_iterator, std::forward<Args>(args)...);
19686 result.m_it.array_iterator = m_value.array->begin() + insert_pos;
19687
19688 // This could have been written as:
19689 // result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val);
19690 // but the return value of insert is missing in GCC 4.8, so it is written this way instead.
19691
19692 return result;
19693 }
19694
19695 /*!
19696 @brief inserts element
19697
19698 Inserts element @a val before iterator @a pos.
19699
19700 @param[in] pos iterator before which the content will be inserted; may be
19701 the end() iterator
19702 @param[in] val element to insert
19703 @return iterator pointing to the inserted @a val.
19704
19705 @throw type_error.309 if called on JSON values other than arrays;
19706 example: `"cannot use insert() with string"`
19707 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19708 example: `"iterator does not fit current value"`
19709
19710 @complexity Constant plus linear in the distance between @a pos and end of
19711 the container.
19712
19713 @liveexample{The example shows how `insert()` is used.,insert}
19714
19715 @since version 1.0.0
19716 */
19717 iterator insert(const_iterator pos, const basic_json& val)
19718 {
19719 // insert only works for arrays
19720 if (JSON_HEDLEY_LIKELY(is_array()))
19721 {
19722 // check if iterator pos fits to this JSON value
19723 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19724 {
19725 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19726 }
19727
19728 // insert to array and return iterator
19729 return insert_iterator(pos, val);
19730 }
19731
19732 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19733 }
19734
19735 /*!
19736 @brief inserts element
19737 @copydoc insert(const_iterator, const basic_json&)
19738 */
19739 iterator insert(const_iterator pos, basic_json&& val)
19740 {
19741 return insert(pos, val);
19742 }
19743
19744 /*!
19745 @brief inserts elements
19746
19747 Inserts @a cnt copies of @a val before iterator @a pos.
19748
19749 @param[in] pos iterator before which the content will be inserted; may be
19750 the end() iterator
19751 @param[in] cnt number of copies of @a val to insert
19752 @param[in] val element to insert
19753 @return iterator pointing to the first element inserted, or @a pos if
19754 `cnt==0`
19755
19756 @throw type_error.309 if called on JSON values other than arrays; example:
19757 `"cannot use insert() with string"`
19758 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19759 example: `"iterator does not fit current value"`
19760
19761 @complexity Linear in @a cnt plus linear in the distance between @a pos
19762 and end of the container.
19763
19764 @liveexample{The example shows how `insert()` is used.,insert__count}
19765
19766 @since version 1.0.0
19767 */
19768 iterator insert(const_iterator pos, size_type cnt, const basic_json& val)
19769 {
19770 // insert only works for arrays
19771 if (JSON_HEDLEY_LIKELY(is_array()))
19772 {
19773 // check if iterator pos fits to this JSON value
19774 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19775 {
19776 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19777 }
19778
19779 // insert to array and return iterator
19780 return insert_iterator(pos, cnt, val);
19781 }
19782
19783 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19784 }
19785
19786 /*!
19787 @brief inserts elements
19788
19789 Inserts elements from range `[first, last)` before iterator @a pos.
19790
19791 @param[in] pos iterator before which the content will be inserted; may be
19792 the end() iterator
19793 @param[in] first begin of the range of elements to insert
19794 @param[in] last end of the range of elements to insert
19795
19796 @throw type_error.309 if called on JSON values other than arrays; example:
19797 `"cannot use insert() with string"`
19798 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19799 example: `"iterator does not fit current value"`
19800 @throw invalid_iterator.210 if @a first and @a last do not belong to the
19801 same JSON value; example: `"iterators do not fit"`
19802 @throw invalid_iterator.211 if @a first or @a last are iterators into
19803 container for which insert is called; example: `"passed iterators may not
19804 belong to container"`
19805
19806 @return iterator pointing to the first element inserted, or @a pos if
19807 `first==last`
19808
19809 @complexity Linear in `std::distance(first, last)` plus linear in the
19810 distance between @a pos and end of the container.
19811
19812 @liveexample{The example shows how `insert()` is used.,insert__range}
19813
19814 @since version 1.0.0
19815 */
19816 iterator insert(const_iterator pos, const_iterator first, const_iterator last)
19817 {
19818 // insert only works for arrays
19819 if (JSON_HEDLEY_UNLIKELY(not is_array()))
19820 {
19821 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19822 }
19823
19824 // check if iterator pos fits to this JSON value
19825 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19826 {
19827 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19828 }
19829
19830 // check if range iterators belong to the same JSON object
19831 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
19832 {
19833 JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
19834 }
19835
19836 if (JSON_HEDLEY_UNLIKELY(first.m_object == this))
19837 {
19838 JSON_THROW(invalid_iterator::create(211, "passed iterators may not belong to container"));
19839 }
19840
19841 // insert to array and return iterator
19842 return insert_iterator(pos, first.m_it.array_iterator, last.m_it.array_iterator);
19843 }
19844
19845 /*!
19846 @brief inserts elements
19847
19848 Inserts elements from initializer list @a ilist before iterator @a pos.
19849
19850 @param[in] pos iterator before which the content will be inserted; may be
19851 the end() iterator
19852 @param[in] ilist initializer list to insert the values from
19853
19854 @throw type_error.309 if called on JSON values other than arrays; example:
19855 `"cannot use insert() with string"`
19856 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
19857 example: `"iterator does not fit current value"`
19858
19859 @return iterator pointing to the first element inserted, or @a pos if
19860 `ilist` is empty
19861
19862 @complexity Linear in `ilist.size()` plus linear in the distance between
19863 @a pos and end of the container.
19864
19865 @liveexample{The example shows how `insert()` is used.,insert__ilist}
19866
19867 @since version 1.0.0
19868 */
19869 iterator insert(const_iterator pos, initializer_list_t ilist)
19870 {
19871 // insert only works for arrays
19872 if (JSON_HEDLEY_UNLIKELY(not is_array()))
19873 {
19874 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19875 }
19876
19877 // check if iterator pos fits to this JSON value
19878 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
19879 {
19880 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
19881 }
19882
19883 // insert to array and return iterator
19884 return insert_iterator(pos, ilist.begin(), ilist.end());
19885 }
19886
19887 /*!
19888 @brief inserts elements
19889
19890 Inserts elements from range `[first, last)`.
19891
19892 @param[in] first begin of the range of elements to insert
19893 @param[in] last end of the range of elements to insert
19894
19895 @throw type_error.309 if called on JSON values other than objects; example:
19896 `"cannot use insert() with string"`
19897 @throw invalid_iterator.202 if iterator @a first or @a last does does not
19898 point to an object; example: `"iterators first and last must point to
19899 objects"`
19900 @throw invalid_iterator.210 if @a first and @a last do not belong to the
19901 same JSON value; example: `"iterators do not fit"`
19902
19903 @complexity Logarithmic: `O(N*log(size() + N))`, where `N` is the number
19904 of elements to insert.
19905
19906 @liveexample{The example shows how `insert()` is used.,insert__range_object}
19907
19908 @since version 3.0.0
19909 */
19910 void insert(const_iterator first, const_iterator last)
19911 {
19912 // insert only works for objects
19913 if (JSON_HEDLEY_UNLIKELY(not is_object()))
19914 {
19915 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
19916 }
19917
19918 // check if range iterators belong to the same JSON object
19919 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
19920 {
19921 JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
19922 }
19923
19924 // passed iterators must belong to objects
19925 if (JSON_HEDLEY_UNLIKELY(not first.m_object->is_object()))
19926 {
19927 JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
19928 }
19929
19930 m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator);
19931 }
19932
19933 /*!
19934 @brief updates a JSON object from another object, overwriting existing keys
19935
19936 Inserts all values from JSON object @a j and overwrites existing keys.
19937
19938 @param[in] j JSON object to read values from
19939
19940 @throw type_error.312 if called on JSON values other than objects; example:
19941 `"cannot use update() with string"`
19942
19943 @complexity O(N*log(size() + N)), where N is the number of elements to
19944 insert.
19945
19946 @liveexample{The example shows how `update()` is used.,update}
19947
19948 @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
19949
19950 @since version 3.0.0
19951 */
19952 void update(const_reference j)
19953 {
19954 // implicitly convert null value to an empty object
19955 if (is_null())
19956 {
19957 m_type = value_t::object;
19958 m_value.object = create<object_t>();
19959 assert_invariant();
19960 }
19961
19962 if (JSON_HEDLEY_UNLIKELY(not is_object()))
19963 {
19964 JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
19965 }
19966 if (JSON_HEDLEY_UNLIKELY(not j.is_object()))
19967 {
19968 JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(j.type_name())));
19969 }
19970
19971 for (auto it = j.cbegin(); it != j.cend(); ++it)
19972 {
19973 m_value.object->operator[](it.key()) = it.value();
19974 }
19975 }
19976
19977 /*!
19978 @brief updates a JSON object from another object, overwriting existing keys
19979
19980 Inserts all values from from range `[first, last)` and overwrites existing
19981 keys.
19982
19983 @param[in] first begin of the range of elements to insert
19984 @param[in] last end of the range of elements to insert
19985
19986 @throw type_error.312 if called on JSON values other than objects; example:
19987 `"cannot use update() with string"`
19988 @throw invalid_iterator.202 if iterator @a first or @a last does does not
19989 point to an object; example: `"iterators first and last must point to
19990 objects"`
19991 @throw invalid_iterator.210 if @a first and @a last do not belong to the
19992 same JSON value; example: `"iterators do not fit"`
19993
19994 @complexity O(N*log(size() + N)), where N is the number of elements to
19995 insert.
19996
19997 @liveexample{The example shows how `update()` is used__range.,update}
19998
19999 @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
20000
20001 @since version 3.0.0
20002 */
20003 void update(const_iterator first, const_iterator last)
20004 {
20005 // implicitly convert null value to an empty object
20006 if (is_null())
20007 {
20008 m_type = value_t::object;
20009 m_value.object = create<object_t>();
20010 assert_invariant();
20011 }
20012
20013 if (JSON_HEDLEY_UNLIKELY(not is_object()))
20014 {
20015 JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
20016 }
20017
20018 // check if range iterators belong to the same JSON object
20019 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
20020 {
20021 JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
20022 }
20023
20024 // passed iterators must belong to objects
20025 if (JSON_HEDLEY_UNLIKELY(not first.m_object->is_object()
20026 or not last.m_object->is_object()))
20027 {
20028 JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
20029 }
20030
20031 for (auto it = first; it != last; ++it)
20032 {
20033 m_value.object->operator[](it.key()) = it.value();
20034 }
20035 }
20036
20037 /*!
20038 @brief exchanges the values
20039
20040 Exchanges the contents of the JSON value with those of @a other. Does not
20041 invoke any move, copy, or swap operations on individual elements. All
20042 iterators and references remain valid. The past-the-end iterator is
20043 invalidated.
20044
20045 @param[in,out] other JSON value to exchange the contents with
20046
20047 @complexity Constant.
20048
20049 @liveexample{The example below shows how JSON values can be swapped with
20050 `swap()`.,swap__reference}
20051
20052 @since version 1.0.0
20053 */
20054 void swap(reference other) noexcept (
20055 std::is_nothrow_move_constructible<value_t>::value and
20056 std::is_nothrow_move_assignable<value_t>::value and
20057 std::is_nothrow_move_constructible<json_value>::value and
20058 std::is_nothrow_move_assignable<json_value>::value
20059 )
20060 {
20061 std::swap(m_type, other.m_type);
20062 std::swap(m_value, other.m_value);
20063 assert_invariant();
20064 }
20065
20066 /*!
20067 @brief exchanges the values
20068
20069 Exchanges the contents of a JSON array with those of @a other. Does not
20070 invoke any move, copy, or swap operations on individual elements. All
20071 iterators and references remain valid. The past-the-end iterator is
20072 invalidated.
20073
20074 @param[in,out] other array to exchange the contents with
20075
20076 @throw type_error.310 when JSON value is not an array; example: `"cannot
20077 use swap() with string"`
20078
20079 @complexity Constant.
20080
20081 @liveexample{The example below shows how arrays can be swapped with
20082 `swap()`.,swap__array_t}
20083
20084 @since version 1.0.0
20085 */
20086 void swap(array_t& other)
20087 {
20088 // swap only works for arrays
20089 if (JSON_HEDLEY_LIKELY(is_array()))
20090 {
20091 std::swap(*(m_value.array), other);
20092 }
20093 else
20094 {
20095 JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
20096 }
20097 }
20098
20099 /*!
20100 @brief exchanges the values
20101
20102 Exchanges the contents of a JSON object with those of @a other. Does not
20103 invoke any move, copy, or swap operations on individual elements. All
20104 iterators and references remain valid. The past-the-end iterator is
20105 invalidated.
20106
20107 @param[in,out] other object to exchange the contents with
20108
20109 @throw type_error.310 when JSON value is not an object; example:
20110 `"cannot use swap() with string"`
20111
20112 @complexity Constant.
20113
20114 @liveexample{The example below shows how objects can be swapped with
20115 `swap()`.,swap__object_t}
20116
20117 @since version 1.0.0
20118 */
20119 void swap(object_t& other)
20120 {
20121 // swap only works for objects
20122 if (JSON_HEDLEY_LIKELY(is_object()))
20123 {
20124 std::swap(*(m_value.object), other);
20125 }
20126 else
20127 {
20128 JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
20129 }
20130 }
20131
20132 /*!
20133 @brief exchanges the values
20134
20135 Exchanges the contents of a JSON string with those of @a other. Does not
20136 invoke any move, copy, or swap operations on individual elements. All
20137 iterators and references remain valid. The past-the-end iterator is
20138 invalidated.
20139
20140 @param[in,out] other string to exchange the contents with
20141
20142 @throw type_error.310 when JSON value is not a string; example: `"cannot
20143 use swap() with boolean"`
20144
20145 @complexity Constant.
20146
20147 @liveexample{The example below shows how strings can be swapped with
20148 `swap()`.,swap__string_t}
20149
20150 @since version 1.0.0
20151 */
20152 void swap(string_t& other)
20153 {
20154 // swap only works for strings
20155 if (JSON_HEDLEY_LIKELY(is_string()))
20156 {
20157 std::swap(*(m_value.string), other);
20158 }
20159 else
20160 {
20161 JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
20162 }
20163 }
20164
20165 /// @}
20166
20167 public:
20168 //////////////////////////////////////////
20169 // lexicographical comparison operators //
20170 //////////////////////////////////////////
20171
20172 /// @name lexicographical comparison operators
20173 /// @{
20174
20175 /*!
20176 @brief comparison: equal
20177
20178 Compares two JSON values for equality according to the following rules:
20179 - Two JSON values are equal if (1) they are from the same type and (2)
20180 their stored values are the same according to their respective
20181 `operator==`.
20182 - Integer and floating-point numbers are automatically converted before
20183 comparison. Note than two NaN values are always treated as unequal.
20184 - Two JSON null values are equal.
20185
20186 @note Floating-point inside JSON values numbers are compared with
20187 `json::number_float_t::operator==` which is `double::operator==` by
20188 default. To compare floating-point while respecting an epsilon, an alternative
20189 [comparison function](https://github.com/mariokonrad/marnav/blob/master/src/marnav/math/floatingpoint.hpp#L34-#L39)
20190 could be used, for instance
20191 @code {.cpp}
20192 template<typename T, typename = typename std::enable_if<std::is_floating_point<T>::value, T>::type>
20193 inline bool is_same(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept
20194 {
20195 return std::abs(a - b) <= epsilon;
20196 }
20197 @endcode
20198
20199 @note NaN values never compare equal to themselves or to other NaN values.
20200
20201 @param[in] lhs first JSON value to consider
20202 @param[in] rhs second JSON value to consider
20203 @return whether the values @a lhs and @a rhs are equal
20204
20205 @exceptionsafety No-throw guarantee: this function never throws exceptions.
20206
20207 @complexity Linear.
20208
20209 @liveexample{The example demonstrates comparing several JSON
20210 types.,operator__equal}
20211
20212 @since version 1.0.0
20213 */
20214 friend bool operator==(const_reference lhs, const_reference rhs) noexcept
20215 {
20216 const auto lhs_type = lhs.type();
20217 const auto rhs_type = rhs.type();
20218
20219 if (lhs_type == rhs_type)
20220 {
20221 switch (lhs_type)
20222 {
20223 case value_t::array:
20224 return *lhs.m_value.array == *rhs.m_value.array;
20225
20226 case value_t::object:
20227 return *lhs.m_value.object == *rhs.m_value.object;
20228
20229 case value_t::null:
20230 return true;
20231
20232 case value_t::string:
20233 return *lhs.m_value.string == *rhs.m_value.string;
20234
20235 case value_t::boolean:
20236 return lhs.m_value.boolean == rhs.m_value.boolean;
20237
20238 case value_t::number_integer:
20239 return lhs.m_value.number_integer == rhs.m_value.number_integer;
20240
20241 case value_t::number_unsigned:
20242 return lhs.m_value.number_unsigned == rhs.m_value.number_unsigned;
20243
20244 case value_t::number_float:
20245 return lhs.m_value.number_float == rhs.m_value.number_float;
20246
20247 default:
20248 return false;
20249 }
20250 }
20251 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
20252 {
20253 return static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float;
20254 }
20255 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
20256 {
20257 return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer);
20258 }
20259 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
20260 {
20261 return static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float;
20262 }
20263 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
20264 {
20265 return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned);
20266 }
20267 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
20268 {
20269 return static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer;
20270 }
20271 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
20272 {
20273 return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned);
20274 }
20275
20276 return false;
20277 }
20278
20279 /*!
20280 @brief comparison: equal
20281 @copydoc operator==(const_reference, const_reference)
20282 */
20283 template<typename ScalarType, typename std::enable_if<
20284 std::is_scalar<ScalarType>::value, int>::type = 0>
20285 friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
20286 {
20287 return lhs == basic_json(rhs);
20288 }
20289
20290 /*!
20291 @brief comparison: equal
20292 @copydoc operator==(const_reference, const_reference)
20293 */
20294 template<typename ScalarType, typename std::enable_if<
20295 std::is_scalar<ScalarType>::value, int>::type = 0>
20296 friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
20297 {
20298 return basic_json(lhs) == rhs;
20299 }
20300
20301 /*!
20302 @brief comparison: not equal
20303
20304 Compares two JSON values for inequality by calculating `not (lhs == rhs)`.
20305
20306 @param[in] lhs first JSON value to consider
20307 @param[in] rhs second JSON value to consider
20308 @return whether the values @a lhs and @a rhs are not equal
20309
20310 @complexity Linear.
20311
20312 @exceptionsafety No-throw guarantee: this function never throws exceptions.
20313
20314 @liveexample{The example demonstrates comparing several JSON
20315 types.,operator__notequal}
20316
20317 @since version 1.0.0
20318 */
20319 friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
20320 {
20321 return not (lhs == rhs);
20322 }
20323
20324 /*!
20325 @brief comparison: not equal
20326 @copydoc operator!=(const_reference, const_reference)
20327 */
20328 template<typename ScalarType, typename std::enable_if<
20329 std::is_scalar<ScalarType>::value, int>::type = 0>
20330 friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
20331 {
20332 return lhs != basic_json(rhs);
20333 }
20334
20335 /*!
20336 @brief comparison: not equal
20337 @copydoc operator!=(const_reference, const_reference)
20338 */
20339 template<typename ScalarType, typename std::enable_if<
20340 std::is_scalar<ScalarType>::value, int>::type = 0>
20341 friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
20342 {
20343 return basic_json(lhs) != rhs;
20344 }
20345
20346 /*!
20347 @brief comparison: less than
20348
20349 Compares whether one JSON value @a lhs is less than another JSON value @a
20350 rhs according to the following rules:
20351 - If @a lhs and @a rhs have the same type, the values are compared using
20352 the default `<` operator.
20353 - Integer and floating-point numbers are automatically converted before
20354 comparison
20355 - In case @a lhs and @a rhs have different types, the values are ignored
20356 and the order of the types is considered, see
20357 @ref operator<(const value_t, const value_t).
20358
20359 @param[in] lhs first JSON value to consider
20360 @param[in] rhs second JSON value to consider
20361 @return whether @a lhs is less than @a rhs
20362
20363 @complexity Linear.
20364
20365 @exceptionsafety No-throw guarantee: this function never throws exceptions.
20366
20367 @liveexample{The example demonstrates comparing several JSON
20368 types.,operator__less}
20369
20370 @since version 1.0.0
20371 */
20372 friend bool operator<(const_reference lhs, const_reference rhs) noexcept
20373 {
20374 const auto lhs_type = lhs.type();
20375 const auto rhs_type = rhs.type();
20376
20377 if (lhs_type == rhs_type)
20378 {
20379 switch (lhs_type)
20380 {
20381 case value_t::array:
20382 // note parentheses are necessary, see
20383 // https://github.com/nlohmann/json/issues/1530
20384 return (*lhs.m_value.array) < (*rhs.m_value.array);
20385
20386 case value_t::object:
20387 return (*lhs.m_value.object) < (*rhs.m_value.object);
20388
20389 case value_t::null:
20390 return false;
20391
20392 case value_t::string:
20393 return (*lhs.m_value.string) < (*rhs.m_value.string);
20394
20395 case value_t::boolean:
20396 return (lhs.m_value.boolean) < (rhs.m_value.boolean);
20397
20398 case value_t::number_integer:
20399 return (lhs.m_value.number_integer) < (rhs.m_value.number_integer);
20400
20401 case value_t::number_unsigned:
20402 return (lhs.m_value.number_unsigned) < (rhs.m_value.number_unsigned);
20403
20404 case value_t::number_float:
20405 return (lhs.m_value.number_float) < (rhs.m_value.number_float);
20406
20407 default:
20408 return false;
20409 }
20410 }
20411 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
20412 {
20413 return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float;
20414 }
20415 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
20416 {
20417 return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
20418 }
20419 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
20420 {
20421 return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float;
20422 }
20423 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
20424 {
20425 return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned);
20426 }
20427 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
20428 {
20429 return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned);
20430 }
20431 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
20432 {
20433 return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer;
20434 }
20435
20436 // We only reach this line if we cannot compare values. In that case,
20437 // we compare types. Note we have to call the operator explicitly,
20438 // because MSVC has problems otherwise.
20439 return operator<(lhs_type, rhs_type);
20440 }
20441
20442 /*!
20443 @brief comparison: less than
20444 @copydoc operator<(const_reference, const_reference)
20445 */
20446 template<typename ScalarType, typename std::enable_if<
20447 std::is_scalar<ScalarType>::value, int>::type = 0>
20448 friend bool operator<(const_reference lhs, const ScalarType rhs) noexcept
20449 {
20450 return lhs < basic_json(rhs);
20451 }
20452
20453 /*!
20454 @brief comparison: less than
20455 @copydoc operator<(const_reference, const_reference)
20456 */
20457 template<typename ScalarType, typename std::enable_if<
20458 std::is_scalar<ScalarType>::value, int>::type = 0>
20459 friend bool operator<(const ScalarType lhs, const_reference rhs) noexcept
20460 {
20461 return basic_json(lhs) < rhs;
20462 }
20463
20464 /*!
20465 @brief comparison: less than or equal
20466
20467 Compares whether one JSON value @a lhs is less than or equal to another
20468 JSON value by calculating `not (rhs < lhs)`.
20469
20470 @param[in] lhs first JSON value to consider
20471 @param[in] rhs second JSON value to consider
20472 @return whether @a lhs is less than or equal to @a rhs
20473
20474 @complexity Linear.
20475
20476 @exceptionsafety No-throw guarantee: this function never throws exceptions.
20477
20478 @liveexample{The example demonstrates comparing several JSON
20479 types.,operator__greater}
20480
20481 @since version 1.0.0
20482 */
20483 friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
20484 {
20485 return not (rhs < lhs);
20486 }
20487
20488 /*!
20489 @brief comparison: less than or equal
20490 @copydoc operator<=(const_reference, const_reference)
20491 */
20492 template<typename ScalarType, typename std::enable_if<
20493 std::is_scalar<ScalarType>::value, int>::type = 0>
20494 friend bool operator<=(const_reference lhs, const ScalarType rhs) noexcept
20495 {
20496 return lhs <= basic_json(rhs);
20497 }
20498
20499 /*!
20500 @brief comparison: less than or equal
20501 @copydoc operator<=(const_reference, const_reference)
20502 */
20503 template<typename ScalarType, typename std::enable_if<
20504 std::is_scalar<ScalarType>::value, int>::type = 0>
20505 friend bool operator<=(const ScalarType lhs, const_reference rhs) noexcept
20506 {
20507 return basic_json(lhs) <= rhs;
20508 }
20509
20510 /*!
20511 @brief comparison: greater than
20512
20513 Compares whether one JSON value @a lhs is greater than another
20514 JSON value by calculating `not (lhs <= rhs)`.
20515
20516 @param[in] lhs first JSON value to consider
20517 @param[in] rhs second JSON value to consider
20518 @return whether @a lhs is greater than to @a rhs
20519
20520 @complexity Linear.
20521
20522 @exceptionsafety No-throw guarantee: this function never throws exceptions.
20523
20524 @liveexample{The example demonstrates comparing several JSON
20525 types.,operator__lessequal}
20526
20527 @since version 1.0.0
20528 */
20529 friend bool operator>(const_reference lhs, const_reference rhs) noexcept
20530 {
20531 return not (lhs <= rhs);
20532 }
20533
20534 /*!
20535 @brief comparison: greater than
20536 @copydoc operator>(const_reference, const_reference)
20537 */
20538 template<typename ScalarType, typename std::enable_if<
20539 std::is_scalar<ScalarType>::value, int>::type = 0>
20540 friend bool operator>(const_reference lhs, const ScalarType rhs) noexcept
20541 {
20542 return lhs > basic_json(rhs);
20543 }
20544
20545 /*!
20546 @brief comparison: greater than
20547 @copydoc operator>(const_reference, const_reference)
20548 */
20549 template<typename ScalarType, typename std::enable_if<
20550 std::is_scalar<ScalarType>::value, int>::type = 0>
20551 friend bool operator>(const ScalarType lhs, const_reference rhs) noexcept
20552 {
20553 return basic_json(lhs) > rhs;
20554 }
20555
20556 /*!
20557 @brief comparison: greater than or equal
20558
20559 Compares whether one JSON value @a lhs is greater than or equal to another
20560 JSON value by calculating `not (lhs < rhs)`.
20561
20562 @param[in] lhs first JSON value to consider
20563 @param[in] rhs second JSON value to consider
20564 @return whether @a lhs is greater than or equal to @a rhs
20565
20566 @complexity Linear.
20567
20568 @exceptionsafety No-throw guarantee: this function never throws exceptions.
20569
20570 @liveexample{The example demonstrates comparing several JSON
20571 types.,operator__greaterequal}
20572
20573 @since version 1.0.0
20574 */
20575 friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
20576 {
20577 return not (lhs < rhs);
20578 }
20579
20580 /*!
20581 @brief comparison: greater than or equal
20582 @copydoc operator>=(const_reference, const_reference)
20583 */
20584 template<typename ScalarType, typename std::enable_if<
20585 std::is_scalar<ScalarType>::value, int>::type = 0>
20586 friend bool operator>=(const_reference lhs, const ScalarType rhs) noexcept
20587 {
20588 return lhs >= basic_json(rhs);
20589 }
20590
20591 /*!
20592 @brief comparison: greater than or equal
20593 @copydoc operator>=(const_reference, const_reference)
20594 */
20595 template<typename ScalarType, typename std::enable_if<
20596 std::is_scalar<ScalarType>::value, int>::type = 0>
20597 friend bool operator>=(const ScalarType lhs, const_reference rhs) noexcept
20598 {
20599 return basic_json(lhs) >= rhs;
20600 }
20601
20602 /// @}
20603
20604 ///////////////////
20605 // serialization //
20606 ///////////////////
20607
20608 /// @name serialization
20609 /// @{
20610
20611 /*!
20612 @brief serialize to stream
20613
20614 Serialize the given JSON value @a j to the output stream @a o. The JSON
20615 value will be serialized using the @ref dump member function.
20616
20617 - The indentation of the output can be controlled with the member variable
20618 `width` of the output stream @a o. For instance, using the manipulator
20619 `std::setw(4)` on @a o sets the indentation level to `4` and the
20620 serialization result is the same as calling `dump(4)`.
20621
20622 - The indentation character can be controlled with the member variable
20623 `fill` of the output stream @a o. For instance, the manipulator
20624 `std::setfill('\\t')` sets indentation to use a tab character rather than
20625 the default space character.
20626
20627 @param[in,out] o stream to serialize to
20628 @param[in] j JSON value to serialize
20629
20630 @return the stream @a o
20631
20632 @throw type_error.316 if a string stored inside the JSON value is not
20633 UTF-8 encoded
20634
20635 @complexity Linear.
20636
20637 @liveexample{The example below shows the serialization with different
20638 parameters to `width` to adjust the indentation level.,operator_serialize}
20639
20640 @since version 1.0.0; indentation character added in version 3.0.0
20641 */
20642 friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
20643 {
20644 // read width member and use it as indentation parameter if nonzero
20645 const bool pretty_print = o.width() > 0;
20646 const auto indentation = pretty_print ? o.width() : 0;
20647
20648 // reset width to 0 for subsequent calls to this stream
20649 o.width(0);
20650
20651 // do the actual serialization
20652 serializer s(detail::output_adapter<char>(o), o.fill());
20653 s.dump(j, pretty_print, false, static_cast<unsigned int>(indentation));
20654 return o;
20655 }
20656
20657 /*!
20658 @brief serialize to stream
20659 @deprecated This stream operator is deprecated and will be removed in
20660 future 4.0.0 of the library. Please use
20661 @ref operator<<(std::ostream&, const basic_json&)
20662 instead; that is, replace calls like `j >> o;` with `o << j;`.
20663 @since version 1.0.0; deprecated since version 3.0.0
20664 */
20665 JSON_HEDLEY_DEPRECATED(3.0.0)
20666 friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
20667 {
20668 return o << j;
20669 }
20670
20671 /// @}
20672
20673
20674 /////////////////////
20675 // deserialization //
20676 /////////////////////
20677
20678 /// @name deserialization
20679 /// @{
20680
20681 /*!
20682 @brief deserialize from a compatible input
20683
20684 This function reads from a compatible input. Examples are:
20685 - an array of 1-byte values
20686 - strings with character/literal type with size of 1 byte
20687 - input streams
20688 - container with contiguous storage of 1-byte values. Compatible container
20689 types include `std::vector`, `std::string`, `std::array`,
20690 `std::valarray`, and `std::initializer_list`. Furthermore, C-style
20691 arrays can be used with `std::begin()`/`std::end()`. User-defined
20692 containers can be used as long as they implement random-access iterators
20693 and a contiguous storage.
20694
20695 @pre Each element of the container has a size of 1 byte. Violating this
20696 precondition yields undefined behavior. **This precondition is enforced
20697 with a static assertion.**
20698
20699 @pre The container storage is contiguous. Violating this precondition
20700 yields undefined behavior. **This precondition is enforced with an
20701 assertion.**
20702
20703 @warning There is no way to enforce all preconditions at compile-time. If
20704 the function is called with a noncompliant container and with
20705 assertions switched off, the behavior is undefined and will most
20706 likely yield segmentation violation.
20707
20708 @param[in] i input to read from
20709 @param[in] cb a parser callback function of type @ref parser_callback_t
20710 which is used to control the deserialization by filtering unwanted values
20711 (optional)
20712 @param[in] allow_exceptions whether to throw exceptions in case of a
20713 parse error (optional, true by default)
20714
20715 @return deserialized JSON value; in case of a parse error and
20716 @a allow_exceptions set to `false`, the return value will be
20717 value_t::discarded.
20718
20719 @throw parse_error.101 if a parse error occurs; example: `""unexpected end
20720 of input; expected string literal""`
20721 @throw parse_error.102 if to_unicode fails or surrogate error
20722 @throw parse_error.103 if to_unicode fails
20723
20724 @complexity Linear in the length of the input. The parser is a predictive
20725 LL(1) parser. The complexity can be higher if the parser callback function
20726 @a cb has a super-linear complexity.
20727
20728 @note A UTF-8 byte order mark is silently ignored.
20729
20730 @liveexample{The example below demonstrates the `parse()` function reading
20731 from an array.,parse__array__parser_callback_t}
20732
20733 @liveexample{The example below demonstrates the `parse()` function with
20734 and without callback function.,parse__string__parser_callback_t}
20735
20736 @liveexample{The example below demonstrates the `parse()` function with
20737 and without callback function.,parse__istream__parser_callback_t}
20738
20739 @liveexample{The example below demonstrates the `parse()` function reading
20740 from a contiguous container.,parse__contiguouscontainer__parser_callback_t}
20741
20742 @since version 2.0.3 (contiguous containers)
20743 */
20744 JSON_HEDLEY_WARN_UNUSED_RESULT
20745 static basic_json parse(detail::input_adapter&& i,
20746 const parser_callback_t cb = nullptr,
20747 const bool allow_exceptions = true)
20748 {
20749 basic_json result;
20750 parser(i, cb, allow_exceptions).parse(true, result);
20751 return result;
20752 }
20753
20754 static bool accept(detail::input_adapter&& i)
20755 {
20756 return parser(i).accept(true);
20757 }
20758
20759 /*!
20760 @brief generate SAX events
20761
20762 The SAX event lister must follow the interface of @ref json_sax.
20763
20764 This function reads from a compatible input. Examples are:
20765 - an array of 1-byte values
20766 - strings with character/literal type with size of 1 byte
20767 - input streams
20768 - container with contiguous storage of 1-byte values. Compatible container
20769 types include `std::vector`, `std::string`, `std::array`,
20770 `std::valarray`, and `std::initializer_list`. Furthermore, C-style
20771 arrays can be used with `std::begin()`/`std::end()`. User-defined
20772 containers can be used as long as they implement random-access iterators
20773 and a contiguous storage.
20774
20775 @pre Each element of the container has a size of 1 byte. Violating this
20776 precondition yields undefined behavior. **This precondition is enforced
20777 with a static assertion.**
20778
20779 @pre The container storage is contiguous. Violating this precondition
20780 yields undefined behavior. **This precondition is enforced with an
20781 assertion.**
20782
20783 @warning There is no way to enforce all preconditions at compile-time. If
20784 the function is called with a noncompliant container and with
20785 assertions switched off, the behavior is undefined and will most
20786 likely yield segmentation violation.
20787
20788 @param[in] i input to read from
20789 @param[in,out] sax SAX event listener
20790 @param[in] format the format to parse (JSON, CBOR, MessagePack, or UBJSON)
20791 @param[in] strict whether the input has to be consumed completely
20792
20793 @return return value of the last processed SAX event
20794
20795 @throw parse_error.101 if a parse error occurs; example: `""unexpected end
20796 of input; expected string literal""`
20797 @throw parse_error.102 if to_unicode fails or surrogate error
20798 @throw parse_error.103 if to_unicode fails
20799
20800 @complexity Linear in the length of the input. The parser is a predictive
20801 LL(1) parser. The complexity can be higher if the SAX consumer @a sax has
20802 a super-linear complexity.
20803
20804 @note A UTF-8 byte order mark is silently ignored.
20805
20806 @liveexample{The example below demonstrates the `sax_parse()` function
20807 reading from string and processing the events with a user-defined SAX
20808 event consumer.,sax_parse}
20809
20810 @since version 3.2.0
20811 */
20812 template <typename SAX>
20813 JSON_HEDLEY_NON_NULL(2)
20814 static bool sax_parse(detail::input_adapter&& i, SAX* sax,
20815 input_format_t format = input_format_t::json,
20816 const bool strict = true)
20817 {
20818 assert(sax);
20819 return format == input_format_t::json
20820 ? parser(std::move(i)).sax_parse(sax, strict)
20821 : detail::binary_reader<basic_json, SAX>(std::move(i)).sax_parse(format, sax, strict);
20822 }
20823
20824 /*!
20825 @brief deserialize from an iterator range with contiguous storage
20826
20827 This function reads from an iterator range of a container with contiguous
20828 storage of 1-byte values. Compatible container types include
20829 `std::vector`, `std::string`, `std::array`, `std::valarray`, and
20830 `std::initializer_list`. Furthermore, C-style arrays can be used with
20831 `std::begin()`/`std::end()`. User-defined containers can be used as long
20832 as they implement random-access iterators and a contiguous storage.
20833
20834 @pre The iterator range is contiguous. Violating this precondition yields
20835 undefined behavior. **This precondition is enforced with an assertion.**
20836 @pre Each element in the range has a size of 1 byte. Violating this
20837 precondition yields undefined behavior. **This precondition is enforced
20838 with a static assertion.**
20839
20840 @warning There is no way to enforce all preconditions at compile-time. If
20841 the function is called with noncompliant iterators and with
20842 assertions switched off, the behavior is undefined and will most
20843 likely yield segmentation violation.
20844
20845 @tparam IteratorType iterator of container with contiguous storage
20846 @param[in] first begin of the range to parse (included)
20847 @param[in] last end of the range to parse (excluded)
20848 @param[in] cb a parser callback function of type @ref parser_callback_t
20849 which is used to control the deserialization by filtering unwanted values
20850 (optional)
20851 @param[in] allow_exceptions whether to throw exceptions in case of a
20852 parse error (optional, true by default)
20853
20854 @return deserialized JSON value; in case of a parse error and
20855 @a allow_exceptions set to `false`, the return value will be
20856 value_t::discarded.
20857
20858 @throw parse_error.101 in case of an unexpected token
20859 @throw parse_error.102 if to_unicode fails or surrogate error
20860 @throw parse_error.103 if to_unicode fails
20861
20862 @complexity Linear in the length of the input. The parser is a predictive
20863 LL(1) parser. The complexity can be higher if the parser callback function
20864 @a cb has a super-linear complexity.
20865
20866 @note A UTF-8 byte order mark is silently ignored.
20867
20868 @liveexample{The example below demonstrates the `parse()` function reading
20869 from an iterator range.,parse__iteratortype__parser_callback_t}
20870
20871 @since version 2.0.3
20872 */
20873 template<class IteratorType, typename std::enable_if<
20874 std::is_base_of<
20875 std::random_access_iterator_tag,
20876 typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
20877 static basic_json parse(IteratorType first, IteratorType last,
20878 const parser_callback_t cb = nullptr,
20879 const bool allow_exceptions = true)
20880 {
20881 basic_json result;
20882 parser(detail::input_adapter(first, last), cb, allow_exceptions).parse(true, result);
20883 return result;
20884 }
20885
20886 template<class IteratorType, typename std::enable_if<
20887 std::is_base_of<
20888 std::random_access_iterator_tag,
20889 typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
20890 static bool accept(IteratorType first, IteratorType last)
20891 {
20892 return parser(detail::input_adapter(first, last)).accept(true);
20893 }
20894
20895 template<class IteratorType, class SAX, typename std::enable_if<
20896 std::is_base_of<
20897 std::random_access_iterator_tag,
20898 typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
20899 JSON_HEDLEY_NON_NULL(3)
20900 static bool sax_parse(IteratorType first, IteratorType last, SAX* sax)
20901 {
20902 return parser(detail::input_adapter(first, last)).sax_parse(sax);
20903 }
20904
20905 /*!
20906 @brief deserialize from stream
20907 @deprecated This stream operator is deprecated and will be removed in
20908 version 4.0.0 of the library. Please use
20909 @ref operator>>(std::istream&, basic_json&)
20910 instead; that is, replace calls like `j << i;` with `i >> j;`.
20911 @since version 1.0.0; deprecated since version 3.0.0
20912 */
20913 JSON_HEDLEY_DEPRECATED(3.0.0)
20914 friend std::istream& operator<<(basic_json& j, std::istream& i)
20915 {
20916 return operator>>(i, j);
20917 }
20918
20919 /*!
20920 @brief deserialize from stream
20921
20922 Deserializes an input stream to a JSON value.
20923
20924 @param[in,out] i input stream to read a serialized JSON value from
20925 @param[in,out] j JSON value to write the deserialized input to
20926
20927 @throw parse_error.101 in case of an unexpected token
20928 @throw parse_error.102 if to_unicode fails or surrogate error
20929 @throw parse_error.103 if to_unicode fails
20930
20931 @complexity Linear in the length of the input. The parser is a predictive
20932 LL(1) parser.
20933
20934 @note A UTF-8 byte order mark is silently ignored.
20935
20936 @liveexample{The example below shows how a JSON value is constructed by
20937 reading a serialization from a stream.,operator_deserialize}
20938
20939 @sa parse(std::istream&, const parser_callback_t) for a variant with a
20940 parser callback function to filter values while parsing
20941
20942 @since version 1.0.0
20943 */
20944 friend std::istream& operator>>(std::istream& i, basic_json& j)
20945 {
20946 parser(detail::input_adapter(i)).parse(false, j);
20947 return i;
20948 }
20949
20950 /// @}
20951
20952 ///////////////////////////
20953 // convenience functions //
20954 ///////////////////////////
20955
20956 /*!
20957 @brief return the type as string
20958
20959 Returns the type name as string to be used in error messages - usually to
20960 indicate that a function was called on a wrong JSON type.
20961
20962 @return a string representation of a the @a m_type member:
20963 Value type | return value
20964 ----------- | -------------
20965 null | `"null"`
20966 boolean | `"boolean"`
20967 string | `"string"`
20968 number | `"number"` (for all number types)
20969 object | `"object"`
20970 array | `"array"`
20971 discarded | `"discarded"`
20972
20973 @exceptionsafety No-throw guarantee: this function never throws exceptions.
20974
20975 @complexity Constant.
20976
20977 @liveexample{The following code exemplifies `type_name()` for all JSON
20978 types.,type_name}
20979
20980 @sa @ref type() -- return the type of the JSON value
20981 @sa @ref operator value_t() -- return the type of the JSON value (implicit)
20982
20983 @since version 1.0.0, public since 2.1.0, `const char*` and `noexcept`
20984 since 3.0.0
20985 */
20986 JSON_HEDLEY_RETURNS_NON_NULL
20987 const char* type_name() const noexcept
20988 {
20989 {
20990 switch (m_type)
20991 {
20992 case value_t::null:
20993 return "null";
20994 case value_t::object:
20995 return "object";
20996 case value_t::array:
20997 return "array";
20998 case value_t::string:
20999 return "string";
21000 case value_t::boolean:
21001 return "boolean";
21002 case value_t::discarded:
21003 return "discarded";
21004 default:
21005 return "number";
21006 }
21007 }
21008 }
21009
21010
21011 private:
21012 //////////////////////
21013 // member variables //
21014 //////////////////////
21015
21016 /// the type of the current element
21017 value_t m_type = value_t::null;
21018
21019 /// the value of the current element
21020 json_value m_value = {};
21021
21022 //////////////////////////////////////////
21023 // binary serialization/deserialization //
21024 //////////////////////////////////////////
21025
21026 /// @name binary serialization/deserialization support
21027 /// @{
21028
21029 public:
21030 /*!
21031 @brief create a CBOR serialization of a given JSON value
21032
21033 Serializes a given JSON value @a j to a byte vector using the CBOR (Concise
21034 Binary Object Representation) serialization format. CBOR is a binary
21035 serialization format which aims to be more compact than JSON itself, yet
21036 more efficient to parse.
21037
21038 The library uses the following mapping from JSON values types to
21039 CBOR types according to the CBOR specification (RFC 7049):
21040
21041 JSON value type | value/range | CBOR type | first byte
21042 --------------- | ------------------------------------------ | ---------------------------------- | ---------------
21043 null | `null` | Null | 0xF6
21044 boolean | `true` | True | 0xF5
21045 boolean | `false` | False | 0xF4
21046 number_integer | -9223372036854775808..-2147483649 | Negative integer (8 bytes follow) | 0x3B
21047 number_integer | -2147483648..-32769 | Negative integer (4 bytes follow) | 0x3A
21048 number_integer | -32768..-129 | Negative integer (2 bytes follow) | 0x39
21049 number_integer | -128..-25 | Negative integer (1 byte follow) | 0x38
21050 number_integer | -24..-1 | Negative integer | 0x20..0x37
21051 number_integer | 0..23 | Integer | 0x00..0x17
21052 number_integer | 24..255 | Unsigned integer (1 byte follow) | 0x18
21053 number_integer | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
21054 number_integer | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
21055 number_integer | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
21056 number_unsigned | 0..23 | Integer | 0x00..0x17
21057 number_unsigned | 24..255 | Unsigned integer (1 byte follow) | 0x18
21058 number_unsigned | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
21059 number_unsigned | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
21060 number_unsigned | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
21061 number_float | *any value* | Double-Precision Float | 0xFB
21062 string | *length*: 0..23 | UTF-8 string | 0x60..0x77
21063 string | *length*: 23..255 | UTF-8 string (1 byte follow) | 0x78
21064 string | *length*: 256..65535 | UTF-8 string (2 bytes follow) | 0x79
21065 string | *length*: 65536..4294967295 | UTF-8 string (4 bytes follow) | 0x7A
21066 string | *length*: 4294967296..18446744073709551615 | UTF-8 string (8 bytes follow) | 0x7B
21067 array | *size*: 0..23 | array | 0x80..0x97
21068 array | *size*: 23..255 | array (1 byte follow) | 0x98
21069 array | *size*: 256..65535 | array (2 bytes follow) | 0x99
21070 array | *size*: 65536..4294967295 | array (4 bytes follow) | 0x9A
21071 array | *size*: 4294967296..18446744073709551615 | array (8 bytes follow) | 0x9B
21072 object | *size*: 0..23 | map | 0xA0..0xB7
21073 object | *size*: 23..255 | map (1 byte follow) | 0xB8
21074 object | *size*: 256..65535 | map (2 bytes follow) | 0xB9
21075 object | *size*: 65536..4294967295 | map (4 bytes follow) | 0xBA
21076 object | *size*: 4294967296..18446744073709551615 | map (8 bytes follow) | 0xBB
21077
21078 @note The mapping is **complete** in the sense that any JSON value type
21079 can be converted to a CBOR value.
21080
21081 @note If NaN or Infinity are stored inside a JSON number, they are
21082 serialized properly. This behavior differs from the @ref dump()
21083 function which serializes NaN or Infinity to `null`.
21084
21085 @note The following CBOR types are not used in the conversion:
21086 - byte strings (0x40..0x5F)
21087 - UTF-8 strings terminated by "break" (0x7F)
21088 - arrays terminated by "break" (0x9F)
21089 - maps terminated by "break" (0xBF)
21090 - date/time (0xC0..0xC1)
21091 - bignum (0xC2..0xC3)
21092 - decimal fraction (0xC4)
21093 - bigfloat (0xC5)
21094 - tagged items (0xC6..0xD4, 0xD8..0xDB)
21095 - expected conversions (0xD5..0xD7)
21096 - simple values (0xE0..0xF3, 0xF8)
21097 - undefined (0xF7)
21098 - half and single-precision floats (0xF9-0xFA)
21099 - break (0xFF)
21100
21101 @param[in] j JSON value to serialize
21102 @return MessagePack serialization as byte vector
21103
21104 @complexity Linear in the size of the JSON value @a j.
21105
21106 @liveexample{The example shows the serialization of a JSON value to a byte
21107 vector in CBOR format.,to_cbor}
21108
21109 @sa http://cbor.io
21110 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21111 analogous deserialization
21112 @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
21113 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21114 related UBJSON format
21115
21116 @since version 2.0.9
21117 */
21118 static std::vector<uint8_t> to_cbor(const basic_json& j)
21119 {
21120 std::vector<uint8_t> result;
21121 to_cbor(j, result);
21122 return result;
21123 }
21124
21125 static void to_cbor(const basic_json& j, detail::output_adapter<uint8_t> o)
21126 {
21127 binary_writer<uint8_t>(o).write_cbor(j);
21128 }
21129
21130 static void to_cbor(const basic_json& j, detail::output_adapter<char> o)
21131 {
21132 binary_writer<char>(o).write_cbor(j);
21133 }
21134
21135 /*!
21136 @brief create a MessagePack serialization of a given JSON value
21137
21138 Serializes a given JSON value @a j to a byte vector using the MessagePack
21139 serialization format. MessagePack is a binary serialization format which
21140 aims to be more compact than JSON itself, yet more efficient to parse.
21141
21142 The library uses the following mapping from JSON values types to
21143 MessagePack types according to the MessagePack specification:
21144
21145 JSON value type | value/range | MessagePack type | first byte
21146 --------------- | --------------------------------- | ---------------- | ----------
21147 null | `null` | nil | 0xC0
21148 boolean | `true` | true | 0xC3
21149 boolean | `false` | false | 0xC2
21150 number_integer | -9223372036854775808..-2147483649 | int64 | 0xD3
21151 number_integer | -2147483648..-32769 | int32 | 0xD2
21152 number_integer | -32768..-129 | int16 | 0xD1
21153 number_integer | -128..-33 | int8 | 0xD0
21154 number_integer | -32..-1 | negative fixint | 0xE0..0xFF
21155 number_integer | 0..127 | positive fixint | 0x00..0x7F
21156 number_integer | 128..255 | uint 8 | 0xCC
21157 number_integer | 256..65535 | uint 16 | 0xCD
21158 number_integer | 65536..4294967295 | uint 32 | 0xCE
21159 number_integer | 4294967296..18446744073709551615 | uint 64 | 0xCF
21160 number_unsigned | 0..127 | positive fixint | 0x00..0x7F
21161 number_unsigned | 128..255 | uint 8 | 0xCC
21162 number_unsigned | 256..65535 | uint 16 | 0xCD
21163 number_unsigned | 65536..4294967295 | uint 32 | 0xCE
21164 number_unsigned | 4294967296..18446744073709551615 | uint 64 | 0xCF
21165 number_float | *any value* | float 64 | 0xCB
21166 string | *length*: 0..31 | fixstr | 0xA0..0xBF
21167 string | *length*: 32..255 | str 8 | 0xD9
21168 string | *length*: 256..65535 | str 16 | 0xDA
21169 string | *length*: 65536..4294967295 | str 32 | 0xDB
21170 array | *size*: 0..15 | fixarray | 0x90..0x9F
21171 array | *size*: 16..65535 | array 16 | 0xDC
21172 array | *size*: 65536..4294967295 | array 32 | 0xDD
21173 object | *size*: 0..15 | fix map | 0x80..0x8F
21174 object | *size*: 16..65535 | map 16 | 0xDE
21175 object | *size*: 65536..4294967295 | map 32 | 0xDF
21176
21177 @note The mapping is **complete** in the sense that any JSON value type
21178 can be converted to a MessagePack value.
21179
21180 @note The following values can **not** be converted to a MessagePack value:
21181 - strings with more than 4294967295 bytes
21182 - arrays with more than 4294967295 elements
21183 - objects with more than 4294967295 elements
21184
21185 @note The following MessagePack types are not used in the conversion:
21186 - bin 8 - bin 32 (0xC4..0xC6)
21187 - ext 8 - ext 32 (0xC7..0xC9)
21188 - float 32 (0xCA)
21189 - fixext 1 - fixext 16 (0xD4..0xD8)
21190
21191 @note Any MessagePack output created @ref to_msgpack can be successfully
21192 parsed by @ref from_msgpack.
21193
21194 @note If NaN or Infinity are stored inside a JSON number, they are
21195 serialized properly. This behavior differs from the @ref dump()
21196 function which serializes NaN or Infinity to `null`.
21197
21198 @param[in] j JSON value to serialize
21199 @return MessagePack serialization as byte vector
21200
21201 @complexity Linear in the size of the JSON value @a j.
21202
21203 @liveexample{The example shows the serialization of a JSON value to a byte
21204 vector in MessagePack format.,to_msgpack}
21205
21206 @sa http://msgpack.org
21207 @sa @ref from_msgpack for the analogous deserialization
21208 @sa @ref to_cbor(const basic_json& for the related CBOR format
21209 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21210 related UBJSON format
21211
21212 @since version 2.0.9
21213 */
21214 static std::vector<uint8_t> to_msgpack(const basic_json& j)
21215 {
21216 std::vector<uint8_t> result;
21217 to_msgpack(j, result);
21218 return result;
21219 }
21220
21221 static void to_msgpack(const basic_json& j, detail::output_adapter<uint8_t> o)
21222 {
21223 binary_writer<uint8_t>(o).write_msgpack(j);
21224 }
21225
21226 static void to_msgpack(const basic_json& j, detail::output_adapter<char> o)
21227 {
21228 binary_writer<char>(o).write_msgpack(j);
21229 }
21230
21231 /*!
21232 @brief create a UBJSON serialization of a given JSON value
21233
21234 Serializes a given JSON value @a j to a byte vector using the UBJSON
21235 (Universal Binary JSON) serialization format. UBJSON aims to be more compact
21236 than JSON itself, yet more efficient to parse.
21237
21238 The library uses the following mapping from JSON values types to
21239 UBJSON types according to the UBJSON specification:
21240
21241 JSON value type | value/range | UBJSON type | marker
21242 --------------- | --------------------------------- | ----------- | ------
21243 null | `null` | null | `Z`
21244 boolean | `true` | true | `T`
21245 boolean | `false` | false | `F`
21246 number_integer | -9223372036854775808..-2147483649 | int64 | `L`
21247 number_integer | -2147483648..-32769 | int32 | `l`
21248 number_integer | -32768..-129 | int16 | `I`
21249 number_integer | -128..127 | int8 | `i`
21250 number_integer | 128..255 | uint8 | `U`
21251 number_integer | 256..32767 | int16 | `I`
21252 number_integer | 32768..2147483647 | int32 | `l`
21253 number_integer | 2147483648..9223372036854775807 | int64 | `L`
21254 number_unsigned | 0..127 | int8 | `i`
21255 number_unsigned | 128..255 | uint8 | `U`
21256 number_unsigned | 256..32767 | int16 | `I`
21257 number_unsigned | 32768..2147483647 | int32 | `l`
21258 number_unsigned | 2147483648..9223372036854775807 | int64 | `L`
21259 number_float | *any value* | float64 | `D`
21260 string | *with shortest length indicator* | string | `S`
21261 array | *see notes on optimized format* | array | `[`
21262 object | *see notes on optimized format* | map | `{`
21263
21264 @note The mapping is **complete** in the sense that any JSON value type
21265 can be converted to a UBJSON value.
21266
21267 @note The following values can **not** be converted to a UBJSON value:
21268 - strings with more than 9223372036854775807 bytes (theoretical)
21269 - unsigned integer numbers above 9223372036854775807
21270
21271 @note The following markers are not used in the conversion:
21272 - `Z`: no-op values are not created.
21273 - `C`: single-byte strings are serialized with `S` markers.
21274
21275 @note Any UBJSON output created @ref to_ubjson can be successfully parsed
21276 by @ref from_ubjson.
21277
21278 @note If NaN or Infinity are stored inside a JSON number, they are
21279 serialized properly. This behavior differs from the @ref dump()
21280 function which serializes NaN or Infinity to `null`.
21281
21282 @note The optimized formats for containers are supported: Parameter
21283 @a use_size adds size information to the beginning of a container and
21284 removes the closing marker. Parameter @a use_type further checks
21285 whether all elements of a container have the same type and adds the
21286 type marker to the beginning of the container. The @a use_type
21287 parameter must only be used together with @a use_size = true. Note
21288 that @a use_size = true alone may result in larger representations -
21289 the benefit of this parameter is that the receiving side is
21290 immediately informed on the number of elements of the container.
21291
21292 @param[in] j JSON value to serialize
21293 @param[in] use_size whether to add size annotations to container types
21294 @param[in] use_type whether to add type annotations to container types
21295 (must be combined with @a use_size = true)
21296 @return UBJSON serialization as byte vector
21297
21298 @complexity Linear in the size of the JSON value @a j.
21299
21300 @liveexample{The example shows the serialization of a JSON value to a byte
21301 vector in UBJSON format.,to_ubjson}
21302
21303 @sa http://ubjson.org
21304 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
21305 analogous deserialization
21306 @sa @ref to_cbor(const basic_json& for the related CBOR format
21307 @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
21308
21309 @since version 3.1.0
21310 */
21311 static std::vector<uint8_t> to_ubjson(const basic_json& j,
21312 const bool use_size = false,
21313 const bool use_type = false)
21314 {
21315 std::vector<uint8_t> result;
21316 to_ubjson(j, result, use_size, use_type);
21317 return result;
21318 }
21319
21320 static void to_ubjson(const basic_json& j, detail::output_adapter<uint8_t> o,
21321 const bool use_size = false, const bool use_type = false)
21322 {
21323 binary_writer<uint8_t>(o).write_ubjson(j, use_size, use_type);
21324 }
21325
21326 static void to_ubjson(const basic_json& j, detail::output_adapter<char> o,
21327 const bool use_size = false, const bool use_type = false)
21328 {
21329 binary_writer<char>(o).write_ubjson(j, use_size, use_type);
21330 }
21331
21332
21333 /*!
21334 @brief Serializes the given JSON object `j` to BSON and returns a vector
21335 containing the corresponding BSON-representation.
21336
21337 BSON (Binary JSON) is a binary format in which zero or more ordered key/value pairs are
21338 stored as a single entity (a so-called document).
21339
21340 The library uses the following mapping from JSON values types to BSON types:
21341
21342 JSON value type | value/range | BSON type | marker
21343 --------------- | --------------------------------- | ----------- | ------
21344 null | `null` | null | 0x0A
21345 boolean | `true`, `false` | boolean | 0x08
21346 number_integer | -9223372036854775808..-2147483649 | int64 | 0x12
21347 number_integer | -2147483648..2147483647 | int32 | 0x10
21348 number_integer | 2147483648..9223372036854775807 | int64 | 0x12
21349 number_unsigned | 0..2147483647 | int32 | 0x10
21350 number_unsigned | 2147483648..9223372036854775807 | int64 | 0x12
21351 number_unsigned | 9223372036854775808..18446744073709551615| -- | --
21352 number_float | *any value* | double | 0x01
21353 string | *any value* | string | 0x02
21354 array | *any value* | document | 0x04
21355 object | *any value* | document | 0x03
21356
21357 @warning The mapping is **incomplete**, since only JSON-objects (and things
21358 contained therein) can be serialized to BSON.
21359 Also, integers larger than 9223372036854775807 cannot be serialized to BSON,
21360 and the keys may not contain U+0000, since they are serialized a
21361 zero-terminated c-strings.
21362
21363 @throw out_of_range.407 if `j.is_number_unsigned() && j.get<std::uint64_t>() > 9223372036854775807`
21364 @throw out_of_range.409 if a key in `j` contains a NULL (U+0000)
21365 @throw type_error.317 if `!j.is_object()`
21366
21367 @pre The input `j` is required to be an object: `j.is_object() == true`.
21368
21369 @note Any BSON output created via @ref to_bson can be successfully parsed
21370 by @ref from_bson.
21371
21372 @param[in] j JSON value to serialize
21373 @return BSON serialization as byte vector
21374
21375 @complexity Linear in the size of the JSON value @a j.
21376
21377 @liveexample{The example shows the serialization of a JSON value to a byte
21378 vector in BSON format.,to_bson}
21379
21380 @sa http://bsonspec.org/spec.html
21381 @sa @ref from_bson(detail::input_adapter&&, const bool strict) for the
21382 analogous deserialization
21383 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21384 related UBJSON format
21385 @sa @ref to_cbor(const basic_json&) for the related CBOR format
21386 @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
21387 */
21388 static std::vector<uint8_t> to_bson(const basic_json& j)
21389 {
21390 std::vector<uint8_t> result;
21391 to_bson(j, result);
21392 return result;
21393 }
21394
21395 /*!
21396 @brief Serializes the given JSON object `j` to BSON and forwards the
21397 corresponding BSON-representation to the given output_adapter `o`.
21398 @param j The JSON object to convert to BSON.
21399 @param o The output adapter that receives the binary BSON representation.
21400 @pre The input `j` shall be an object: `j.is_object() == true`
21401 @sa @ref to_bson(const basic_json&)
21402 */
21403 static void to_bson(const basic_json& j, detail::output_adapter<uint8_t> o)
21404 {
21405 binary_writer<uint8_t>(o).write_bson(j);
21406 }
21407
21408 /*!
21409 @copydoc to_bson(const basic_json&, detail::output_adapter<uint8_t>)
21410 */
21411 static void to_bson(const basic_json& j, detail::output_adapter<char> o)
21412 {
21413 binary_writer<char>(o).write_bson(j);
21414 }
21415
21416
21417 /*!
21418 @brief create a JSON value from an input in CBOR format
21419
21420 Deserializes a given input @a i to a JSON value using the CBOR (Concise
21421 Binary Object Representation) serialization format.
21422
21423 The library maps CBOR types to JSON value types as follows:
21424
21425 CBOR type | JSON value type | first byte
21426 ---------------------- | --------------- | ----------
21427 Integer | number_unsigned | 0x00..0x17
21428 Unsigned integer | number_unsigned | 0x18
21429 Unsigned integer | number_unsigned | 0x19
21430 Unsigned integer | number_unsigned | 0x1A
21431 Unsigned integer | number_unsigned | 0x1B
21432 Negative integer | number_integer | 0x20..0x37
21433 Negative integer | number_integer | 0x38
21434 Negative integer | number_integer | 0x39
21435 Negative integer | number_integer | 0x3A
21436 Negative integer | number_integer | 0x3B
21437 Negative integer | number_integer | 0x40..0x57
21438 UTF-8 string | string | 0x60..0x77
21439 UTF-8 string | string | 0x78
21440 UTF-8 string | string | 0x79
21441 UTF-8 string | string | 0x7A
21442 UTF-8 string | string | 0x7B
21443 UTF-8 string | string | 0x7F
21444 array | array | 0x80..0x97
21445 array | array | 0x98
21446 array | array | 0x99
21447 array | array | 0x9A
21448 array | array | 0x9B
21449 array | array | 0x9F
21450 map | object | 0xA0..0xB7
21451 map | object | 0xB8
21452 map | object | 0xB9
21453 map | object | 0xBA
21454 map | object | 0xBB
21455 map | object | 0xBF
21456 False | `false` | 0xF4
21457 True | `true` | 0xF5
21458 Null | `null` | 0xF6
21459 Half-Precision Float | number_float | 0xF9
21460 Single-Precision Float | number_float | 0xFA
21461 Double-Precision Float | number_float | 0xFB
21462
21463 @warning The mapping is **incomplete** in the sense that not all CBOR
21464 types can be converted to a JSON value. The following CBOR types
21465 are not supported and will yield parse errors (parse_error.112):
21466 - byte strings (0x40..0x5F)
21467 - date/time (0xC0..0xC1)
21468 - bignum (0xC2..0xC3)
21469 - decimal fraction (0xC4)
21470 - bigfloat (0xC5)
21471 - tagged items (0xC6..0xD4, 0xD8..0xDB)
21472 - expected conversions (0xD5..0xD7)
21473 - simple values (0xE0..0xF3, 0xF8)
21474 - undefined (0xF7)
21475
21476 @warning CBOR allows map keys of any type, whereas JSON only allows
21477 strings as keys in object values. Therefore, CBOR maps with keys
21478 other than UTF-8 strings are rejected (parse_error.113).
21479
21480 @note Any CBOR output created @ref to_cbor can be successfully parsed by
21481 @ref from_cbor.
21482
21483 @param[in] i an input in CBOR format convertible to an input adapter
21484 @param[in] strict whether to expect the input to be consumed until EOF
21485 (true by default)
21486 @param[in] allow_exceptions whether to throw exceptions in case of a
21487 parse error (optional, true by default)
21488
21489 @return deserialized JSON value; in case of a parse error and
21490 @a allow_exceptions set to `false`, the return value will be
21491 value_t::discarded.
21492
21493 @throw parse_error.110 if the given input ends prematurely or the end of
21494 file was not reached when @a strict was set to true
21495 @throw parse_error.112 if unsupported features from CBOR were
21496 used in the given input @a v or if the input is not valid CBOR
21497 @throw parse_error.113 if a string was expected as map key, but not found
21498
21499 @complexity Linear in the size of the input @a i.
21500
21501 @liveexample{The example shows the deserialization of a byte vector in CBOR
21502 format to a JSON value.,from_cbor}
21503
21504 @sa http://cbor.io
21505 @sa @ref to_cbor(const basic_json&) for the analogous serialization
21506 @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for the
21507 related MessagePack format
21508 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
21509 related UBJSON format
21510
21511 @since version 2.0.9; parameter @a start_index since 2.1.1; changed to
21512 consume input adapters, removed start_index parameter, and added
21513 @a strict parameter since 3.0.0; added @a allow_exceptions parameter
21514 since 3.2.0
21515 */
21516 JSON_HEDLEY_WARN_UNUSED_RESULT
21517 static basic_json from_cbor(detail::input_adapter&& i,
21518 const bool strict = true,
21519 const bool allow_exceptions = true)
21520 {
21521 basic_json result;
21522 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21523 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::cbor, &sdp, strict);
21524 return res ? result : basic_json(value_t::discarded);
21525 }
21526
21527 /*!
21528 @copydoc from_cbor(detail::input_adapter&&, const bool, const bool)
21529 */
21530 template<typename A1, typename A2,
21531 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
21532 JSON_HEDLEY_WARN_UNUSED_RESULT
21533 static basic_json from_cbor(A1 && a1, A2 && a2,
21534 const bool strict = true,
21535 const bool allow_exceptions = true)
21536 {
21537 basic_json result;
21538 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21539 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::cbor, &sdp, strict);
21540 return res ? result : basic_json(value_t::discarded);
21541 }
21542
21543 /*!
21544 @brief create a JSON value from an input in MessagePack format
21545
21546 Deserializes a given input @a i to a JSON value using the MessagePack
21547 serialization format.
21548
21549 The library maps MessagePack types to JSON value types as follows:
21550
21551 MessagePack type | JSON value type | first byte
21552 ---------------- | --------------- | ----------
21553 positive fixint | number_unsigned | 0x00..0x7F
21554 fixmap | object | 0x80..0x8F
21555 fixarray | array | 0x90..0x9F
21556 fixstr | string | 0xA0..0xBF
21557 nil | `null` | 0xC0
21558 false | `false` | 0xC2
21559 true | `true` | 0xC3
21560 float 32 | number_float | 0xCA
21561 float 64 | number_float | 0xCB
21562 uint 8 | number_unsigned | 0xCC
21563 uint 16 | number_unsigned | 0xCD
21564 uint 32 | number_unsigned | 0xCE
21565 uint 64 | number_unsigned | 0xCF
21566 int 8 | number_integer | 0xD0
21567 int 16 | number_integer | 0xD1
21568 int 32 | number_integer | 0xD2
21569 int 64 | number_integer | 0xD3
21570 str 8 | string | 0xD9
21571 str 16 | string | 0xDA
21572 str 32 | string | 0xDB
21573 array 16 | array | 0xDC
21574 array 32 | array | 0xDD
21575 map 16 | object | 0xDE
21576 map 32 | object | 0xDF
21577 negative fixint | number_integer | 0xE0-0xFF
21578
21579 @warning The mapping is **incomplete** in the sense that not all
21580 MessagePack types can be converted to a JSON value. The following
21581 MessagePack types are not supported and will yield parse errors:
21582 - bin 8 - bin 32 (0xC4..0xC6)
21583 - ext 8 - ext 32 (0xC7..0xC9)
21584 - fixext 1 - fixext 16 (0xD4..0xD8)
21585
21586 @note Any MessagePack output created @ref to_msgpack can be successfully
21587 parsed by @ref from_msgpack.
21588
21589 @param[in] i an input in MessagePack format convertible to an input
21590 adapter
21591 @param[in] strict whether to expect the input to be consumed until EOF
21592 (true by default)
21593 @param[in] allow_exceptions whether to throw exceptions in case of a
21594 parse error (optional, true by default)
21595
21596 @return deserialized JSON value; in case of a parse error and
21597 @a allow_exceptions set to `false`, the return value will be
21598 value_t::discarded.
21599
21600 @throw parse_error.110 if the given input ends prematurely or the end of
21601 file was not reached when @a strict was set to true
21602 @throw parse_error.112 if unsupported features from MessagePack were
21603 used in the given input @a i or if the input is not valid MessagePack
21604 @throw parse_error.113 if a string was expected as map key, but not found
21605
21606 @complexity Linear in the size of the input @a i.
21607
21608 @liveexample{The example shows the deserialization of a byte vector in
21609 MessagePack format to a JSON value.,from_msgpack}
21610
21611 @sa http://msgpack.org
21612 @sa @ref to_msgpack(const basic_json&) for the analogous serialization
21613 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21614 related CBOR format
21615 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for
21616 the related UBJSON format
21617 @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
21618 the related BSON format
21619
21620 @since version 2.0.9; parameter @a start_index since 2.1.1; changed to
21621 consume input adapters, removed start_index parameter, and added
21622 @a strict parameter since 3.0.0; added @a allow_exceptions parameter
21623 since 3.2.0
21624 */
21625 JSON_HEDLEY_WARN_UNUSED_RESULT
21626 static basic_json from_msgpack(detail::input_adapter&& i,
21627 const bool strict = true,
21628 const bool allow_exceptions = true)
21629 {
21630 basic_json result;
21631 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21632 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::msgpack, &sdp, strict);
21633 return res ? result : basic_json(value_t::discarded);
21634 }
21635
21636 /*!
21637 @copydoc from_msgpack(detail::input_adapter&&, const bool, const bool)
21638 */
21639 template<typename A1, typename A2,
21640 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
21641 JSON_HEDLEY_WARN_UNUSED_RESULT
21642 static basic_json from_msgpack(A1 && a1, A2 && a2,
21643 const bool strict = true,
21644 const bool allow_exceptions = true)
21645 {
21646 basic_json result;
21647 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21648 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::msgpack, &sdp, strict);
21649 return res ? result : basic_json(value_t::discarded);
21650 }
21651
21652 /*!
21653 @brief create a JSON value from an input in UBJSON format
21654
21655 Deserializes a given input @a i to a JSON value using the UBJSON (Universal
21656 Binary JSON) serialization format.
21657
21658 The library maps UBJSON types to JSON value types as follows:
21659
21660 UBJSON type | JSON value type | marker
21661 ----------- | --------------------------------------- | ------
21662 no-op | *no value, next value is read* | `N`
21663 null | `null` | `Z`
21664 false | `false` | `F`
21665 true | `true` | `T`
21666 float32 | number_float | `d`
21667 float64 | number_float | `D`
21668 uint8 | number_unsigned | `U`
21669 int8 | number_integer | `i`
21670 int16 | number_integer | `I`
21671 int32 | number_integer | `l`
21672 int64 | number_integer | `L`
21673 string | string | `S`
21674 char | string | `C`
21675 array | array (optimized values are supported) | `[`
21676 object | object (optimized values are supported) | `{`
21677
21678 @note The mapping is **complete** in the sense that any UBJSON value can
21679 be converted to a JSON value.
21680
21681 @param[in] i an input in UBJSON format convertible to an input adapter
21682 @param[in] strict whether to expect the input to be consumed until EOF
21683 (true by default)
21684 @param[in] allow_exceptions whether to throw exceptions in case of a
21685 parse error (optional, true by default)
21686
21687 @return deserialized JSON value; in case of a parse error and
21688 @a allow_exceptions set to `false`, the return value will be
21689 value_t::discarded.
21690
21691 @throw parse_error.110 if the given input ends prematurely or the end of
21692 file was not reached when @a strict was set to true
21693 @throw parse_error.112 if a parse error occurs
21694 @throw parse_error.113 if a string could not be parsed successfully
21695
21696 @complexity Linear in the size of the input @a i.
21697
21698 @liveexample{The example shows the deserialization of a byte vector in
21699 UBJSON format to a JSON value.,from_ubjson}
21700
21701 @sa http://ubjson.org
21702 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
21703 analogous serialization
21704 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21705 related CBOR format
21706 @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
21707 the related MessagePack format
21708 @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
21709 the related BSON format
21710
21711 @since version 3.1.0; added @a allow_exceptions parameter since 3.2.0
21712 */
21713 JSON_HEDLEY_WARN_UNUSED_RESULT
21714 static basic_json from_ubjson(detail::input_adapter&& i,
21715 const bool strict = true,
21716 const bool allow_exceptions = true)
21717 {
21718 basic_json result;
21719 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21720 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::ubjson, &sdp, strict);
21721 return res ? result : basic_json(value_t::discarded);
21722 }
21723
21724 /*!
21725 @copydoc from_ubjson(detail::input_adapter&&, const bool, const bool)
21726 */
21727 template<typename A1, typename A2,
21728 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
21729 JSON_HEDLEY_WARN_UNUSED_RESULT
21730 static basic_json from_ubjson(A1 && a1, A2 && a2,
21731 const bool strict = true,
21732 const bool allow_exceptions = true)
21733 {
21734 basic_json result;
21735 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21736 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::ubjson, &sdp, strict);
21737 return res ? result : basic_json(value_t::discarded);
21738 }
21739
21740 /*!
21741 @brief Create a JSON value from an input in BSON format
21742
21743 Deserializes a given input @a i to a JSON value using the BSON (Binary JSON)
21744 serialization format.
21745
21746 The library maps BSON record types to JSON value types as follows:
21747
21748 BSON type | BSON marker byte | JSON value type
21749 --------------- | ---------------- | ---------------------------
21750 double | 0x01 | number_float
21751 string | 0x02 | string
21752 document | 0x03 | object
21753 array | 0x04 | array
21754 binary | 0x05 | still unsupported
21755 undefined | 0x06 | still unsupported
21756 ObjectId | 0x07 | still unsupported
21757 boolean | 0x08 | boolean
21758 UTC Date-Time | 0x09 | still unsupported
21759 null | 0x0A | null
21760 Regular Expr. | 0x0B | still unsupported
21761 DB Pointer | 0x0C | still unsupported
21762 JavaScript Code | 0x0D | still unsupported
21763 Symbol | 0x0E | still unsupported
21764 JavaScript Code | 0x0F | still unsupported
21765 int32 | 0x10 | number_integer
21766 Timestamp | 0x11 | still unsupported
21767 128-bit decimal float | 0x13 | still unsupported
21768 Max Key | 0x7F | still unsupported
21769 Min Key | 0xFF | still unsupported
21770
21771 @warning The mapping is **incomplete**. The unsupported mappings
21772 are indicated in the table above.
21773
21774 @param[in] i an input in BSON format convertible to an input adapter
21775 @param[in] strict whether to expect the input to be consumed until EOF
21776 (true by default)
21777 @param[in] allow_exceptions whether to throw exceptions in case of a
21778 parse error (optional, true by default)
21779
21780 @return deserialized JSON value; in case of a parse error and
21781 @a allow_exceptions set to `false`, the return value will be
21782 value_t::discarded.
21783
21784 @throw parse_error.114 if an unsupported BSON record type is encountered
21785
21786 @complexity Linear in the size of the input @a i.
21787
21788 @liveexample{The example shows the deserialization of a byte vector in
21789 BSON format to a JSON value.,from_bson}
21790
21791 @sa http://bsonspec.org/spec.html
21792 @sa @ref to_bson(const basic_json&) for the analogous serialization
21793 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
21794 related CBOR format
21795 @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
21796 the related MessagePack format
21797 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
21798 related UBJSON format
21799 */
21800 JSON_HEDLEY_WARN_UNUSED_RESULT
21801 static basic_json from_bson(detail::input_adapter&& i,
21802 const bool strict = true,
21803 const bool allow_exceptions = true)
21804 {
21805 basic_json result;
21806 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21807 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::bson, &sdp, strict);
21808 return res ? result : basic_json(value_t::discarded);
21809 }
21810
21811 /*!
21812 @copydoc from_bson(detail::input_adapter&&, const bool, const bool)
21813 */
21814 template<typename A1, typename A2,
21815 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
21816 JSON_HEDLEY_WARN_UNUSED_RESULT
21817 static basic_json from_bson(A1 && a1, A2 && a2,
21818 const bool strict = true,
21819 const bool allow_exceptions = true)
21820 {
21821 basic_json result;
21822 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
21823 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::bson, &sdp, strict);
21824 return res ? result : basic_json(value_t::discarded);
21825 }
21826
21827
21828
21829 /// @}
21830
21831 //////////////////////////
21832 // JSON Pointer support //
21833 //////////////////////////
21834
21835 /// @name JSON Pointer functions
21836 /// @{
21837
21838 /*!
21839 @brief access specified element via JSON Pointer
21840
21841 Uses a JSON pointer to retrieve a reference to the respective JSON value.
21842 No bound checking is performed. Similar to @ref operator[](const typename
21843 object_t::key_type&), `null` values are created in arrays and objects if
21844 necessary.
21845
21846 In particular:
21847 - If the JSON pointer points to an object key that does not exist, it
21848 is created an filled with a `null` value before a reference to it
21849 is returned.
21850 - If the JSON pointer points to an array index that does not exist, it
21851 is created an filled with a `null` value before a reference to it
21852 is returned. All indices between the current maximum and the given
21853 index are also filled with `null`.
21854 - The special value `-` is treated as a synonym for the index past the
21855 end.
21856
21857 @param[in] ptr a JSON pointer
21858
21859 @return reference to the element pointed to by @a ptr
21860
21861 @complexity Constant.
21862
21863 @throw parse_error.106 if an array index begins with '0'
21864 @throw parse_error.109 if an array index was not a number
21865 @throw out_of_range.404 if the JSON pointer can not be resolved
21866
21867 @liveexample{The behavior is shown in the example.,operatorjson_pointer}
21868
21869 @since version 2.0.0
21870 */
21871 reference operator[](const json_pointer& ptr)
21872 {
21873 return ptr.get_unchecked(this);
21874 }
21875
21876 /*!
21877 @brief access specified element via JSON Pointer
21878
21879 Uses a JSON pointer to retrieve a reference to the respective JSON value.
21880 No bound checking is performed. The function does not change the JSON
21881 value; no `null` values are created. In particular, the the special value
21882 `-` yields an exception.
21883
21884 @param[in] ptr JSON pointer to the desired element
21885
21886 @return const reference to the element pointed to by @a ptr
21887
21888 @complexity Constant.
21889
21890 @throw parse_error.106 if an array index begins with '0'
21891 @throw parse_error.109 if an array index was not a number
21892 @throw out_of_range.402 if the array index '-' is used
21893 @throw out_of_range.404 if the JSON pointer can not be resolved
21894
21895 @liveexample{The behavior is shown in the example.,operatorjson_pointer_const}
21896
21897 @since version 2.0.0
21898 */
21899 const_reference operator[](const json_pointer& ptr) const
21900 {
21901 return ptr.get_unchecked(this);
21902 }
21903
21904 /*!
21905 @brief access specified element via JSON Pointer
21906
21907 Returns a reference to the element at with specified JSON pointer @a ptr,
21908 with bounds checking.
21909
21910 @param[in] ptr JSON pointer to the desired element
21911
21912 @return reference to the element pointed to by @a ptr
21913
21914 @throw parse_error.106 if an array index in the passed JSON pointer @a ptr
21915 begins with '0'. See example below.
21916
21917 @throw parse_error.109 if an array index in the passed JSON pointer @a ptr
21918 is not a number. See example below.
21919
21920 @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
21921 is out of range. See example below.
21922
21923 @throw out_of_range.402 if the array index '-' is used in the passed JSON
21924 pointer @a ptr. As `at` provides checked access (and no elements are
21925 implicitly inserted), the index '-' is always invalid. See example below.
21926
21927 @throw out_of_range.403 if the JSON pointer describes a key of an object
21928 which cannot be found. See example below.
21929
21930 @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
21931 See example below.
21932
21933 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
21934 changes in the JSON value.
21935
21936 @complexity Constant.
21937
21938 @since version 2.0.0
21939
21940 @liveexample{The behavior is shown in the example.,at_json_pointer}
21941 */
21942 reference at(const json_pointer& ptr)
21943 {
21944 return ptr.get_checked(this);
21945 }
21946
21947 /*!
21948 @brief access specified element via JSON Pointer
21949
21950 Returns a const reference to the element at with specified JSON pointer @a
21951 ptr, with bounds checking.
21952
21953 @param[in] ptr JSON pointer to the desired element
21954
21955 @return reference to the element pointed to by @a ptr
21956
21957 @throw parse_error.106 if an array index in the passed JSON pointer @a ptr
21958 begins with '0'. See example below.
21959
21960 @throw parse_error.109 if an array index in the passed JSON pointer @a ptr
21961 is not a number. See example below.
21962
21963 @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
21964 is out of range. See example below.
21965
21966 @throw out_of_range.402 if the array index '-' is used in the passed JSON
21967 pointer @a ptr. As `at` provides checked access (and no elements are
21968 implicitly inserted), the index '-' is always invalid. See example below.
21969
21970 @throw out_of_range.403 if the JSON pointer describes a key of an object
21971 which cannot be found. See example below.
21972
21973 @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
21974 See example below.
21975
21976 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
21977 changes in the JSON value.
21978
21979 @complexity Constant.
21980
21981 @since version 2.0.0
21982
21983 @liveexample{The behavior is shown in the example.,at_json_pointer_const}
21984 */
21985 const_reference at(const json_pointer& ptr) const
21986 {
21987 return ptr.get_checked(this);
21988 }
21989
21990 /*!
21991 @brief return flattened JSON value
21992
21993 The function creates a JSON object whose keys are JSON pointers (see [RFC
21994 6901](https://tools.ietf.org/html/rfc6901)) and whose values are all
21995 primitive. The original JSON value can be restored using the @ref
21996 unflatten() function.
21997
21998 @return an object that maps JSON pointers to primitive values
21999
22000 @note Empty objects and arrays are flattened to `null` and will not be
22001 reconstructed correctly by the @ref unflatten() function.
22002
22003 @complexity Linear in the size the JSON value.
22004
22005 @liveexample{The following code shows how a JSON object is flattened to an
22006 object whose keys consist of JSON pointers.,flatten}
22007
22008 @sa @ref unflatten() for the reverse function
22009
22010 @since version 2.0.0
22011 */
22012 basic_json flatten() const
22013 {
22014 basic_json result(value_t::object);
22015 json_pointer::flatten("", *this, result);
22016 return result;
22017 }
22018
22019 /*!
22020 @brief unflatten a previously flattened JSON value
22021
22022 The function restores the arbitrary nesting of a JSON value that has been
22023 flattened before using the @ref flatten() function. The JSON value must
22024 meet certain constraints:
22025 1. The value must be an object.
22026 2. The keys must be JSON pointers (see
22027 [RFC 6901](https://tools.ietf.org/html/rfc6901))
22028 3. The mapped values must be primitive JSON types.
22029
22030 @return the original JSON from a flattened version
22031
22032 @note Empty objects and arrays are flattened by @ref flatten() to `null`
22033 values and can not unflattened to their original type. Apart from
22034 this example, for a JSON value `j`, the following is always true:
22035 `j == j.flatten().unflatten()`.
22036
22037 @complexity Linear in the size the JSON value.
22038
22039 @throw type_error.314 if value is not an object
22040 @throw type_error.315 if object values are not primitive
22041
22042 @liveexample{The following code shows how a flattened JSON object is
22043 unflattened into the original nested JSON object.,unflatten}
22044
22045 @sa @ref flatten() for the reverse function
22046
22047 @since version 2.0.0
22048 */
22049 basic_json unflatten() const
22050 {
22051 return json_pointer::unflatten(*this);
22052 }
22053
22054 /// @}
22055
22056 //////////////////////////
22057 // JSON Patch functions //
22058 //////////////////////////
22059
22060 /// @name JSON Patch functions
22061 /// @{
22062
22063 /*!
22064 @brief applies a JSON patch
22065
22066 [JSON Patch](http://jsonpatch.com) defines a JSON document structure for
22067 expressing a sequence of operations to apply to a JSON) document. With
22068 this function, a JSON Patch is applied to the current JSON value by
22069 executing all operations from the patch.
22070
22071 @param[in] json_patch JSON patch document
22072 @return patched document
22073
22074 @note The application of a patch is atomic: Either all operations succeed
22075 and the patched document is returned or an exception is thrown. In
22076 any case, the original value is not changed: the patch is applied
22077 to a copy of the value.
22078
22079 @throw parse_error.104 if the JSON patch does not consist of an array of
22080 objects
22081
22082 @throw parse_error.105 if the JSON patch is malformed (e.g., mandatory
22083 attributes are missing); example: `"operation add must have member path"`
22084
22085 @throw out_of_range.401 if an array index is out of range.
22086
22087 @throw out_of_range.403 if a JSON pointer inside the patch could not be
22088 resolved successfully in the current JSON value; example: `"key baz not
22089 found"`
22090
22091 @throw out_of_range.405 if JSON pointer has no parent ("add", "remove",
22092 "move")
22093
22094 @throw other_error.501 if "test" operation was unsuccessful
22095
22096 @complexity Linear in the size of the JSON value and the length of the
22097 JSON patch. As usually only a fraction of the JSON value is affected by
22098 the patch, the complexity can usually be neglected.
22099
22100 @liveexample{The following code shows how a JSON patch is applied to a
22101 value.,patch}
22102
22103 @sa @ref diff -- create a JSON patch by comparing two JSON values
22104
22105 @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
22106 @sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901)
22107
22108 @since version 2.0.0
22109 */
22110 basic_json patch(const basic_json& json_patch) const
22111 {
22112 // make a working copy to apply the patch to
22113 basic_json result = *this;
22114
22115 // the valid JSON Patch operations
22116 enum class patch_operations {add, remove, replace, move, copy, test, invalid};
22117
22118 const auto get_op = [](const std::string & op)
22119 {
22120 if (op == "add")
22121 {
22122 return patch_operations::add;
22123 }
22124 if (op == "remove")
22125 {
22126 return patch_operations::remove;
22127 }
22128 if (op == "replace")
22129 {
22130 return patch_operations::replace;
22131 }
22132 if (op == "move")
22133 {
22134 return patch_operations::move;
22135 }
22136 if (op == "copy")
22137 {
22138 return patch_operations::copy;
22139 }
22140 if (op == "test")
22141 {
22142 return patch_operations::test;
22143 }
22144
22145 return patch_operations::invalid;
22146 };
22147
22148 // wrapper for "add" operation; add value at ptr
22149 const auto operation_add = [&result](json_pointer & ptr, basic_json val)
22150 {
22151 // adding to the root of the target document means replacing it
22152 if (ptr.empty())
22153 {
22154 result = val;
22155 return;
22156 }
22157
22158 // make sure the top element of the pointer exists
22159 json_pointer top_pointer = ptr.top();
22160 if (top_pointer != ptr)
22161 {
22162 result.at(top_pointer);
22163 }
22164
22165 // get reference to parent of JSON pointer ptr
22166 const auto last_path = ptr.back();
22167 ptr.pop_back();
22168 basic_json& parent = result[ptr];
22169
22170 switch (parent.m_type)
22171 {
22172 case value_t::null:
22173 case value_t::object:
22174 {
22175 // use operator[] to add value
22176 parent[last_path] = val;
22177 break;
22178 }
22179
22180 case value_t::array:
22181 {
22182 if (last_path == "-")
22183 {
22184 // special case: append to back
22185 parent.push_back(val);
22186 }
22187 else
22188 {
22189 const auto idx = json_pointer::array_index(last_path);
22190 if (JSON_HEDLEY_UNLIKELY(static_cast<size_type>(idx) > parent.size()))
22191 {
22192 // avoid undefined behavior
22193 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
22194 }
22195
22196 // default case: insert add offset
22197 parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
22198 }
22199 break;
22200 }
22201
22202 // if there exists a parent it cannot be primitive
22203 default: // LCOV_EXCL_LINE
22204 assert(false); // LCOV_EXCL_LINE
22205 }
22206 };
22207
22208 // wrapper for "remove" operation; remove value at ptr
22209 const auto operation_remove = [&result](json_pointer & ptr)
22210 {
22211 // get reference to parent of JSON pointer ptr
22212 const auto last_path = ptr.back();
22213 ptr.pop_back();
22214 basic_json& parent = result.at(ptr);
22215
22216 // remove child
22217 if (parent.is_object())
22218 {
22219 // perform range check
22220 auto it = parent.find(last_path);
22221 if (JSON_HEDLEY_LIKELY(it != parent.end()))
22222 {
22223 parent.erase(it);
22224 }
22225 else
22226 {
22227 JSON_THROW(out_of_range::create(403, "key '" + last_path + "' not found"));
22228 }
22229 }
22230 else if (parent.is_array())
22231 {
22232 // note erase performs range check
22233 parent.erase(static_cast<size_type>(json_pointer::array_index(last_path)));
22234 }
22235 };
22236
22237 // type check: top level value must be an array
22238 if (JSON_HEDLEY_UNLIKELY(not json_patch.is_array()))
22239 {
22240 JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
22241 }
22242
22243 // iterate and apply the operations
22244 for (const auto& val : json_patch)
22245 {
22246 // wrapper to get a value for an operation
22247 const auto get_value = [&val](const std::string & op,
22248 const std::string & member,
22249 bool string_type) -> basic_json &
22250 {
22251 // find value
22252 auto it = val.m_value.object->find(member);
22253
22254 // context-sensitive error message
22255 const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'";
22256
22257 // check if desired value is present
22258 if (JSON_HEDLEY_UNLIKELY(it == val.m_value.object->end()))
22259 {
22260 JSON_THROW(parse_error::create(105, 0, error_msg + " must have member '" + member + "'"));
22261 }
22262
22263 // check if result is of type string
22264 if (JSON_HEDLEY_UNLIKELY(string_type and not it->second.is_string()))
22265 {
22266 JSON_THROW(parse_error::create(105, 0, error_msg + " must have string member '" + member + "'"));
22267 }
22268
22269 // no error: return value
22270 return it->second;
22271 };
22272
22273 // type check: every element of the array must be an object
22274 if (JSON_HEDLEY_UNLIKELY(not val.is_object()))
22275 {
22276 JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
22277 }
22278
22279 // collect mandatory members
22280 const std::string op = get_value("op", "op", true);
22281 const std::string path = get_value(op, "path", true);
22282 json_pointer ptr(path);
22283
22284 switch (get_op(op))
22285 {
22286 case patch_operations::add:
22287 {
22288 operation_add(ptr, get_value("add", "value", false));
22289 break;
22290 }
22291
22292 case patch_operations::remove:
22293 {
22294 operation_remove(ptr);
22295 break;
22296 }
22297
22298 case patch_operations::replace:
22299 {
22300 // the "path" location must exist - use at()
22301 result.at(ptr) = get_value("replace", "value", false);
22302 break;
22303 }
22304
22305 case patch_operations::move:
22306 {
22307 const std::string from_path = get_value("move", "from", true);
22308 json_pointer from_ptr(from_path);
22309
22310 // the "from" location must exist - use at()
22311 basic_json v = result.at(from_ptr);
22312
22313 // The move operation is functionally identical to a
22314 // "remove" operation on the "from" location, followed
22315 // immediately by an "add" operation at the target
22316 // location with the value that was just removed.
22317 operation_remove(from_ptr);
22318 operation_add(ptr, v);
22319 break;
22320 }
22321
22322 case patch_operations::copy:
22323 {
22324 const std::string from_path = get_value("copy", "from", true);
22325 const json_pointer from_ptr(from_path);
22326
22327 // the "from" location must exist - use at()
22328 basic_json v = result.at(from_ptr);
22329
22330 // The copy is functionally identical to an "add"
22331 // operation at the target location using the value
22332 // specified in the "from" member.
22333 operation_add(ptr, v);
22334 break;
22335 }
22336
22337 case patch_operations::test:
22338 {
22339 bool success = false;
22340 JSON_TRY
22341 {
22342 // check if "value" matches the one at "path"
22343 // the "path" location must exist - use at()
22344 success = (result.at(ptr) == get_value("test", "value", false));
22345 }
22346 JSON_INTERNAL_CATCH (out_of_range&)
22347 {
22348 // ignore out of range errors: success remains false
22349 }
22350
22351 // throw an exception if test fails
22352 if (JSON_HEDLEY_UNLIKELY(not success))
22353 {
22354 JSON_THROW(other_error::create(501, "unsuccessful: " + val.dump()));
22355 }
22356
22357 break;
22358 }
22359
22360 default:
22361 {
22362 // op must be "add", "remove", "replace", "move", "copy", or
22363 // "test"
22364 JSON_THROW(parse_error::create(105, 0, "operation value '" + op + "' is invalid"));
22365 }
22366 }
22367 }
22368
22369 return result;
22370 }
22371
22372 /*!
22373 @brief creates a diff as a JSON patch
22374
22375 Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can
22376 be changed into the value @a target by calling @ref patch function.
22377
22378 @invariant For two JSON values @a source and @a target, the following code
22379 yields always `true`:
22380 @code {.cpp}
22381 source.patch(diff(source, target)) == target;
22382 @endcode
22383
22384 @note Currently, only `remove`, `add`, and `replace` operations are
22385 generated.
22386
22387 @param[in] source JSON value to compare from
22388 @param[in] target JSON value to compare against
22389 @param[in] path helper value to create JSON pointers
22390
22391 @return a JSON patch to convert the @a source to @a target
22392
22393 @complexity Linear in the lengths of @a source and @a target.
22394
22395 @liveexample{The following code shows how a JSON patch is created as a
22396 diff for two JSON values.,diff}
22397
22398 @sa @ref patch -- apply a JSON patch
22399 @sa @ref merge_patch -- apply a JSON Merge Patch
22400
22401 @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
22402
22403 @since version 2.0.0
22404 */
22405 JSON_HEDLEY_WARN_UNUSED_RESULT
22406 static basic_json diff(const basic_json& source, const basic_json& target,
22407 const std::string& path = "")
22408 {
22409 // the patch
22410 basic_json result(value_t::array);
22411
22412 // if the values are the same, return empty patch
22413 if (source == target)
22414 {
22415 return result;
22416 }
22417
22418 if (source.type() != target.type())
22419 {
22420 // different types: replace value
22421 result.push_back(
22422 {
22423 {"op", "replace"}, {"path", path}, {"value", target}
22424 });
22425 return result;
22426 }
22427
22428 switch (source.type())
22429 {
22430 case value_t::array:
22431 {
22432 // first pass: traverse common elements
22433 std::size_t i = 0;
22434 while (i < source.size() and i < target.size())
22435 {
22436 // recursive call to compare array values at index i
22437 auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i));
22438 result.insert(result.end(), temp_diff.begin(), temp_diff.end());
22439 ++i;
22440 }
22441
22442 // i now reached the end of at least one array
22443 // in a second pass, traverse the remaining elements
22444
22445 // remove my remaining elements
22446 const auto end_index = static_cast<difference_type>(result.size());
22447 while (i < source.size())
22448 {
22449 // add operations in reverse order to avoid invalid
22450 // indices
22451 result.insert(result.begin() + end_index, object(
22452 {
22453 {"op", "remove"},
22454 {"path", path + "/" + std::to_string(i)}
22455 }));
22456 ++i;
22457 }
22458
22459 // add other remaining elements
22460 while (i < target.size())
22461 {
22462 result.push_back(
22463 {
22464 {"op", "add"},
22465 {"path", path + "/" + std::to_string(i)},
22466 {"value", target[i]}
22467 });
22468 ++i;
22469 }
22470
22471 break;
22472 }
22473
22474 case value_t::object:
22475 {
22476 // first pass: traverse this object's elements
22477 for (auto it = source.cbegin(); it != source.cend(); ++it)
22478 {
22479 // escape the key name to be used in a JSON patch
22480 const auto key = json_pointer::escape(it.key());
22481
22482 if (target.find(it.key()) != target.end())
22483 {
22484 // recursive call to compare object values at key it
22485 auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key);
22486 result.insert(result.end(), temp_diff.begin(), temp_diff.end());
22487 }
22488 else
22489 {
22490 // found a key that is not in o -> remove it
22491 result.push_back(object(
22492 {
22493 {"op", "remove"}, {"path", path + "/" + key}
22494 }));
22495 }
22496 }
22497
22498 // second pass: traverse other object's elements
22499 for (auto it = target.cbegin(); it != target.cend(); ++it)
22500 {
22501 if (source.find(it.key()) == source.end())
22502 {
22503 // found a key that is not in this -> add it
22504 const auto key = json_pointer::escape(it.key());
22505 result.push_back(
22506 {
22507 {"op", "add"}, {"path", path + "/" + key},
22508 {"value", it.value()}
22509 });
22510 }
22511 }
22512
22513 break;
22514 }
22515
22516 default:
22517 {
22518 // both primitive type: replace value
22519 result.push_back(
22520 {
22521 {"op", "replace"}, {"path", path}, {"value", target}
22522 });
22523 break;
22524 }
22525 }
22526
22527 return result;
22528 }
22529
22530 /// @}
22531
22532 ////////////////////////////////
22533 // JSON Merge Patch functions //
22534 ////////////////////////////////
22535
22536 /// @name JSON Merge Patch functions
22537 /// @{
22538
22539 /*!
22540 @brief applies a JSON Merge Patch
22541
22542 The merge patch format is primarily intended for use with the HTTP PATCH
22543 method as a means of describing a set of modifications to a target
22544 resource's content. This function applies a merge patch to the current
22545 JSON value.
22546
22547 The function implements the following algorithm from Section 2 of
22548 [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396):
22549
22550 ```
22551 define MergePatch(Target, Patch):
22552 if Patch is an Object:
22553 if Target is not an Object:
22554 Target = {} // Ignore the contents and set it to an empty Object
22555 for each Name/Value pair in Patch:
22556 if Value is null:
22557 if Name exists in Target:
22558 remove the Name/Value pair from Target
22559 else:
22560 Target[Name] = MergePatch(Target[Name], Value)
22561 return Target
22562 else:
22563 return Patch
22564 ```
22565
22566 Thereby, `Target` is the current object; that is, the patch is applied to
22567 the current value.
22568
22569 @param[in] apply_patch the patch to apply
22570
22571 @complexity Linear in the lengths of @a patch.
22572
22573 @liveexample{The following code shows how a JSON Merge Patch is applied to
22574 a JSON document.,merge_patch}
22575
22576 @sa @ref patch -- apply a JSON patch
22577 @sa [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396)
22578
22579 @since version 3.0.0
22580 */
22581 void merge_patch(const basic_json& apply_patch)
22582 {
22583 if (apply_patch.is_object())
22584 {
22585 if (not is_object())
22586 {
22587 *this = object();
22588 }
22589 for (auto it = apply_patch.begin(); it != apply_patch.end(); ++it)
22590 {
22591 if (it.value().is_null())
22592 {
22593 erase(it.key());
22594 }
22595 else
22596 {
22597 operator[](it.key()).merge_patch(it.value());
22598 }
22599 }
22600 }
22601 else
22602 {
22603 *this = apply_patch;
22604 }
22605 }
22606
22607 /// @}
22608};
22609
22610/*!
22611@brief user-defined to_string function for JSON values
22612
22613This function implements a user-defined to_string for JSON objects.
22614
22615@param[in] j a JSON object
22616@return a std::string object
22617*/
22618
22619NLOHMANN_BASIC_JSON_TPL_DECLARATION
22620std::string to_string(const NLOHMANN_BASIC_JSON_TPL& j)
22621{
22622 return j.dump();
22623}
22624} // namespace nlohmann
22625
22626///////////////////////
22627// nonmember support //
22628///////////////////////
22629
22630// specialization of std::swap, and std::hash
22631namespace std
22632{
22633
22634/// hash value for JSON objects
22635template<>
22636struct hash<nlohmann::json>
22637{
22638 /*!
22639 @brief return a hash value for a JSON object
22640
22641 @since version 1.0.0
22642 */
22643 std::size_t operator()(const nlohmann::json& j) const
22644 {
22645 // a naive hashing via the string representation
22646 const auto& h = hash<nlohmann::json::string_t>();
22647 return h(j.dump());
22648 }
22649};
22650
22651/// specialization for std::less<value_t>
22652/// @note: do not remove the space after '<',
22653/// see https://github.com/nlohmann/json/pull/679
22654template<>
22655struct less<::nlohmann::detail::value_t>
22656{
22657 /*!
22658 @brief compare two value_t enum values
22659 @since version 3.0.0
22660 */
22661 bool operator()(nlohmann::detail::value_t lhs,
22662 nlohmann::detail::value_t rhs) const noexcept
22663 {
22664 return nlohmann::detail::operator<(lhs, rhs);
22665 }
22666};
22667
22668/*!
22669@brief exchanges the values of two JSON objects
22670
22671@since version 1.0.0
22672*/
22673template<>
22674inline void swap<nlohmann::json>(nlohmann::json& j1, nlohmann::json& j2) noexcept(
22675 is_nothrow_move_constructible<nlohmann::json>::value and
22676 is_nothrow_move_assignable<nlohmann::json>::value
22677)
22678{
22679 j1.swap(j2);
22680}
22681
22682} // namespace std
22683
22684/*!
22685@brief user-defined string literal for JSON values
22686
22687This operator implements a user-defined string literal for JSON objects. It
22688can be used by adding `"_json"` to a string literal and returns a JSON object
22689if no parse error occurred.
22690
22691@param[in] s a string representation of a JSON object
22692@param[in] n the length of string @a s
22693@return a JSON object
22694
22695@since version 1.0.0
22696*/
22697JSON_HEDLEY_NON_NULL(1)
22698inline nlohmann::json operator "" _json(const char* s, std::size_t n)
22699{
22700 return nlohmann::json::parse(s, s + n);
22701}
22702
22703/*!
22704@brief user-defined string literal for JSON pointer
22705
22706This operator implements a user-defined string literal for JSON Pointers. It
22707can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer
22708object if no parse error occurred.
22709
22710@param[in] s a string representation of a JSON Pointer
22711@param[in] n the length of string @a s
22712@return a JSON pointer object
22713
22714@since version 2.0.0
22715*/
22716JSON_HEDLEY_NON_NULL(1)
22717inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
22718{
22719 return nlohmann::json::json_pointer(std::string(s, n));
22720}
22721
22722// #include <nlohmann/detail/macro_unscope.hpp>
22723
22724
22725// restore GCC/clang diagnostic settings
22726#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
22727 #pragma GCC diagnostic pop
22728#endif
22729#if defined(__clang__)
22730 #pragma GCC diagnostic pop
22731#endif
22732
22733// clean up
22734#undef JSON_INTERNAL_CATCH
22735#undef JSON_CATCH
22736#undef JSON_THROW
22737#undef JSON_TRY
22738#undef JSON_HAS_CPP_14
22739#undef JSON_HAS_CPP_17
22740#undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
22741#undef NLOHMANN_BASIC_JSON_TPL
22742
22743// #include <nlohmann/thirdparty/hedley/hedley_undef.hpp>
22744#undef JSON_HEDLEY_ALWAYS_INLINE
22745#undef JSON_HEDLEY_ARM_VERSION
22746#undef JSON_HEDLEY_ARM_VERSION_CHECK
22747#undef JSON_HEDLEY_ARRAY_PARAM
22748#undef JSON_HEDLEY_ASSUME
22749#undef JSON_HEDLEY_BEGIN_C_DECLS
22750#undef JSON_HEDLEY_C_DECL
22751#undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
22752#undef JSON_HEDLEY_CLANG_HAS_BUILTIN
22753#undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
22754#undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
22755#undef JSON_HEDLEY_CLANG_HAS_EXTENSION
22756#undef JSON_HEDLEY_CLANG_HAS_FEATURE
22757#undef JSON_HEDLEY_CLANG_HAS_WARNING
22758#undef JSON_HEDLEY_COMPCERT_VERSION
22759#undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
22760#undef JSON_HEDLEY_CONCAT
22761#undef JSON_HEDLEY_CONCAT_EX
22762#undef JSON_HEDLEY_CONST
22763#undef JSON_HEDLEY_CONST_CAST
22764#undef JSON_HEDLEY_CONSTEXPR
22765#undef JSON_HEDLEY_CPP_CAST
22766#undef JSON_HEDLEY_CRAY_VERSION
22767#undef JSON_HEDLEY_CRAY_VERSION_CHECK
22768#undef JSON_HEDLEY_DEPRECATED
22769#undef JSON_HEDLEY_DEPRECATED_FOR
22770#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
22771#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_
22772#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
22773#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
22774#undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
22775#undef JSON_HEDLEY_DIAGNOSTIC_POP
22776#undef JSON_HEDLEY_DIAGNOSTIC_PUSH
22777#undef JSON_HEDLEY_DMC_VERSION
22778#undef JSON_HEDLEY_DMC_VERSION_CHECK
22779#undef JSON_HEDLEY_EMPTY_BASES
22780#undef JSON_HEDLEY_EMSCRIPTEN_VERSION
22781#undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
22782#undef JSON_HEDLEY_END_C_DECLS
22783#undef JSON_HEDLEY_FALL_THROUGH
22784#undef JSON_HEDLEY_FLAGS
22785#undef JSON_HEDLEY_FLAGS_CAST
22786#undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
22787#undef JSON_HEDLEY_GCC_HAS_BUILTIN
22788#undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
22789#undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
22790#undef JSON_HEDLEY_GCC_HAS_EXTENSION
22791#undef JSON_HEDLEY_GCC_HAS_FEATURE
22792#undef JSON_HEDLEY_GCC_HAS_WARNING
22793#undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
22794#undef JSON_HEDLEY_GCC_VERSION
22795#undef JSON_HEDLEY_GCC_VERSION_CHECK
22796#undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
22797#undef JSON_HEDLEY_GNUC_HAS_BUILTIN
22798#undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
22799#undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
22800#undef JSON_HEDLEY_GNUC_HAS_EXTENSION
22801#undef JSON_HEDLEY_GNUC_HAS_FEATURE
22802#undef JSON_HEDLEY_GNUC_HAS_WARNING
22803#undef JSON_HEDLEY_GNUC_VERSION
22804#undef JSON_HEDLEY_GNUC_VERSION_CHECK
22805#undef JSON_HEDLEY_HAS_ATTRIBUTE
22806#undef JSON_HEDLEY_HAS_BUILTIN
22807#undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
22808#undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS
22809#undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
22810#undef JSON_HEDLEY_HAS_EXTENSION
22811#undef JSON_HEDLEY_HAS_FEATURE
22812#undef JSON_HEDLEY_HAS_WARNING
22813#undef JSON_HEDLEY_IAR_VERSION
22814#undef JSON_HEDLEY_IAR_VERSION_CHECK
22815#undef JSON_HEDLEY_IBM_VERSION
22816#undef JSON_HEDLEY_IBM_VERSION_CHECK
22817#undef JSON_HEDLEY_IMPORT
22818#undef JSON_HEDLEY_INLINE
22819#undef JSON_HEDLEY_INTEL_VERSION
22820#undef JSON_HEDLEY_INTEL_VERSION_CHECK
22821#undef JSON_HEDLEY_IS_CONSTANT
22822#undef JSON_HEDLEY_IS_CONSTEXPR_
22823#undef JSON_HEDLEY_LIKELY
22824#undef JSON_HEDLEY_MALLOC
22825#undef JSON_HEDLEY_MESSAGE
22826#undef JSON_HEDLEY_MSVC_VERSION
22827#undef JSON_HEDLEY_MSVC_VERSION_CHECK
22828#undef JSON_HEDLEY_NEVER_INLINE
22829#undef JSON_HEDLEY_NO_ESCAPE
22830#undef JSON_HEDLEY_NON_NULL
22831#undef JSON_HEDLEY_NO_RETURN
22832#undef JSON_HEDLEY_NO_THROW
22833#undef JSON_HEDLEY_NULL
22834#undef JSON_HEDLEY_PELLES_VERSION
22835#undef JSON_HEDLEY_PELLES_VERSION_CHECK
22836#undef JSON_HEDLEY_PGI_VERSION
22837#undef JSON_HEDLEY_PGI_VERSION_CHECK
22838#undef JSON_HEDLEY_PREDICT
22839#undef JSON_HEDLEY_PRINTF_FORMAT
22840#undef JSON_HEDLEY_PRIVATE
22841#undef JSON_HEDLEY_PUBLIC
22842#undef JSON_HEDLEY_PURE
22843#undef JSON_HEDLEY_REINTERPRET_CAST
22844#undef JSON_HEDLEY_REQUIRE
22845#undef JSON_HEDLEY_REQUIRE_CONSTEXPR
22846#undef JSON_HEDLEY_REQUIRE_MSG
22847#undef JSON_HEDLEY_RESTRICT
22848#undef JSON_HEDLEY_RETURNS_NON_NULL
22849#undef JSON_HEDLEY_SENTINEL
22850#undef JSON_HEDLEY_STATIC_ASSERT
22851#undef JSON_HEDLEY_STATIC_CAST
22852#undef JSON_HEDLEY_STRINGIFY
22853#undef JSON_HEDLEY_STRINGIFY_EX
22854#undef JSON_HEDLEY_SUNPRO_VERSION
22855#undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
22856#undef JSON_HEDLEY_TINYC_VERSION
22857#undef JSON_HEDLEY_TINYC_VERSION_CHECK
22858#undef JSON_HEDLEY_TI_VERSION
22859#undef JSON_HEDLEY_TI_VERSION_CHECK
22860#undef JSON_HEDLEY_UNAVAILABLE
22861#undef JSON_HEDLEY_UNLIKELY
22862#undef JSON_HEDLEY_UNPREDICTABLE
22863#undef JSON_HEDLEY_UNREACHABLE
22864#undef JSON_HEDLEY_UNREACHABLE_RETURN
22865#undef JSON_HEDLEY_VERSION
22866#undef JSON_HEDLEY_VERSION_DECODE_MAJOR
22867#undef JSON_HEDLEY_VERSION_DECODE_MINOR
22868#undef JSON_HEDLEY_VERSION_DECODE_REVISION
22869#undef JSON_HEDLEY_VERSION_ENCODE
22870#undef JSON_HEDLEY_WARNING
22871#undef JSON_HEDLEY_WARN_UNUSED_RESULT
22872
22873
22874
22875#endif // INCLUDE_NLOHMANN_JSON_HPP_