about summary refs log tree commit diff stats
path: root/.github/workflows
diff options
context:
space:
mode:
Diffstat (limited to '.github/workflows')
0 files changed, 0 insertions, 0 deletions
75'>75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
#include "Generate.h"

#include <climits>
#include <iostream>

std::vector<Point> Generate::_DIRECTIONS1 = {Point(0, 1), Point(0, -1),
                                             Point(1, 0), Point(-1, 0)};
std::vector<Point> Generate::_8DIRECTIONS1 = {
    Point(0, 1), Point(0, -1), Point(1, 0),   Point(-1, 0),
    Point(1, 1), Point(1, -1), Point(-1, -1), Point(-1, 1)};
std::vector<Point> Generate::_DIRECTIONS2 = {Point(0, 2), Point(0, -2),
                                             Point(2, 0), Point(-2, 0)};
std::vector<Point> Generate::_8DIRECTIONS2 = {
    Point(0, 2), Point(0, -2), Point(2, 0),   Point(-2, 0),
    Point(2, 2), Point(2, -2), Point(-2, -2), Point(-2, 2)};
std::vector<Point> Generate::_DISCONNECT = {
    Point(0, 2),   Point(0, -2), Point(2, 0),
    Point(-2, 0),  Point(2, 2),  Point(2, -2),
    Point(-2, -2), Point(-2, 2), Point(0, 2),
    Point(0, -2),  Point(2, 0),  Point(-2, 0),
    Point(2, 2),   Point(2, -2), Point(-2, -2),
    Point(-2, 2),  Point(0, 4),  Point(0, -4),
    Point(4, 0),   Point(-4, 0),  // Used to make the discontiguous shapes
};
std::vector<Point> Generate::_SHAPEDIRECTIONS =
    {};  // This will eventually be set to one of the above lists

// Make a maze puzzle. The maze will have one solution. id - id of the puzzle
/*void Generate::generateMaze(int id) {
  while (!generate_maze(id, 0, 0))
    ;
}

// Make a maze puzzle. The maze will have one solution. id - id of the puzzle.
// numStarts - how many starts to add (only one will be valid). numExits - how
// many exits to add. All will work Setting numStarts or numExits to 0 will keep
// the starts/exits where they originally were, otherwise the starts/exits
// originally there will be removed and new ones randomly placed.
void Generate::generateMaze(int id, int numStarts, int numExits) {
  while (!generate_maze(id, numStarts, numExits))
    ;
}*/

// Read in default panel data, such as dimensions, symmetry, starts/exits, etc.
// id - id of the puzzle
void Generate::initPanel() {
  _panel = std::make_unique<Panel>();
  _panel->Resize(_width, _height);

  // erase_path();

  //_panelData.resize(_height);
  // for (auto& row : _panelData) row.resize(_width);

  if (hasFlag(Config::TreehouseLayout)) {
    init_treehouse_layout();
  }
  if (hasFlag(Config::RegularStartEnd)) {
    if (_symmetry == Panel::Rotational) {
      setSymbol(Decoration::Start, 0, 0);
      setSymbol(Decoration::Exit, 0, _panel->height() - 1);

      setSymbol(Decoration::Start, _panel->width() - 1, _panel->height() - 1);
      setSymbol(Decoration::Exit, _panel->width() - 1, 0);
    } else if (_symmetry == Panel::Vertical) {
      setSymbol(Decoration::Exit, 0, 0);
      setSymbol(Decoration::Start, 0, _panel->height() - 1);

      setSymbol(Decoration::Start, _panel->width() - 1, _panel->height() - 1);
      setSymbol(Decoration::Exit, _panel->width() - 1, 0);
    } else if (_symmetry == Panel::Horizontal) {
      setSymbol(Decoration::Start, 0, 0);
      setSymbol(Decoration::Start, 0, _panel->height() - 1);

      setSymbol(Decoration::Exit, _panel->width() - 1, _panel->height() - 1);
      setSymbol(Decoration::Exit, _panel->width() - 1, 0);
    } else {
      setSymbol(Decoration::Start, 0, _panel->height() - 1);
      setSymbol(Decoration::Exit, _panel->width() - 1, 0);
    }
  }

  if (_custom_grid.size() >
      0) {  // If we want to start with a certain default grid when generating
    if (_custom_grid.size() < _panel->width()) {
      _custom_grid.resize(_panel->width());
    }
    if (_custom_grid[_custom_grid.size() - 1].size() < _panel->height()) {
      for (auto& row : _custom_grid) {
        row.resize(_panel->height());
      }
    }
    for (int x = 0; x < _panel->width(); x++) {
      for (int y = 0; y < _panel->height(); y++) {
        set(x, y, _custom_grid[x][y]);
      }
    }
  }
  // Sync up start/exit points between panel and generator. If both are
  // different, the generator's start/exit point list will be used
  for (Point e : _starts) {
    _panel->SetGridSymbol(e.first, e.second, Decoration::Start,
                          Decoration::Color::None);
  }
  for (Point e : _exits) {
    _panel->SetGridSymbol(e.first, e.second, Decoration::Exit,
                          Decoration::Color::None);
  }

  // Fill gridpos with every available grid block
  _gridpos.clear();
  for (int x = 1; x < _panel->width(); x += 2) {
    for (int y = 1; y < _panel->height(); y += 2) {
      /*if (!(hasFlag(Config::PreserveStructure) &&
            (get(x, y) & Decoration::Empty) == Decoration::Empty))*/
      _gridpos.emplace(Point(x, y));
    }
  }
  // Init the open positions available for symbols. Defaults to every grid block
  // unless a custom openpos has been specified
  if (openPos.size() > 0)
    _openpos = openPos;
  else
    _openpos = _gridpos;
  for (Point p : blockPos)
    _openpos.erase(p);  // Remove the points which the user has defined to not
                        // place symbols on
  for (Point p : _splitPoints)
    _openpos.erase(p);  // The split points will have erasers and cannot have
                        // any other symbols placed on them
  _fullGaps = hasFlag(Config::FullGaps);
  _panel->symmetry =
      _symmetry;  // Init user-defined puzzle symmetry if not "None".
  // 0x00076 (Symmetry Island Fading Lines 7) and 0x01D3F (Keep Blue Pressure
  // Plates) are exceptions because they need to have symmetry removed
  if (pathWidth != 1)
    _panel->pathWidth = pathWidth;  // Init path scale. "1" is considered the
                                    // default, and therefore means no change.

  if (hasFlag(Config::WriteInvisible)) {
    _panel->SetInvisibleSymmetry(true);
  }
}

// Place a specific symbol into the puzzle at the specified location. The
// generator will add other symbols, but will leave the set ones where they are.
// symbol - the symbol to place. //x, y - the coordinates to put it at. (0, 0)
// is at top left. Lines are at even coordinates and grid blocks at odd
// coordinates
void Generate::setSymbol(Decoration::Shape symbol, int x, int y) {
  if (_custom_grid.size() < x + 1) {
    _custom_grid.resize(x + 1, std::vector<int>());
    for (auto& row : _custom_grid) {
      row.resize(_custom_grid[0].size(), 0);
    }
  }
  for (auto& row : _custom_grid) {
    if (row.size() < y + 1) {
      row.resize(y + 1, 0);
    }
  }

  if (symbol == Decoration::Start)
    _starts.emplace(Point(x, y));
  else if (symbol == Decoration::Exit)
    _exits.emplace(Point(x, y));
  else
    _custom_grid[x][y] = symbol;  // Starts and exits are not set into the grid
}

// Set the dimensions of the puzzles. This setting will persist between puzzle
// generation calls. (0, 0) will have the generator use the same dimensions as
// the orignal puzzle. width, height - the dimensions to use, measured in grid
// blocks.
void Generate::setGridSize(int width, int height) {
  if (width <= 0 || height <= 0) {
    _width = 0;
    _height = 0;
  } else {
    _width = width * 2 + 1;
    _height = height * 2 + 1;
  }
}

// Set the type of symmetry to use. This setting will persist between puzzle
// generation calls. Using "None" will make the generator use the existing
// puzzle symmetry.
void Generate::setSymmetry(Panel::Symmetry symmetry) {
  _symmetry = symmetry;
  if (_symmetry == Panel::Symmetry::ParallelV ||
      _symmetry == Panel::Symmetry::ParallelVFlip) {
    std::vector<Point> points;
    for (int y = 0; y < _height; y += 2)
      points.emplace_back(Point(_width / 2, y));
    setObstructions(points);  // This prevents the generator from invalidly
                              // passing through the center line
  }
  if (_symmetry == Panel::Symmetry::ParallelH ||
      _symmetry == Panel::Symmetry::ParallelHFlip) {
    std::vector<Point> points;
    for (int x = 0; x < _width; x += 2)
      points.emplace_back(Point(x, _height / 2));
    setObstructions(points);  // This prevents the generator from invalidly
                              // passing through the center line
  }
}

// Write out panel data to the puzzle with the given id
void Generate::write(int id) {
  std::vector<std::vector<int>> backupGrid;
  /*  if (hasFlag(Config::DisableReset))
      backupGrid =
          _panel->_grid;  // Allows panel data to be preserved after writing.
                          // Normally writing erases the panel data.*/

  erase_path();

  // TODO: write

  // Undo any one-time config changes
  if (_oneTimeAdd) {
    _config &= ~_oneTimeAdd;
    _oneTimeAdd = 0;
  }
  if (_oneTimeRemove) {
    _config |= _oneTimeRemove;
    _oneTimeRemove = 0;
  }
  // Manually advance seed by 1 each generation to prevent seeds "funneling"
  // from repeated fails
  Random::seed(_seed);
  _seed = Random::rand();
}

// Reset all config flags and persistent settings, including width/height and
// symmetry.
void Generate::resetConfig() {
  setGridSize(0, 0);
  _symmetry = Panel::Symmetry::None;
  pathWidth = 1;
  if (hasFlag(Config::DisableReset)) {
    resetVars();
  }
  _config = 0;
  _oneTimeAdd = Config::None;
  _oneTimeRemove = Config::None;
  arrowColor = backgroundColor = successColor = {0, 0, 0, 0};
}

//----------------------Private--------------------------

// Add the point (pos) to the intended solution path, using symmetry if
// applicable.
void Generate::set_path(Point pos) {
  set(pos, PATH);
  _path.insert(pos);
  if (_panel->symmetry) {
    _path1.insert(pos);
    Point sp = get_sym_point(pos);
    set(sp, PATH);
    _path.insert(sp);
    _path2.insert(sp);
  }
}

// Remove the path and all symbols from the grid. This does not affect
// starts/exits. If PreserveStructure is active, open gaps will be kept. If a
// custom grid is set, this will reset it back to the custom grid state.
void Generate::clear() {
  if (_custom_grid.size() > 0) {
    for (int x = 0; x < _panel->width(); x++) {
      for (int y = 0; y < _panel->height(); y++) {
        set(x, y, _custom_grid[x][y]);
      }
    }
  } else
    for (int x = 0; x < _panel->width(); x++) {
      for (int y = 0; y < _panel->height(); y++) {
        /*if (hasFlag(Config::PreserveStructure) &&
            (_panel->_grid[x][y] == OPEN ||
             (_panel->_grid[x][y] & 0x60000f) == NO_POINT ||
             (_panel->_grid[x][y] & Decoration::Empty) == Decoration::Empty))
          continue;*/
        set(x, y, 0);
      }
    }
  //_panel->_style &= ~0x2ff8;  // Remove all element flags
  _path.clear();
  _path1.clear();
  _path2.clear();
}

// Reset generator variables and lists used when generating puzzles. (not config
// settings)
void Generate::resetVars() {
  _panel = NULL;  // This is needed for the generator to read in the next panel
  _starts.clear();
  _exits.clear();
  _custom_grid.clear();
  hitPoints.clear();
  _obstructions.clear();
  openPos.clear();
  blockPos.clear();
  _splitPoints.clear();
}

// Place start and exits in central positions like in the treehouse
void Generate::init_treehouse_layout() {
  // bool pivot = _panel->_endpoints.size() > 2;
  bool pivot = false;
  setSymbol(Decoration::Start, _panel->width() / 2, _panel->height() - 1);
  setSymbol(Decoration::Exit, _panel->width() / 2, 0);
  if (pivot) {
    setSymbol(Decoration::Exit, _panel->width() - 1, _panel->height() / 2);
    setSymbol(Decoration::Exit, 0, _panel->height() / 2);
  }
}
/*
// Private version of generateMaze. Should be called again if false is returned.
// The algorithm works by generating a correct path, then extending lines off of
// it until the maze is filled.
bool Generate::generate_maze(int id, int numStarts, int numExits) {
  initPanel(id);

  if (numStarts > 0) place_start(numStarts);
  if (numExits > 0) place_exit(numExits);

  // Prevent start and exit from overlapping, except in one one particular
  // puzzle (0x00083).
  if (id == 0x00083 && _width == 15 && _height == 15) {
    clear();
    _panel->_endpoints.clear();
    _exits.clear();
    Point start = pick_random(_starts);
    _panel->SetGridSymbol(start.first, start.second, Decoration::Exit,
                          Decoration::Color::None);
    Point sp = get_sym_point(start);
    _panel->SetGridSymbol(sp.first, sp.second, Decoration::Exit,
                          Decoration::Color::None);
    set_path(start);
    set_path(sp);
  } else {
    for (Point p : _starts)
      if (_exits.count(p)) return false;

    clear();
    if (hasFlag(Generate::Config::ShortPath)) {
      while (!generate_path_length(
          (_panel->width() + _panel->height()),
          min((_panel->width() + _panel->height()) * 2,
              (_panel->width() / 2 + 1) * (_panel->height() / 2 + 1) * 1 / 2)))
        clear();
    }
    while (!generate_path_length(
        (_panel->width() + _panel->height()),
        min((_panel->width() + _panel->height()) * 2,
            (_panel->width() / 2 + 1) * (_panel->height() / 2 + 1) * 4 / 5)))
      clear();
  }

  std::set<Point> path = _path;  // Backup

  // Extra false starts are tracked in a separate list so that the generator can
  // make sure to extend each of them by a higher amount than usual.
  std::set<Point> extraStarts;
  for (Point pos : _starts) {
    if (!_path.count(pos)) {
      extraStarts.insert(pos);
    }
    set_path(pos);
  }
  // Check to see if the correct path runs over any of the false start points.
  // If so, start over
  if (extraStarts.size() !=
      (_panel->symmetry ? _starts.size() / 2 - 1 : _starts.size() - 1))
    return false;

  std::set<Point> check;
  std::vector<Point> deadEndH, deadEndV;
  for (Point p : _path) {
    if (p.first % 2 == 0 && p.second % 2 == 0)
      check.insert(p);  // Only extend off of the points at grid intersections.
  }
  while (check.size() > 0) {
    // Pick a random extendable point and extend it for some randomly chosen
    // amount of units.
    Point randomPos = (extraStarts.size() > 0 ? pick_random(extraStarts)
                                              : pick_random(check));
    Point pos = randomPos;
    for (int i = (extraStarts.size() > 0 ? 7 : 1); i >= 0;
         i--) {  // False starts are extended by up to 7 units. Other points are
                 // extended 1 unit at a time
      std::vector<Point> validDir;
      for (Point dir : _DIRECTIONS2) {
        if (!off_edge(pos + dir) && get(pos + dir) == 0) {
          validDir.push_back(dir);
        }
      }
      if (validDir.size() < 2)
        check.erase(pos);  // If there are 0 or 1 open directions, the point
                           // cannot be extended again.
      if (validDir.size() == 0) {
        if (extraStarts.size() > 0) {
          return false;  // Not all the starts were extended successfully.
        }
        // If full gaps mode is enabled, detect dead ends, so that square tips
        // can be put on them
        if (_fullGaps && !_exits.count(pos) && !_starts.count(pos)) {
          int countOpenRow = 0, countOpenColumn = 0;
          for (Point dir2 : _DIRECTIONS1) {
            Point added = pos + dir2;
            if (!off_edge(added) && _drawnPath[added.second][added.first]) {
              if (dir2.first == 0)
                countOpenColumn++;
              else
                countOpenRow++;
            }
          }
          if (countOpenRow + countOpenColumn == 1) {
            if (countOpenRow)
              deadEndH.push_back(pos);
            else
              deadEndV.push_back(pos);
          }
        }
        break;  // A dead end has been reached, extend a different point
      }
      Point dir = pick_random(validDir);
      Point newPos = pos + dir;
      set_path(newPos);
      set_path(pos + dir / 2);
      check.insert(newPos);
      pos = newPos;
    }
    if (extraStarts.size() > 0) extraStarts.erase(randomPos);
  }
  // Put openings or gaps in any unused row or column segment
  for (int y = 0; y < _panel->height(); y++) {
    for (int x = (y + 1) % 2; x < _panel->width(); x += 2) {
      if (!_drawnPath[y][x]) {
        _panel->SetGridSymbol(x, y,
                              _fullGaps    ? OPEN
                              : x % 2 == 0 ? Decoration::Gap_Column
                                           : Decoration::Gap_Row);
        if (_panel->symmetry) {
          Point sp = get_sym_point(Point(x, y));
          if (sp.first == x && sp.second == y ||
              sp.first == x && x % 2 == 0 && abs(sp.second - y) <= 2 ||
              sp.second == y && y % 2 == 0 && abs(sp.first - x) <= 2 ||
              abs(sp.first - x) == 1) {
            _drawnPath[y][x] = true;
          } else if (Random::rand() % 2 == 0) {
            _drawnPath[sp.second][sp.first] = true;
          } else {
            _drawnPath[y][x] = true;
            _panel->SetGridSymbol(sp, _fullGaps    ? OPEN
                                      : x % 2 == 0 ? Decoration::Gap_Column
                                                   : Decoration::Gap_Row);
          }
        }
      }
    }
  }
  // Put square ends on any dead ends
  for (Point p : deadEndH) {
    _panel->SetGridSymbol(p, Decoration::Gap_Row);
  }
  for (Point p : deadEndV) {
    _panel->SetGridSymbol(p, Decoration::Gap_Column);
  }
  _path = path;  // Restore backup of the correct solution for testing purposes
  std::vector<std::string> solution;  // For debugging only
  for (int y = 0; y < _panel->height(); y++) {
    std::string row;
    for (int x = 0; x < _panel->width(); x++) {
      if (_path.count(Point(x, y))) {
        row += "xx";
      } else
        row += "    ";
    }
    solution.push_back(row);
  }
  if (!hasFlag(Config::DisableWrite)) write(id);
  return true;
}*/

void Generate::generate(int width, int height, PuzzleSymbols symbols) {
  while (!generateInternal(width, height, symbols))
    ;
}

// The primary generation function. id - id of the puzzle. symbols - a structure
// representing the amount and types of each symbol to add to the puzzle The
// algorithm works by making a random path and then adding the chosen symbols to
// the grid in such a way that they will be satisfied by the path. if at some
// point the generator fails to add a symbol while still making the solution
// correct, the function returns false and must be called again.
bool Generate::generateInternal(int width, int height, PuzzleSymbols symbols) {
  _width = width * 2 + 1;
  _height = height * 2 + 1;

  initPanel();

  // Multiple erasers are forced to be separate by default. This is because
  // combining them causes unpredictable and inconsistent behavior.
  if (symbols.getNum(Decoration::Eraser) > 1 &&
      !hasFlag(Config::CombineErasers)) {
    setSymbol(Decoration::Gap_Row, 1, 0);
    setSymbol(Decoration::Gap_Row, _panel->width() - 2, _panel->height() - 1);
    _splitPoints = {Point(1, 1),
                    Point(_panel->width() - 2, _panel->height() - 2)};
    // initPanel(id);  // Re-initing to account for the newly added information
  }

  // Init parity for full dot puzzles
  if (symbols.getNum(Decoration::Dot) >= _panel->get_num_grid_points() - 2)
    _parity =
        (_panel->get_parity() +
         (!symbols.any(Decoration::Start)  ? get_parity(pick_random(_starts))
          : !symbols.any(Decoration::Exit) ? get_parity(pick_random(_exits))
                                           : Random::rand() % 2)) %
        2;
  else
    _parity = -1;  //-1 indicates a non-full dot puzzle

  if (symbols.any(Decoration::Start))
    place_start(symbols.getNum(Decoration::Start));
  if (symbols.any(Decoration::Exit))
    place_exit(symbols.getNum(Decoration::Exit));

  // Make a random path unless a fixed one has been defined
  if (customPath.size() == 0) {
    int fails = 0;
    while (!generate_path(symbols)) {
      if (fails++ > 20)
        return false;  // It gets several chances to make a path so that the
                       // whole init process doesn't have to be repeated so many
                       // times
    }
  } else
    _path = customPath;

  std::vector<std::string> solution;  // For debugging only
  for (int y = 0; y < _panel->height(); y++) {
    std::string row;
    for (int x = 0; x < _panel->width(); x++) {
      if (get(x, y) == PATH) {
        row += "xx";
      } else
        row += "  ";
    }
    solution.push_back(row);
  }

  // Attempt to add the symbols
  if (!place_all_symbols(symbols)) return false;

  for (const auto& row : solution) {
    std::cout << row << std::endl;
  }

  erase_path();
  std::cout << _panel->Write() << std::endl;

  return true;
}

// Place the provided symbols onto the puzzle. symbols - a structure describing
// types and amounts of symbols to add.
bool Generate::place_all_symbols(PuzzleSymbols& symbols) {
  std::vector<int> eraseSymbols;
  std::vector<int> eraserColors;
  // If erasers are present, choose symbols to be erased and remove them
  // pre-emptively
  for (std::pair<int, int> s : symbols[Decoration::Eraser]) {
    for (int i = 0; i < s.second; i++) {
      eraserColors.push_back(s.first & 0xf);
      eraseSymbols.push_back(hasFlag(Config::FalseParity)
                                 ? Decoration::Dot_Intersection
                                 : symbols.popRandomSymbol());
    }
  }

  // Symbols are placed in stages according to their type
  // In each of these loops, s.first is the symbol and s.second is the amount of
  // it to add

  _SHAPEDIRECTIONS =
      (hasFlag(Config::DisconnectShapes) ? _DISCONNECT : _DIRECTIONS2);
  int numShapes = 0, numRotate = 0, numNegative = 0;
  std::vector<int> colors, negativeColors;
  for (std::pair<int, int> s : symbols[Decoration::Poly]) {
    for (int i = 0; i < s.second; i++) {
      if (s.first & Decoration::Can_Rotate) numRotate++;
      if (s.first & Decoration::Negative) {
        numNegative++;
        negativeColors.push_back(s.first & 0xf);
      } else {
        numShapes++;
        colors.push_back(s.first & 0xf);
      }
    }
  }
  if (numShapes > 0 && !place_shapes(colors, negativeColors, numShapes,
                                     numRotate, numNegative) ||
      numShapes == 0 && numNegative > 0)
    return false;

  _stoneTypes = static_cast<int>(symbols[Decoration::Stone].size());
  _bisect = true;  // This flag helps the generator prevent making two adjacent
                   // regions of stones the same color
  for (std::pair<int, int> s : symbols[Decoration::Stone])
    if (!place_stones(s.first & 0xf, s.second)) return false;
  for (std::pair<int, int> s : symbols[Decoration::Triangle])
    if (!place_triangles(s.first & 0xf, s.second, s.first >> 16)) return false;
  for (std::pair<int, int> s : symbols[Decoration::Arrow])
    if (!place_arrows(s.first & 0xf, s.second, s.first >> 12)) return false;
  for (std::pair<int, int> s : symbols[Decoration::Star])
    if (!place_stars(s.first & 0xf, s.second)) return false;
  if (symbols.style == Panel::Style::HAS_STARS &&
      hasFlag(Generate::Config::TreehouseLayout) && !checkStarZigzag())
    return false;
  if (eraserColors.size() > 0 && !place_erasers(eraserColors, eraseSymbols))
    return false;
  for (std::pair<int, int> s : symbols[Decoration::Dot])
    if (!place_dots(s.second, static_cast<Decoration::Color>(s.first & 0xf),
                    (s.first & ~0xf) == Decoration::Dot_Intersection))
      return false;
  for (std::pair<int, int> s : symbols[Decoration::Gap])
    if (!place_gaps(s.second)) return false;
  return true;
}

// Generate a random path for a puzzle with the provided symbols.
// The path starts at a random start and will not cross through walls or
// symbols. Puzzle symbols are provided because they can influence how long the
// path should be.
bool Generate::generate_path(PuzzleSymbols& symbols) {
  clear();

  if (_obstructions.size() > 0) {
    std::vector<Point> walls = pick_random(_obstructions);
    for (Point p : walls)
      if (get(p) == 0)
        set(p, p.first % 2 == 0 ? Decoration::Gap_Column : Decoration::Gap_Row);
    bool result =
        (hasFlag(Config::ShortPath) ? generate_path_length(1)
         : _parity != -1            ? generate_longest_path()
         : hitPoints.size() > 0
             ? generate_special_path()
             : generate_path_length(_panel->get_num_grid_points() * 3 / 4));
    for (Point p : walls)
      if (get(p) & Decoration::Gap) set(p, 0);
    return result;
  }

  if (hitPoints.size() > 0) {
    return generate_special_path();
  }

  if (_parity != -1 || hasFlag(Generate::LongestPath)) {
    return generate_longest_path();
  }

  if (hasFlag(Config::ShortPath)) return generate_path_length(1);

  // The diagonal symmetry puzzles have a lot of points that can't be hit, so I
  // have to reduce the path length
  if (_panel->symmetry == Panel::Symmetry::FlipXY ||
      _panel->symmetry == Panel::Symmetry::FlipNegXY) {
    return generate_path_length(_panel->get_num_grid_points() * 3 / 4 -
                                _panel->width() / 2);
  }

  // Dot puzzles have a longer path by default. Vertical/horizontal symmetry
  // puzzles are also longer because they tend to be too simple otherwise
  if (hasFlag(Config::LongPath) ||
      symbols.style == Panel::Style::HAS_DOTS &&
          !hasFlag(Config::PreserveStructure) &&
          !(_panel->symmetry == Panel::Symmetry::Vertical &&
                (_panel->width() / 2) % 2 == 0 ||
            _panel->symmetry == Panel::Symmetry::Horizontal &&
                (_panel->height() / 2) % 2 == 0)) {
    return generate_path_length(_panel->get_num_grid_points() * 7 / 8);
  }

  // For stone puzzles, the path must have a certain number of regions
  if (symbols.style == Panel::Style::HAS_STONES && _splitPoints.size() == 0)
    return generate_path_regions(
        std::min(symbols.getNum(Decoration::Stone),
                 (_panel->width() / 2 + _panel->height() / 2) / 2 + 1));

  if (symbols.style == Panel::Style::HAS_SHAPERS) {
    if (hasFlag(Config::SplitShapes)) {
      return generate_path_regions(symbols.getNum(Decoration::Poly) + 1);
    }
    return generate_path_length(_panel->get_num_grid_points() / 2);
  }

  return generate_path_length(_panel->get_num_grid_points() * 3 / 4);
}

// Generate a random path with the provided minimum length.
bool Generate::generate_path_length(int minLength, int maxLength) {
  int fails = 0;
  Point pos = adjust_point(pick_random(_starts));
  Point exit = adjust_point(pick_random(_exits));
  if (off_edge(pos) || off_edge(exit)) return false;
  set_path(pos);
  while (pos != exit) {
    if (fails++ > 20) return false;
    Point dir = pick_random(_DIRECTIONS2);
    Point newPos = pos + dir;
    Point directed = pos + dir / 2;
    if (off_edge(newPos) || hasSymbolOrPath(newPos) ||
        hasSymbolOrPath(directed) ||
        newPos == exit && _path.size() / 2 + 2 < minLength)
      continue;
    if (_panel->symmetry &&
        (off_edge(get_sym_point(newPos)) || newPos == get_sym_point(newPos)))
      continue;
    set_path(newPos);
    set_path(pos + dir / 2);
    pos = newPos;
    fails = 0;
  }
  return _path.size() / 2 + 1 >= minLength && _path.size() / 2 + 1 <= maxLength;
}

// Generate a path with the provided number of regions.
bool Generate::generate_path_regions(int minRegions) {
  int fails = 0;
  int regions = 1;
  Point pos = adjust_point(pick_random(_starts));
  Point exit = adjust_point(pick_random(_exits));
  if (off_edge(pos) || off_edge(exit)) return false;
  set_path(pos);
  while (pos != exit) {
    if (fails++ > 20) return false;
    Point dir = pick_random(_DIRECTIONS2);
    Point newPos = pos + dir;
    Point directed = pos + dir / 2;
    if (off_edge(newPos) || hasSymbolOrPath(newPos) ||
        hasSymbolOrPath(directed) || newPos == exit && regions < minRegions)
      continue;
    if (_panel->symmetry &&
        (off_edge(get_sym_point(newPos)) || newPos == get_sym_point(newPos)))
      continue;
    set_path(newPos);
    set_path(pos + dir / 2);
    if (!on_edge(newPos) && on_edge(pos)) {
      regions++;
      if (_panel->symmetry) regions++;
    }
    pos = newPos;
    fails = 0;
  }
  return regions >= minRegions;
}

// Generate a path that covers the maximum number of points.
bool Generate::generate_longest_path() {
  Point pos = adjust_point(pick_random(_starts));
  Point exit = adjust_point(pick_random(_exits));
  if (off_edge(pos) || off_edge(exit)) return false;
  Point block(-10, -10);
  if (hasFlag(Config::FalseParity)) {  // If false parity, one dot must be left
                                       // uncovered
    if (get_parity(pos + exit) == _panel->get_parity()) return false;
    block = Point(Random::rand() % (_panel->width() / 2 + 1) * 2,
                  Random::rand() % (_panel->height() / 2 + 1) * 2);
    while (pos == block || exit == block) {
      block = Point(Random::rand() % (_panel->width() / 2 + 1) * 2,
                    Random::rand() % (_panel->height() / 2 + 1) * 2);
    }
    set_path(block);
  } else if (get_parity(pos + exit) != _panel->get_parity())
    return false;
  int fails = 0;
  int reqLength =
      _panel->get_num_grid_points() + static_cast<int>(_path.size()) / 2;
  bool centerFlag = !on_edge(pos);
  set_path(pos);
  while (pos != exit && !(_panel->symmetry && get_sym_point(pos) == exit)) {
    std::vector<std::string> solution;  // For debugging only
    for (int y = 0; y < _panel->height(); y++) {
      std::string row;
      for (int x = 0; x < _panel->width(); x++) {
        if (get(x, y) == PATH) {
          row += "xx";
        } else
          row += "    ";
      }
      solution.push_back(row);
    }
    if (fails++ > 20) return false;
    Point dir = pick_random(_DIRECTIONS2);
    for (Point checkDir : _DIRECTIONS2) {
      Point check = pos + checkDir;
      if (off_edge(check) || hasSymbolOrPath(check)) continue;
      if (check == exit) continue;
      int open = 0;
      for (Point checkDir2 : _DIRECTIONS2) {
        Point added = check + checkDir2;
        if (!off_edge(added) && !hasSymbolOrPath(added)) {
          if (++open >= 2) break;
        }
      }
      if (open < 2) {
        dir = checkDir;
        break;
      }
    }
    Point newPos = pos + dir;
    Point directed = pos + dir / 2;
    // Various checks to see if going this direction will lead to any issues
    if (off_edge(newPos) || hasSymbolOrPath(newPos) ||
        hasSymbolOrPath(directed) ||
        newPos == exit && _path.size() / 2 + 3 < reqLength ||
        _panel->symmetry && get_sym_point(newPos) == exit &&
            _path.size() / 2 + 3 < reqLength)
      continue;
    if (_panel->symmetry &&
        (off_edge(get_sym_point(newPos)) || newPos == get_sym_point(newPos)))
      continue;
    Point added = newPos + dir;
    if (on_edge(newPos) && _panel->symmetry != Panel::Symmetry::Horizontal &&
        added != block && (off_edge(added) || hasSymbolOrPath(added))) {
      if (centerFlag && off_edge(added)) {
        centerFlag = false;
      } else {
        int open = 0;
        for (Point checkDir : _DIRECTIONS2) {
          Point extorted = newPos + checkDir;
          if (!off_edge(extorted) && !hasSymbolOrPath(extorted)) {
            if (++open >= 2) break;
          }
        }
        if (open >= 2) continue;
      }
    }
    set_path(newPos);
    set_path(pos + dir / 2);
    pos = newPos;
    fails = 0;
  }
  if (!off_edge(block))  // Uncover the one dot for false parity
    set(block, 0);
  return _path.size() / 2 + 1 == reqLength;
}

// Generate path that passes through all of the hitPoints in order
bool Generate::generate_special_path() {
  Point pos = adjust_point(pick_random(_starts));
  Point exit = adjust_point(pick_random(_exits));
  if (off_edge(pos) || off_edge(exit)) return false;
  set_path(pos);
  for (Point p : hitPoints) {
    set(p, PATH);
  }
  int hitIndex = 0;
  int minLength = _panel->get_num_grid_points() * 3 / 4;
  while (pos != exit) {
    std::vector<Point> validDir;
    for (Point dir : _DIRECTIONS2) {
      Point newPos = pos + dir;
      if (off_edge(newPos)) continue;
      Point connectPos = pos + dir / 2;
      // Go through the hit point if passing next to it
      if (get(connectPos) == PATH && hitIndex < hitPoints.size() &&
          connectPos == hitPoints[hitIndex]) {
        validDir = {dir};
        hitIndex++;
        break;
      }
      if (hasSymbolOrPath(newPos) || hasSymbolOrPath(connectPos) ||
          newPos == exit && (hitIndex != hitPoints.size() ||
                             _path.size() / 2 + 2 < minLength))
        continue;
      if (_panel->symmetry && newPos == get_sym_point(newPos)) continue;
      bool fail = false;
      for (Point dir : _DIRECTIONS1) {
        Point added = newPos + dir;
        if (!off_edge(added) && get(added) == PATH &&
            newPos + dir != hitPoints[hitIndex]) {
          fail = true;
          break;
        }
      }
      if (fail) continue;
      validDir.push_back(dir);
    }
    if (validDir.size() == 0) return false;
    Point dir = pick_random(validDir);
    set_path(pos + dir);
    set_path(pos + dir / 2);
    pos = pos + dir;
  }
  return hitIndex == hitPoints.size() && _path.size() >= minLength;
}

// Eerase the path from the puzzle grid
void Generate::erase_path() {
  /*_drawnPath.clear();
  _drawnPath.resize(_height);
  for (auto& row : _drawnPath) row.resize(_width);*/
  for (int x = 0; x < _panel->width(); x++) {
    for (int y = 0; y < _panel->height(); y++) {
      if (get(x, y) == PATH) set(x, y, 0);
    }
  }
}

// If a point is on an edge, bump it randomly to an adjacent vertex. Otherwise,
// the point is untouched
Point Generate::adjust_point(Point pos) {
  if (pos.first % 2 != 0) {
    if (hasSymbolOrPath(pos)) return {-10, -10};
    set_path(pos);
    return Point(pos.first - 1 + Random::rand() % 2 * 2, pos.second);
  }
  if (pos.second % 2 != 0) {
    if (hasSymbolOrPath(pos)) return {-10, -10};
    set_path(pos);
    return Point(pos.first, pos.second - 1 + Random::rand() % 2 * 2);
  }
  if (_panel->symmetry && _exits.count(pos) &&
      !_exits.count(get_sym_point(pos)))
    return {-10, -10};
  return pos;
}

// Get the set of points in region containing the point (pos)
std::set<Point> Generate::get_region(Point pos) {
  std::set<Point> region;
  std::vector<Point> check;
  check.push_back(pos);
  region.insert(pos);
  while (check.size() > 0) {
    Point p = check[check.size() - 1];
    check.pop_back();
    for (Point dir : _DIRECTIONS1) {
      Point p1 = p + dir;
      if (on_edge(p1)) continue;
      if (get(p1) == PATH || get(p1) == OPEN) continue;
      Point p2 = p + dir * 2;
      if ((get(p2) & Decoration::Empty) == Decoration::Empty) continue;
      if (region.insert(p2).second) {
        check.push_back(p2);
      }
    }
  }
  return region;
}

// Get all the symbols in the region containing including the point (pos)
std::vector<int> Generate::get_symbols_in_region(Point pos) {
  return get_symbols_in_region(get_region(pos));
}

// Get all the symbols in the given region
std::vector<int> Generate::get_symbols_in_region(
    const std::set<Point>& region) {
  std::vector<int> symbols;
  for (Point p : region) {
    if (get(p)) symbols.push_back(get(p));
  }
  return symbols;
}

// Place a start point in a random location
bool Generate::place_start(int amount) {
  _starts.clear();
  _panel->ClearStartpoints();
  while (amount > 0) {
    Point pos = Point(Random::rand() % (_panel->width() / 2 + 1) * 2,
                      Random::rand() % (_panel->height() / 2 + 1) * 2);
    if (hasFlag(Config::StartEdgeOnly)) switch (Random::rand() % 4) {
        case 0:
          pos.first = 0;
          break;
        case 1:
          pos.second = 0;
          break;
        case 2:
          pos.first = _panel->width() - 1;
          break;
        case 3:
          pos.second = _panel->height() - 1;
          break;
      }
    if (_parity != -1 && get_parity(pos) != (amount == 1 ? _parity : !_parity))
      continue;
    if (_starts.count(pos) || _exits.count(pos)) continue;
    if (_panel->symmetry && pos == get_sym_point(pos)) continue;
    // Highly discourage putting start points adjacent
    bool adjacent = false;
    for (Point dir : _DIRECTIONS2) {
      if (!off_edge(pos + dir) && get(pos + dir) == Decoration::Start) {
        adjacent = true;
        break;
      }
    }
    if (adjacent && Random::rand() % 10 > 0) continue;
    _starts.insert(pos);
    _panel->SetGridSymbol(pos.first, pos.second, Decoration::Start,
                          Decoration::Color::None);
    amount--;
    if (_panel->symmetry) {
      Point sp = get_sym_point(pos);
      _starts.insert(sp);
      _panel->SetGridSymbol(sp.first, sp.second, Decoration::Start,
                            Decoration::Color::None);
    }
  }
  return true;
}

// Place an exit point in a random location on the edge of the grid
bool Generate::place_exit(int amount) {
  _exits.clear();
  _panel->ClearExits();
  while (amount > 0) {
    Point pos = Point(Random::rand() % (_panel->width() / 2 + 1) * 2,
                      Random::rand() % (_panel->height() / 2 + 1) * 2);
    switch (Random::rand() % 4) {
      case 0:
        pos.first = 0;
        break;
      case 1:
        pos.second = 0;
        break;
      case 2:
        pos.first = _panel->width() - 1;
        break;
      case 3:
        pos.second = _panel->height() - 1;
        break;
    }
    if (_parity != -1 && (get_parity(pos) + _panel->get_parity()) % 2 !=
                             (amount == 1 ? _parity : !_parity))
      continue;
    if (_starts.count(pos) || _exits.count(pos)) continue;
    if (_panel->symmetry && pos == get_sym_point(pos)) continue;
    if (_panel->symmetry && get_sym_point(pos).first != 0 &&
        get_sym_point(pos).second != 0)
      continue;
    // Prevent putting exit points adjacent
    bool adjacent = false;
    for (Point dir : _8DIRECTIONS2) {
      if (!off_edge(pos + dir) && get(pos + dir) == Decoration::Exit) {
        adjacent = true;
        break;
      }
    }
    if (adjacent) continue;
    _exits.insert(pos);
    _panel->SetGridSymbol(pos.first, pos.second, Decoration::Exit,
                          Decoration::Color::None);
    amount--;
    if (_panel->symmetry) {
      Point sp = get_sym_point(pos);
      _exits.insert(sp);
      _panel->SetGridSymbol(sp.first, sp.second, Decoration::Exit,
                            Decoration::Color::None);
    }
  }
  return true;
}

// Check if a gap can be placed at pos.
bool Generate::can_place_gap(Point pos) {
  // Prevent putting open gaps at edges of the puzzle
  if (pos.first == 0 || pos.second == 0) {
    if (hasFlag(Config::FullGaps)) return false;
  } else if (Random::rand() % 2 == 0)
    return false;  // Encourages gaps on outside border
  // Prevent putting a gap on top of a start/end point
  if (_starts.count(pos) || _exits.count(pos)) return false;
  // For symmetry puzzles, prevent putting two gaps symmetrically opposite
  if (_panel->symmetry && (get_sym_point(pos) == pos) ||
      (get(get_sym_point(pos)) & Decoration::Gap))
    return false;
  if ((_panel->symmetry == Panel::Symmetry::ParallelH ||
       _panel->symmetry == Panel::Symmetry::ParallelHFlip) &&
      pos.second == _panel->height() / 2)
    return false;
  if ((_panel->symmetry == Panel::Symmetry::ParallelV ||
       _panel->symmetry == Panel::Symmetry::ParallelVFlip) &&
      pos.first == _panel->width() / 2)
    return false;
  if (_panel->symmetry == Panel::Symmetry::FlipNegXY &&
      (pos.first + pos.second == _width - 1 ||
       pos.first + pos.second == _width + 1))
    return false;
  if (_panel->symmetry == Panel::Symmetry::FlipXY &&
      (pos.first - pos.second == 1 || pos.first - pos.second == -1))
    return false;
  if (hasFlag(Config::FullGaps)) {  // Prevent forming dead ends with open gaps
    std::vector<Point> checkPoints =
        (pos.first % 2 == 0
             ? std::vector<Point>({Point(pos.first, pos.second - 1),
                                   Point(pos.first, pos.second + 1)})
             : std::vector<Point>({Point(pos.first - 1, pos.second),
                                   Point(pos.first + 1, pos.second)}));
    for (Point check : checkPoints) {
      int valid = 4;
      for (Point dir : _DIRECTIONS1) {
        Point p = check + dir;
        if (off_edge(p) || get(p) & GAP || get(p) == OPEN) {
          if (--valid <= 2) {
            return false;
          }
        }
      }
    }
  }
  return true;
}

// Place the given amount of gaps radomly around the puzzle
bool Generate::place_gaps(int amount) {
  std::set<Point> open;
  for (int y = 0; y < _panel->height(); y++) {
    for (int x = (y + 1) % 2; x < _panel->width(); x += 2) {
      if (get(x, y) == 0 && (!_fullGaps || !on_edge(Point(x, y)))) {
        open.emplace(Point(x, y));
      }
    }
  }

  while (amount > 0) {
    if (open.size() == 0) return false;
    Point pos = pick_random(open);
    if (can_place_gap(pos)) {
      set(pos, _fullGaps            ? static_cast<Decoration::Shape>(OPEN)
               : pos.first % 2 == 0 ? Decoration::Gap_Column
                                    : Decoration::Gap_Row);
      amount--;
    }
    open.erase(pos);
  }
  return true;
}

// Check if a dot can be placed at pos.
bool Generate::can_place_dot(Point pos, bool intersectionOnly) {
  if (get(pos) & DOT) return false;
  if (_panel->symmetry) {
    // For symmetry puzzles, make sure the current pos and symmetric pos are
    // both valid
    Point symPos = get_sym_point(pos);
    if (symPos == pos) return false;
    Panel::Symmetry backupSym = _panel->symmetry;
    _panel->symmetry = Panel::Symmetry::None;  // To prevent endless recursion
    // if (!can_place_dot(get_sym_point(pos))) {
    if (!can_place_dot(symPos, intersectionOnly)) {
      _panel->symmetry = backupSym;
      return false;
    }
    _panel->symmetry = backupSym;
  }
  if (_panel->symmetry == Panel::Symmetry::RotateLeft && _path1.count(pos) &&
      _path2.count(pos))
    return false;  // Prevent sharing of dots between symmetry lines
  if (hasFlag(Config::DisableDotIntersection)) return true;
  for (Point dir : _8DIRECTIONS1) {
    Point p = pos + dir;
    if (!off_edge(p) && (get(p) & DOT)) {
      // Don't allow adjacent dots
      if (dir.first == 0 || dir.second == 0) return false;
      // Allow diagonally adjacent placement some of the time
      if (Random::rand() % 2 > 0) return false;
    }
  }
  // Allow 2-space horizontal/vertical placement some of the time
  if (Random::rand() % (intersectionOnly ? 10 : 5) > 0) {
    for (Point dir : _DIRECTIONS2) {
      Point p = pos + dir;
      if (!off_edge(p) && (get(p) & DOT)) {
        return false;
      }
    }
  }
  return true;
}

// Place the given amount of dots at random points on the path
bool Generate::place_dots(int amount, int color, bool intersectionOnly) {
  if (_parity != -1) {  // For full dot puzzles, don't put dots on the starts
                        // and exits unless there are multiple
    for (int x = 0; x < _panel->width(); x += 2) {
      for (int y = 0; y < _panel->height(); y += 2) {
        if (_starts.size() == 1 && _starts.count(Point(x, y))) continue;
        if (_exits.size() == 1 && _exits.count(Point(x, y))) continue;
        if (!hasSymbolOrPath(x, y)) continue;
        set(x, y, Decoration::Dot_Intersection);
      }
    }
    amount -= _panel->get_num_grid_points();
    if (amount <= 0) return true;
    intersectionOnly = false;
    setFlagOnce(Config::DisableDotIntersection);
  }

  if (color == Decoration::Color::Blue || color == Decoration::Color::Cyan)
    color = IntersectionFlags::DOT_IS_BLUE;
  else if (color == Decoration::Color::Yellow ||
           color == Decoration::Color::Orange)
    color = IntersectionFlags::DOT_IS_ORANGE;
  else
    color = 0;

  std::set<Point> open = (color == 0                                  ? _path
                          : (color == IntersectionFlags::DOT_IS_BLUE) ? _path1
                                                                      : _path2);
  for (Point p : _starts) open.erase(p);
  for (Point p : _exits) open.erase(p);
  for (Point p : blockPos) open.erase(p);
  if (intersectionOnly) {
    std::set<Point> intersections;
    for (Point p : open) {
      if (p.first % 2 == 0 && p.second % 2 == 0) intersections.insert(p);
    }
    open = intersections;
  }
  if (hasFlag(Config::DisableDotIntersection)) {
    std::set<Point> intersections;
    for (Point p : open) {
      if (p.first % 2 != 0 || p.second % 2 != 0) intersections.insert(p);
    }
    open = intersections;
  }

  while (amount > 0) {
    if (open.size() == 0) return false;
    Point pos = pick_random(open);
    open.erase(pos);
    if (!can_place_dot(pos, intersectionOnly)) continue;
    Decoration::Shape symbol = (pos.first & 1) == 1 ? Decoration::Dot_Row
                               : (pos.second & 1) == 1
                                   ? Decoration::Dot_Column
                                   : Decoration::Dot_Intersection;
    set(pos, symbol | color);
    for (Point dir : _DIRECTIONS1) {
      open.erase(pos + dir);
    }  // If symmetry, set a flag to break the point symmetric to the dot
    if (_panel->symmetry) {
      Point sp = get_sym_point(pos);
      symbol = (sp.first & 1) == 1    ? Decoration::Dot_Row
               : (sp.second & 1) == 1 ? Decoration::Dot_Column
                                      : Decoration::Dot_Intersection;
      if (symbol != Decoration::Dot_Intersection)
        set(sp, symbol & ~Decoration::Dot);
      open.erase(sp);
      for (Point dir : _DIRECTIONS1) {
        open.erase(sp + dir);
      }
    }
    amount--;
  }
  return true;
}

// Check if a stone can be placed at pos.
bool Generate::can_place_stone(const std::set<Point>& region, int color) {
  for (Point p : region) {
    int sym = get(p);
    if (get_symbol_type(sym) == Decoration::Stone) return (sym & 0xf) == color;
  }
  return true;
}

// Place the given amount of stones with the given color
bool Generate::place_stones(int color, int amount) {
  std::set<Point> open = _openpos;
  std::set<Point>
      open2;  // Used to store open points removed from the first pass, to make
              // sure a stone is put in every non-adjacent region
  int passCount = 0;
  int originalAmount = amount;
  while (amount > 0) {
    if (open.size() == 0) {
      // Make sure there is room for the remaining stones and enough partitions
      // have been made (based on the grid size)
      if (open2.size() < amount ||
          _bisect &&
              passCount < std::min(originalAmount, (_panel->width() / 2 +
                                                    _panel->height() / 2 + 2) /
                                                       4))
        return false;
      // Put remaining stones wherever they will fit
      Point pos = pick_random(open2);
      set(pos, Decoration::Stone | color);
      _openpos.erase(pos);
      open2.erase(pos);
      amount--;
      continue;
    }
    Point pos = pick_random(open);
    std::set<Point> region = get_region(pos);
    if (!can_place_stone(region, color)) {
      for (Point p : region) {
        open.erase(p);
      }
      continue;
    }
    if (_stoneTypes > 2) {  // If more than two colors, group stones together,
                            // otherwise it takes too long to generate.
      open.clear();
      for (Point p : region) {
        if (_openpos.count(p)) open.insert(p);
      }
    }
    open.erase(pos);
    if (_panel->symmetry) {
      open.erase(get_sym_point(pos));
    }
    if (_stoneTypes == 2) {
      for (Point p : region) {
        if (open.erase(p)) open2.insert(p);
      }  // Remove adjacent regions from the open list
      for (Point p : region) {
        for (Point dir : _8DIRECTIONS2) {
          Point pos2 = p + dir;
          if (open.count(pos2) && !region.count(pos2)) {
            for (Point P : get_region(pos2)) {
              open.erase(P);
            }
          }
        }
      }
    }
    set(pos, Decoration::Stone | color);
    _openpos.erase(pos);
    amount--;
    passCount++;
  }
  _bisect = false;  // After placing one color, adjacent regions are allowed
  _stoneTypes--;
  return true;
}

// Generate a random shape. region - the region of points to choose from; points
// chosen will be removed. bufferRegion - points that may be chosen twice due to
// overlapping shapes; points will be removed from here before points in region.
// maxSize - the maximum size of the generated shape. Whether the points can be
// contiguous or not is determined by local variable _SHAPEDIRECTIONS
Shape Generate::generate_shape(std::set<Point>& region,
                               std::set<Point>& bufferRegion, Point pos,
                               int maxSize) {
  Shape shape;
  shape.insert(pos);
  if (!bufferRegion.erase(pos)) region.erase(pos);
  while (shape.size() < maxSize && region.size() > 0) {
    pos = pick_random(shape);
    int i = 0;
    for (; i < 10; i++) {
      Point dir = pick_random(_SHAPEDIRECTIONS);
      Point p = pos + dir;
      if (region.count(p) && !shape.count(p)) {
        shape.insert(p);
        if (!bufferRegion.erase(p)) region.erase(p);
        break;
      }
    }
    if (i == 10) return shape;
  }
  return shape;
}

// Get the integer representing the shape, accounting for whether it is rotated
// or negative. -1 rotation means a random rotation, depth is for controlling
// recursion and should be set to 0
int Generate::make_shape_symbol(Shape shape, bool rotated, bool negative,
                                int rotation, int depth) {
  int symbol = static_cast<int>(Decoration::Poly);
  if (rotated) {
    if (rotation == -1) {
      if (make_shape_symbol(shape, rotated, negative, 0, depth + 1) ==
          make_shape_symbol(shape, rotated, negative, 1, depth + 1))
        return 0;  // Check to make sure the shape is not the same when rotated
      rotation = Random::rand() % 4;
    }
    symbol |= Decoration::Can_Rotate;
    Shape newShape;  // Rotate shape points according to rotation
    for (Point p : shape) {
      switch (rotation) {
        case 0:
          newShape.insert(p);
          break;
        case 1:
          newShape.emplace(Point(p.second, -p.first));
          break;
        case 2:
          newShape.emplace(Point(-p.second, p.first));
          break;
        case 3:
          newShape.emplace(Point(-p.first, -p.second));
          break;
      }
    }
    shape = newShape;
  }
  if (negative) symbol |= Decoration::Negative;
  int xmin = INT_MAX, xmax = INT_MIN, ymin = INT_MAX, ymax = INT_MIN;
  for (Point p : shape) {
    if (p.first < xmin) xmin = p.first;
    if (p.first > xmax) xmax = p.first;
    if (p.second < ymin) ymin = p.second;
    if (p.second > ymax) ymax = p.second;
  }
  if (xmax - xmin > 6 ||
      ymax - ymin > 6) {  // Shapes cannot be more than 4 in width and height
    return 0;
  }
  // Translate to the corner and set bit flags (16 bits, 1 where a shape block
  // is present)
  for (Point p : shape) {
    symbol |= (1 << ((p.first - xmin) / 2 + (ymax - p.second) * 2)) << 16;
  }
  if (Random::rand() % 4 >
      0) {  // The generator makes a certain type of symbol way too often (2x2
            // square with another square attached), this makes it much less
            // frequent
    int type = symbol >> 16;
    if (type == 0x0331 || type == 0x0332 || type == 0x0037 || type == 0x0067 ||
        type == 0x0133 || type == 0x0233 || type == 0x0073 || type == 0x0076)
      return 0;
  }
  return symbol;
}

// Place the given amount of shapes with random colors selected from the color
// vectors. colors - colors for regular shapes, negativeColors - colors for
// negative shapes, amount - how many normal shapes numRotated - how many
// rotated shapes, numNegative - how many negative shapes
bool Generate::place_shapes(const std::vector<int>& colors,
                            const std::vector<int>& negativeColors, int amount,
                            int numRotated, int numNegative) {
  std::set<Point> open = _openpos;
  int shapeSize = hasFlag(Config::SmallShapes) ? 2
                  : hasFlag(Config::BigShapes) ? amount == 1 ? 8 : 6
                                               : 4;
  int targetArea = amount * shapeSize * 7 /
                   8;  // Average size must be at least 7/8 of the target size
  if (amount * shapeSize > _panel->get_num_grid_blocks())
    targetArea = _panel->get_num_grid_blocks();
  int originalAmount = amount;
  if (hasFlag(Generate::Config::MountainFloorH) &&
      _panel->width() ==
          9) {  // The 4 small puzzles shape size may vary depending on the path
    targetArea = 0;
    removeFlag(Generate::Config::MountainFloorH);
  }
  int totalArea = 0;
  int minx = _panel->width(), miny = _panel->height(), maxx = 0, maxy = 0;
  int colorIndex = Random::rand() % colors.size();
  int colorIndexN = Random::rand() % (negativeColors.size() + 1);
  bool shapesCanceled = false, shapesCombined = false, flatShapes = true;
  if (amount == 1) shapesCombined = true;
  while (amount > 0) {
    if (open.size() == 0) return false;
    Point pos = pick_random(open);
    std::set<Point> region = get_region(pos);
    std::set<Point> bufferRegion;
    std::set<Point> open2;  // Open points for just that region
    for (Point p : region) {
      if (open.erase(p)) open2.insert(p);
    }
    if (region.size() + totalArea == _panel->get_num_grid_blocks() &&
        targetArea != _panel->get_num_grid_blocks())
      continue;  // To prevent shapes from filling every grid point
    std::vector<Shape> shapes;
    std::vector<Shape> shapesN;
    int numShapesN = std::min(
        Random::rand() % (numNegative + 1),
        static_cast<int>(region.size()) /
            3);  // Negative blocks may be at max 1/3 of the regular blocks
    if (amount == 1) numShapesN = numNegative;
    if (numShapesN) {
      std::set<Point> regionN = _gridpos;
      int maxSize = static_cast<int>(region.size()) -
                    numShapesN * 3;  // Max size of negative shapes
      if (maxSize == 0) maxSize = 1;
      for (int i = 0; i < numShapesN; i++) {
        pos = pick_random(region);
        // Try to pick a random point adjacent to a shape
        for (int i = 0; i < 10; i++) {
          Point p = pos + pick_random(_SHAPEDIRECTIONS);
          if (regionN.count(p) && !region.count(p)) {
            pos = p;
            break;
          }
        }
        if (!regionN.count(pos)) return false;
        Shape shape = generate_shape(regionN, pos,
                                     std::min(Random::rand() % 3 + 1, maxSize));
        shapesN.push_back(shape);
        for (Point p : shape) {
          if (region.count(p))
            bufferRegion.insert(
                p);  // Buffer region stores overlap between shapes
          else
            region.insert(p);
        }
      }
    }
    int numShapes =
        static_cast<int>(region.size() + bufferRegion.size()) /
            (shapeSize + 1) +
        1;  // Pick a number of shapes to make. I tried different ones until I
            // found something that made a good variety of shapes
    if (numShapes == 1 && bufferRegion.size() > 0)
      numShapes++;  // If there is any overlap, we need at least two shapes
    if (numShapes < amount && region.size() > shapeSize &&
        Random::rand() % 2 == 1)
      numShapes++;  // Adds more variation to the shape sizes
    if (region.size() <= shapeSize + 1 && bufferRegion.size() == 0 &&
        Random::rand() % 2 == 1)
      numShapes = 1;  // For more variation, sometimes make a bigger shape than
                      // the target if the size is close
    if (hasFlag(Config::MountainFloorH)) {
      if (region.size() < 19) continue;
      numShapes = 6;  // The big mountain floor puzzle on hard mode needs
                      // additional shapes since some combine
      targetArea = 19;
    }
    if (hasFlag(Config::SplitShapes) && numShapes != 1) continue;
    if (hasFlag(Config::RequireCombineShapes) && numShapes == 1) continue;
    bool balance = false;
    if (numShapes >
        amount  // The region is too big for the number of shapes chosen
    ) {
      if (numNegative < 2 || hasFlag(Config::DisableCancelShapes)) continue;
      // Make balancing shapes - Positive and negative will be switched so that
      // code can be reused
      balance = true;
      std::set<Point> regionN = _gridpos;
      numShapes = std::max(
          2, Random::rand() % numNegative + 1);  // Actually the negative shapes
      numShapesN = std::min(amount, 1);          // Actually the positive shapes
      if (numShapesN >= numShapes * 3 || numShapesN * 5 <= numShapes) continue;
      shapes.clear();
      shapesN.clear();
      region.clear();
      bufferRegion.clear();
      for (int i = 0; i < numShapesN; i++) {
        Shape shape =
            generate_shape(regionN, pick_random(regionN),
                           std::min(shapeSize + 1, numShapes * 2 / numShapesN +
                                                       Random::rand() % 3 - 1));
        shapesN.push_back(shape);
        for (Point p : shape) {
          region.insert(p);
        }
      }
      shapesCanceled = true;
      // Let the rest of the algorithm create the cancelling shapes
    }
    if (_panel->symmetry && numShapes == originalAmount && numShapes >= 3 &&
        !region.count(Point((_panel->width() / 4) * 2 + 1,
                            (_panel->height() / 4) * 2 + 1)))
      continue;  // Prevent it from shoving all shapes to one side of symmetry
    if ((_panel->symmetry == Panel::Symmetry::ParallelH ||
         _panel->symmetry == Panel::Symmetry::ParallelV ||
         _panel->symmetry == Panel::Symmetry::ParallelHFlip ||
         _panel->symmetry == Panel::Symmetry::ParallelVFlip) &&
        region.count(Point((_panel->width() / 4) * 2 + 1,
                           (_panel->height() / 4) * 2 + 1)))
      continue;  // Prevent parallel symmetry from making regions through the
                 // center line (this tends to make the puzzles way too hard)
    if (!balance && numShapesN &&
        (numShapesN > 1 && numRotated > 0 || numShapesN > 2 ||
         numShapes + numShapesN > 6))
      continue;  // Trying to prevent the game's shape calculator from lagging
                 // too much
    if (!(hasFlag(Config::MountainFloorH) && _panel->width() == 11) &&
        open2.size() < numShapes + numShapesN)
      continue;  // Not enough space to put the symbols
    if (numShapes == 1) {
      shapes.push_back(region);
      region.clear();
    } else
      for (; numShapes > 0; numShapes--) {
        if (region.size() == 0) break;
        Shape shape =
            generate_shape(region, bufferRegion, pick_random(region),
                           balance ? Random::rand() % 3 + 1 : shapeSize);
        if (!balance && numShapesN)
          for (Shape s : shapesN)
            if (std::equal(shape.begin(), shape.end(), s.begin(), s.end()))
              return false;  // Prevent unintentional in-group canceling
        shapes.push_back(shape);
      }
  // Take remaining area and try to stick it to existing shapes
  multibreak:
    while (region.size() > 0) {
      pos = pick_random(region);
      for (Shape& shape : shapes) {
        if (shape.size() > shapeSize || shape.count(pos) > 0) continue;
        for (Point p : shape) {
          for (Point dir : _DIRECTIONS2) {
            if (pos + dir == p) {
              shape.insert(pos);
              if (!bufferRegion.erase(pos)) region.erase(pos);
              goto multibreak;
            }
          }
        }
      }
      // Failed to cover entire region, need to pick a different region
      break;
    }
    if (region.size() > 0) continue;
    if (balance) {  // Undo swap for balancing shapes
      std::swap(shapes, shapesN);
    }
    numShapes = static_cast<int>(shapes.size());
    for (Shape& shape : shapesN) {
      shapes.push_back(shape);
    }
    if (hasFlag(Config::DisconnectShapes)) {
      // Make sure at least one shape is disconnected
      bool disconnect = false;
      for (Shape& shape : shapes) {
        if (shape.size() == 1) continue;
        disconnect = true;
        for (Point p : shape) {
          for (Point dir : _DIRECTIONS2) {
            if (shape.count(p + dir)) {
              disconnect = false;
              break;
            }
          }
          if (!disconnect) break;
        }
        if (disconnect) break;
      }
      if (!disconnect) continue;
    }
    if (numShapes > 1) shapesCombined = true;
    numNegative -= static_cast<int>(shapesN.size());
    if (hasFlag(Generate::Config::MountainFloorH) &&
        amount ==
            6) {  // For mountain floor, combine some of the shapes together
      if (!combine_shapes(shapes) ||
          !combine_shapes(
              shapes))  // Must call this twice b/c there are two combined areas
        return false;
      amount -= 2;
    }
    for (Shape& shape : shapes) {
      int symbol =
          make_shape_symbol(shape, (numRotated-- > 0), (numShapes-- <= 0));
      if (symbol == 0) return false;
      if (!((symbol >> 16) == 0x000F || (symbol >> 16) == 0x1111))
        flatShapes = false;
      // Attempt not to put shape symbols adjacent
      Point pos;
      for (int i = 0; i < 10; i++) {
        if (open2.size() == 0) return false;
        pos = pick_random(open2);
        bool pass = true;
        for (Point dir : _8DIRECTIONS2) {
          Point p = pos + dir;
          if (!off_edge(p) && get(p) & Decoration::Poly) {
            pass = false;
            break;
          }
        }
        if (pass) break;
      }
      if (symbol & Decoration::Negative)
        set(pos,
            symbol | negativeColors[(colorIndexN++) % negativeColors.size()]);
      else {
        set(pos, symbol | colors[(colorIndex++) % colors.size()]);
        totalArea += static_cast<int>(shape.size());
        amount--;
      }
      open2.erase(pos);
      _openpos.erase(pos);
      if (_panel->symmetry && originalAmount >= 3) {
        for (const Point& p : shape) {
          if (p.first < minx) minx = p.first;
          if (p.second < miny) miny = p.second;
          if (p.first > maxx) maxx = p.first;
          if (p.second > maxy) maxy = p.second;
        }
      }
    }
  }  // Do some final checks - make sure targetArea has been reached, all shapes
     // have been placed, and that config requirements have been met
  if (totalArea < targetArea || numNegative > 0 ||
      hasFlag(Config::RequireCancelShapes) && !shapesCanceled ||
      hasFlag(Config::RequireCombineShapes) && !shapesCombined ||
      originalAmount > 1 && flatShapes)
    return false;
  // If symmetry, make sure it didn't shove all the shapes to one side
  if (_panel->symmetry && originalAmount >= 3 &&
      (minx >= _panel->width() / 2 || maxx <= _panel->width() / 2 ||
       miny >= _panel->height() / 2 || maxy <= _panel->height() / 2))
    return false;
  return true;
}

// Count the occurrence of the given symbol color in the given region (for the
// stars)
int Generate::count_color(const std::set<Point>& region, int color) {
  int count = 0;
  for (Point p : region) {
    int sym = get(p);
    if (sym && (sym & 0xf) == color)
      if (count++ == 2) return count;
  }
  return count;
}

// Place the given amount of stars with the given color
bool Generate::place_stars(int color, int amount) {
  std::set<Point> open = _openpos;
  while (amount > 0) {
    if (open.size() == 0) return false;
    Point pos = pick_random(open);
    std::set<Point> region = get_region(pos);
    std::set<Point> open2;  // All of the open points in that region
    for (Point p : region) {
      if (open.erase(p)) open2.insert(p);
    }
    int count = count_color(region, color);
    if (count >= 2) continue;  // Too many of that color
    if (open2.size() + count < 2)
      continue;  // Not enough space to get 2 of that color
    if (count == 0 && amount == 1)
      continue;  // If one star is left, it needs a pair
    set(pos, Decoration::Star | color);
    _openpos.erase(pos);
    amount--;
    if (count == 0) {  // Add a second star of the same color
      open2.erase(pos);
      if (open2.size() == 0) return false;
      pos = pick_random(open2);
      set(pos, Decoration::Star | color);
      _openpos.erase(pos);
      amount--;
    }
  }
  return true;
}

// Check if there is a star in the given region
bool Generate::has_star(const std::set<Point>& region, int color) {
  for (Point p : region) {
    if (get(p) == (Decoration::Star | color)) return true;
  }
  return false;
}

bool Generate::checkStarZigzag() {
  if (_panel->width() <= 5 || _panel->height() <= 5) return true;
  for (int y = 1; y < _panel->height(); y += 2) {
    std::map<int, int> colorCount;
    for (int x = 1; x < _panel->width(); x += 2) {
      int color = get(x, y);
      if (color == 0) continue;
      if (!colorCount.count(color)) colorCount[color] = 0;
      colorCount[color] += 1;
    }
    for (std::pair<int, int> count : colorCount)
      if (count.second % 2 != 0) return true;
  }
  return false;
}

// Place the given amount of triangles with the given color. targetCount is how
// many triangles are in the symbol, or 0 for random
bool Generate::place_triangles(int color, int amount, int targetCount) {
  /*if (_panel->id == 0x033EA) {  // Keep Yellow Pressure Plate
    int count = count_sides({1, 3});
    set({1, 3}, Decoration::Triangle | (count << 16) | color);
    _openpos.erase({1, 3});
  }*/
  std::set<Point> open = _openpos;
  int count1 = 0, count2 = 0, count3 = 0;
  while (amount > 0) {
    if (open.size() == 0) return false;
    Point pos = pick_random(open);
    int count = count_sides(pos);
    open.erase(pos);
    if (_panel->symmetry) {
      open.erase(get_sym_point(pos));
    }
    if (count == 0 || targetCount && count != targetCount) continue;
    if (hasFlag(Config::TreehouseLayout) /*||
        _panel->id == 0x289E7*/) {  // If the block is adjacent to a start or
                                  // exit, don't place a triangle there
      bool found = false;
      for (Point dir : _DIRECTIONS1) {
        if (_starts.count(pos + dir) || _exits.count(pos + dir)) {
          found = true;
          break;
        }
      }
      if (found) continue;
    }
    if (count == 1) {
      if (!targetCount && count1 * 2 > count2 + count3 &&
          Random::rand() % 2 == 0)
        continue;
      count1++;
    }
    if (count == 2) {
      if (!targetCount && count2 * 2 > count1 + count3 &&
          Random::rand() % 2 == 0)
        continue;
      count2++;
    }
    if (count == 3) {
      if (!targetCount && count3 * 2 > count1 + count2 &&
          Random::rand() % 2 == 0)
        continue;
      count3++;
    }
    set(pos, Decoration::Triangle | (count << 16) | color);
    _openpos.erase(pos);
    amount--;
  }
  return true;
}

// Count how many sides are touched by the line (for the triangles)
int Generate::count_sides(Point pos) {
  int count = 0;
  for (Point dir : _DIRECTIONS1) {
    Point p = pos + dir;
    if (!off_edge(p) && get(p) == PATH) {
      count++;
    }
  }
  return count;
}

// Place the given amount of arrows with the given color. targetCount is how
// many ticks on the arrows, or 0 for random The color won't actually be
// reflected, ArrowRecolor must be used instead
bool Generate::place_arrows(int color, int amount, int targetCount) {
  std::set<Point> open = _openpos;
  while (amount > 0) {
    if (open.size() == 0) return false;
    Point pos = pick_random(open);
    open.erase(pos);
    if (pos.first == _panel->width() / 2)
      continue;  // Because of a glitch where arrows in the center column won't
                 // draw right
    int fails = 0;
    while (fails++ < 20) {  // Keep picking random directions until one works
      int choice = (_parity == -1 ? Random::rand() % 8 : Random::rand() % 4);
      Point dir = _8DIRECTIONS2[choice];
      int count = count_crossings(pos, dir);
      if (count == 0 || count > 3 || targetCount && count != targetCount)
        continue;
      if (dir.first < 0 && count == (pos.first + 1) / 2 ||
          dir.first > 0 && count == (_panel->width() - pos.first) / 2 ||
          dir.second < 0 && count == (pos.second + 1) / 2 ||
          dir.second > 0 && count == (_panel->height() - pos.second) / 2 &&
              Random::rand() % 10 > 0)
        continue;  // Make it so that there will be some possible edges that
                   // aren't passed, in the vast majority of cases
      //_panel->SetGridSymbol(pos, Decoration::Arrow | color | (count << 12) |
      //(choice << 16));
      _openpos.erase(pos);
      amount--;
      break;
    }
  }
  return true;
}

// Count the number of times the given vector is passed through (for the arrows)
int Generate::count_crossings(Point pos, Point dir) {
  pos = pos + dir / 2;
  int count = 0;
  while (!off_edge(pos)) {
    if (get(pos) == PATH) count++;
    pos = pos + dir;
  }
  return count;
}

// Place the given amount of erasers with the given colors. eraseSymbols are the
// symbols that were erased
bool Generate::place_erasers(const std::vector<int>& colors,
                             const std::vector<int>& eraseSymbols) {
  std::set<Point> open = _openpos;
  /*if (_panel->id == 0x288FC && hasFlag(Generate::Config::DisableWrite))
    open.erase({5, 5});  // For the puzzle in the cave with a pillar in middle*/
  int amount = static_cast<int>(colors.size());
  while (amount > 0) {
    if (open.size() == 0) return false;
    int toErase = eraseSymbols[amount - 1];
    int color = colors[amount - 1];
    Point pos = pick_random(open);
    std::set<Point> region = get_region(pos);
    std::set<Point> open2;
    for (Point p : region) {
      if (open.erase(p)) open2.insert(p);
    }
    if (_splitPoints.size() >
        0) {  // Make sure this is one of the split point regions
      bool found = false;
      for (Point p : _splitPoints) {
        if (region.count(p)) {
          found = true;
          break;
        }
      }
      if (!found) continue;
    }
    /*if (_panel->id == 0x288FC && hasFlag(Generate::Config::DisableWrite) &&
        !region.count({5, 5}))
      continue;  // For the puzzle in the cave with a pillar in middle*/
    if (hasFlag(Config::MakeStonesUnsolvable)) {
      std::set<Point> valid;
      for (Point p : open2) {
        // Try to make a checkerboard pattern with the stones
        if (!off_edge(p + Point(2, 2)) && get(p + Point(2, 2)) == toErase &&
                get(p + Point(0, 2)) != 0 && get(p + Point(0, 2)) != toErase &&
                get(p + Point(2, 0)) != 0 && get(p + Point(2, 0)) != toErase ||
            !off_edge(p + Point(-2, 2)) && get(p + Point(-2, 2)) == toErase &&
                get(p + Point(0, 2)) != 0 && get(p + Point(0, 2)) != toErase &&
                get(p + Point(-2, 0)) != 0 &&
                get(p + Point(-2, 0)) != toErase ||
            !off_edge(p + Point(2, -2)) && get(p + Point(2, -2)) == toErase &&
                get(p + Point(0, -2)) != 0 &&
                get(p + Point(0, -2)) != toErase && get(p + Point(2, 0)) != 0 &&
                get(p + Point(2, 0)) != toErase ||
            !off_edge(p + Point(-2, -2)) && get(p + Point(-2, -2)) == toErase &&
                get(p + Point(0, -2)) != 0 &&
                get(p + Point(0, -2)) != toErase &&
                get(p + Point(-2, 0)) != 0 && get(p + Point(-2, 0)) != toErase)
          valid.insert(p);
      }
      open2 = valid;
    }
    if ((open2.size() == 0 || _splitPoints.size() == 0 && open2.size() == 1) &&
        !(toErase & Decoration::Dot))
      continue;
    bool canPlace = false;
    if (get_symbol_type(toErase) == Decoration::Stone) {
      canPlace = !can_place_stone(region, (toErase & 0xf));
    } else if (get_symbol_type(toErase) == Decoration::Star) {
      canPlace = (count_color(region, (toErase & 0xf)) +
                      (color == (toErase & 0xf) ? 1 : 0) !=
                  1);
    } else
      canPlace = true;
    if (!canPlace) continue;

    if (get_symbol_type(toErase) == Decoration::Stone ||
        get_symbol_type(toErase) == Decoration::Star) {
      set(pos, toErase);
    } else if (toErase &
               Decoration::Dot) {  // Find an open edge to put the dot on
      std::set<Point> openEdge;
      for (Point p : region) {
        for (Point dir : _8DIRECTIONS1) {
          if (toErase == Decoration::Dot_Intersection &&
              (dir.first == 0 || dir.second == 0))
            continue;
          Point p2 = p + dir;
          if (!hasSymbolOrPath(p2) &&
              (hasFlag(Config::FalseParity) || can_place_dot(p2, false))) {
            openEdge.insert(p2);
          }
        }
      }
      if (openEdge.size() == 0) continue;
      pos = pick_random(openEdge);
      toErase &= ~IntersectionFlags::INTERSECTION;
      if ((toErase & 0xf) == Decoration::Color::Blue ||
          (toErase & 0xf) == Decoration::Color::Cyan)
        toErase |= IntersectionFlags::DOT_IS_BLUE;
      if ((toErase & 0xf) == Decoration::Color::Yellow ||
          (toErase & 0xf) == Decoration::Color::Orange)
        toErase |= IntersectionFlags::DOT_IS_ORANGE;
      toErase &= ~0x4000f;  // Take away extra flags from the symbol
      if ((pos.first & 1) == 0 && (pos.second & 1) == 0)
        toErase |= Decoration::Dot_Intersection;
      else if ((pos.second & 1) == 0)
        toErase |= Decoration::Dot_Row;
      set(pos, ((pos.first & 1) == 1    ? Decoration::Dot_Row
                : (pos.second & 1) == 1 ? Decoration::Dot_Column
                                        : Decoration::Dot_Intersection) |
                   (toErase & 0xffff));
    } else if (get_symbol_type(toErase) == Decoration::Poly) {
      int symbol = 0;  // Make a random shape to cancel
      while (symbol == 0) {
        std::set<Point> area = _gridpos;
        int shapeSize;
        if ((toErase & Decoration::Negative) || hasFlag(Config::SmallShapes))
          shapeSize = Random::rand() % 3 + 1;
        else {
          shapeSize = Random::rand() % 5 + 1;
          if (shapeSize < 3) shapeSize += Random::rand() % 3;
        }
        Shape shape = generate_shape(area, pick_random(area), shapeSize);
        if (shape.size() == region.size())
          continue;  // Don't allow the shape to match the region, to guarantee
                     // it will be wrong
        symbol = make_shape_symbol(shape, toErase & Decoration::Can_Rotate,
                                   toErase & Decoration::Negative);
      }
      set(pos, symbol | (toErase & 0xf));
    } else if (get_symbol_type(toErase) == Decoration::Triangle) {
      if (hasFlag(Config::TreehouseLayout) /*||
          _panel->id == 0x289E7*/) {  // If the block is adjacent to a start or
                                    // exit, don't place a triangle there
        bool found = false;
        for (Point dir : _DIRECTIONS1) {
          if (_starts.count(pos + dir) || _exits.count(pos + dir)) {
            found = true;
            break;
          }
        }
        if (found) continue;
      }
      int count = count_sides(pos);
      if (count == 0)
        count = Random::rand() % 3 + 1;
      else
        count = (count + (Random::rand() & 1)) % 3 + 1;
      set(pos, toErase | (count << 16));
    }

    if (!(toErase & Decoration::Dot)) {
      _openpos.erase(pos);
      open2.erase(pos);
    }
    // Place the eraser at a random open point
    if (_splitPoints.size() == 0)
      pos = pick_random(open2);
    else
      for (Point p : _splitPoints)
        if (region.count(p)) {
          pos = p;
          break;
        }
    /*if (_panel->id == 0x288FC && hasFlag(Generate::Config::DisableWrite)) {
      if (hasSymbolOrPath(5, 5)) return false;
      pos = {5, 5};  // For the puzzle in the cave with a pillar in middle
    }*/
    set(pos, Decoration::Eraser | color);
    _openpos.erase(pos);
    amount--;
  }
  return true;
}

// For the mountain floor puzzle on hard mode. Combine two tetris shapes into
// one
bool Generate::combine_shapes(std::vector<Shape>& shapes) {
  for (int i = 0; i < shapes.size(); i++) {
    for (int j = 0; j < shapes.size(); j++) {
      if (i == j) continue;
      if (shapes[i].size() + shapes[j].size() <= 5) continue;
      if (shapes[i].size() > 5 || shapes[j].size() > 5) continue;
      // Look for adjacent points
      for (Point p1 : shapes[i]) {
        for (Point p2 : shapes[j]) {
          for (Point dir : _DIRECTIONS2) {
            if (p1 + dir == p2) {
              // Combine shapes
              for (Point p : shapes[i]) shapes[j].insert(p);
              // Make sure there are no holes
              std::set<Point> area = _gridpos;
              for (Point p : shapes[j]) area.erase(p);
              while (area.size() > 0) {
                std::set<Point> region;
                std::vector<Point> check;
                check.push_back(*area.begin());
                region.insert(*area.begin());
                while (check.size() > 0) {
                  Point p = check[check.size() - 1];
                  check.pop_back();
                  for (Point dir : _DIRECTIONS1) {
                    Point p2 = p + dir * 2;
                    if (area.count(p2) && region.insert(p2).second) {
                      check.push_back(p2);
                    }
                  }
                }
                bool connected = false;
                for (Point p : region) {
                  if (p.first == 1 || p.second == 1 ||
                      p.first == _panel->width() - 2 ||
                      p.second == _panel->height() - 2) {
                    connected = true;
                    break;
                  }
                }
                if (!connected) return false;
                for (Point p : region) area.erase(p);
              }
              shapes.erase(shapes.begin() + i);
              return true;
            }
          }
        }
      }
    }
  }
  return false;
}

bool Generate::hasSymbolOrPath(int x, int y) { return get(x, y) != 0; }

std::string Generate::AsCode() { return _panel->Write(); }